Stem cell therapy for diabetic foot ulcers shows promise in new study

For individuals with diabetes, the body’s inability to properly control blood sugar levels can lead to a wide range of other problems as time passes. One major issue is a diabetic foot ulcer (DFU), an open sore or wound that is commonly located on the bottom of the foot and caused by poor blood circulation and nerve damage. It occurs in approximately 15% of individuals with diabetes and in severe cases can lead to foot or leg amputation. Unfortunately, there is usually no effective form of treatment for this condition.

However, results from several studies authorized by the Ministry of Health of Nicaragua showed that using a stem cell therapy to treat patients with DFUs was safe and could be beneficial to patients.

The first results in a pilot study after an 18-month period demonstrated safety of the therapy and complete wound healing by nine months. After the six-year mark, five of the initial 10 subjects still demonstrated persistence of clinical benefits. It should be noted that five had passed away due to cardiac and other non-study-related causes.

In another study, the team wanted to determine the safety and efficacy of the stem cell therapy to treat non-healing DFUs greater than 3 centimeters in diameter.

For this clinical trial, 63 people from 35 to 70 years old with Type 2 diabetes and chronic DFU, all of whom were amputation candidates, were treated with a mixture of various types of stem cells obtained from the patient’s own fat tissue. The stem cell therapy was injected directly into the DFU with the hopes of restoring damaged blood vessels and promoting blood circulation and healing.

Patients were seen six months post treatment to evaluate ulcer closure, with 51 patients achieving 100 percent DFU closure and eight having greater than 75 percent. Only three required early amputations and one patient died. At 12 months post treatment, 50 patients had 100 percent DFU healing, while four had greater than 85 percent healing.

In a news release, Dr. Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine, expressed interest in evaluating this stem cell therapy and results further.

“This work should be reviewed as it demonstrates the possibility of a novel cell injection therapy that can alleviate pain and infection, accelerate wound healing, and possibly avoid amputation.”

The full results of the recent study were published in Stem Cells Translational Medicine.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe

CIRM-funded therapy to ease the impact of chemotherapy

Treatments for cancer have advanced a lot in recent years, but many still rely on the use of chemotherapy to either shrink tumors before surgery or help remove cancerous cells the surgery missed. The chemo can be very effective, but it’s also very toxic. Angiocrine Bioscience Inc. is developing a way to reduce those toxic side effects, and they just got a nice vote of confidence for that approach.

The US Food and Drug Administration (FDA) has granted Angiocrine Regenerative Medicine Advanced Therapy (RMAT) designation for their product AB-205.

RMAT is a big deal. It means the therapy, in this case AB-205, has already shown it is safe and potentially beneficial to patients, so the designation means that if it continues to be safe and effective it may be eligible for a faster, more streamlined approval process. And that means it can get to the patients who need it, outside of a clinical trial, faster.

What is AB-205? Well it’s made from genetically engineered cells, derived from cord blood, designed to help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

CIRM awarded Angiocrine Bioscience $6.2 million in 2018 to help carry out the Phase 2 clinical trial testing the therapy. In a news release ,CIRM President & CEO, Dr. Maria Millan, said there is a real need for this kind of therapy.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people. Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

In a news release Dr. Paul Finnegan, Angiocrine’s CEO, welcomed the news.

“The RMAT designation speaks to the clinical meaningfulness and the promising efficacy data and safety profile of AB-205 based on our Phase 1b/2 study. This is an important step in accelerating the development of AB-205 towards its first market approval. We appreciate the thorough assessment provided by the FDA reviewers and the support from our partner, the California Institute for Regenerative Medicine.” 

The investment in Angiocrine marked a milestone for CIRM. It was the 50th clinical trial we had funded. It was a cause for celebration then. We’re hoping it will be a cause for an even bigger celebration in the not too distant future.

The company hopes to start a Phase 3 clinical trial in the US and Europe next year.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

Could stem cells help reverse hair loss?

I thought that headline would grab your attention. The idea behind it grabbed my attention when I read about a new study in the journal Cell Metabolism that explored that idea and came away with a rather encouraging verdict of “perhaps”.

The research team from the University of Helsinki say that on average people lose 1.5 grams of hair every day, which over the course of a year adds up to more than 12 pounds (I think, sadly, this is the one area where I’m above average.) Normally all that falling hair is replaced by stem cells, which generate new hair follicles. However, as we get older, those stem cells don’t work as efficiently which explains why so many men go bald.

In a news release, lead author Sara Wickstrom says this was the starting point for their study.

“Although the critical role of stem cells in ageing is established, little is known about the mechanisms that regulate the long-term maintenance of these important cells. The hair follicle with its well understood functions and clearly identifiable stem cells was a perfect model system to study this important question.”

Previous studies have shown that after stem cells create new hair follicles they essentially take a nap (resume a quiescent state in more scientific parlance) until they are needed again. This latest study found that in order to do that the stem cells have to change their metabolism, reducing their energy use in response to the lower oxygen tissue around them. The team identified a protein called Rictor that appears to be the key in this process. Cells with low levels of Rictor were less able to wake up when needed and generate more hair follicles. Fewer replacements, bigger gaps in the scalp.

The team then created a mouse model to test their theory. Sure enough, mice with low or no Rictor levels were less able to regenerate hair follicles. Not surprisingly this was most apparent in older mice, who showed lower Rictor levels, decreased stem cell activity and greater hair loss.

Sara Wickstrom says this could point to new approaches to reversing the process.

“We are particularly excited about the observation that the application of a glutaminase inhibitor was able to restore stem cell function in the Rictor-deficient mice, proving the principle that modifying metabolic pathways could be a powerful way to boost the regenerative capacity of our tissues,”

It’s early days in the research so don’t expect them to be able to put the Hair Club for Men out of business any time soon. But a follicle-challenged chap can dream can’t he.

Partners in health

From left to right: Heather Dahlenburg, Jan Nolta, Jeannine Logan White, Sheng Yang
From left to right: Heather Dahlenburg, staff research associate; Jan Nolta, director of the Stem Cell Program; Jeannine Logan White, advanced cell therapy project manager; Sheng Yang, graduate student, Bridges Program, Humboldt State University, October 18, 2019. (AJ Cheline/UC Davis)

At CIRM we are modest enough to know that we can’t do everything by ourselves. To succeed we need partners. And in UC Davis we have a terrific partner. The work they do in advancing stem cell research is exciting and really promising. But it’s not just the science that makes them so special. It’s also their compassion and commitment to caring for patients.

What follows is an excerpt from an article by Lisa Howard on the work they do at UC Davis. When you read it you’ll see why we are honored to be a part of this research.

Gene therapy research at UC Davis

UC Davis’ commitment to stem cell and gene therapy research dates back more than a decade.

In 2010, with major support from the California Institute for Regenerative Medicine (CIRM), UC Davis launched the UC Davis Institute for Regenerative Cures, which includes research facilities as well as a Good Manufacturing Practice (GMP) facility.

In 2016, led by Fred Meyers, a professor in the School of Medicine, UC Davis launched the Center for Precision Medicine and Data Sciences, bringing together innovations such as genomics and biomedical data sciences to create individualized treatments for patients.

Last year, the university launched the Gene Therapy Center, part of the IMPACT Center program.

Led by Jan Nolta, a professor of cell biology and human anatomy and the director of the UC Davis Institute for Regenerative Cures, the new center leverages UC Davis’ network of expert researchers, facilities and equipment to establish a center of excellence aimed at developing lifelong cures for diseases.

Nolta began her career at the University of Southern California working with Donald B. Kohn on a cure for bubble baby disease, a condition in which babies are born without an immune system. The blood stem cell gene therapy has cured more than 50 babies to date.

Work at the UC Davis Gene Therapy Center targets disorders that potentially can be treated through gene replacement, editing or augmentation.

“The sectors that make up the core of our center stretch out across campus,” said Nolta. “We work with the MIND Institute a lot. We work with the bioengineering and genetics departments, and with the Cancer Center and the Center for Precision Medicine and Data Sciences.”

A recent UC Davis stem cell study shows a potential breakthrough for healing diabetic foot ulcers with a bioengineered scaffold made up of human mesenchymal stem cells (MSCs). Another recent study revealed that blocking an enzyme linked with inflammation enables stem cells to repair damaged heart tissue. A cell gene therapy study demonstrated restored enzyme activity in Tay-Sachs disease affected cells in humanized mouse models.

Several cell and gene therapies have progressed to the point that ongoing clinical trials are being conducted at UC Davis for diseases, including sickle-cell anemia, retinopathy, muscle injury, dysphasia, advanced cancer, and Duchenne muscular dystrophy, among others.

“Some promising and exciting research right now at the Gene Therapy Center comes from work with hematopoietic stem cells and with viral vector delivery,” said Nolta.

Hematopoietic stem cells give rise to other blood cells. A multi-institutional Phase I clinical trial using hematopoietic stem cells to treat HIV-lymphoma patients is currently underway at UC Davis.

.Joseph Anderson

Joseph Anderson

“We are genetically engineering a patient’s own blood stem cells with genes that block HIV infection,” said Joseph Anderson, an associate professor in the UC Davis Department of Internal Medicine. The clinical trial is a collaboration with Mehrdad Abedi, the lead principal investigator.

“When the patients receive the modified stem cells, any new immune system cell, like T-cell or macrophage, that is derived from one of these stem cells, will contain the HIV-resistant genes and block further infection,” said Anderson.

He explained that an added benefit with the unique therapy is that it contains an additional gene that “tags” the stem cells. “We are able to purify the HIV-resistant cells prior to transplantation, thus enriching for a more protective cell population.

Kyle David Fink

Kyle David Fink

Kyle David Fink, an assistant professor of neurology at UC Davis, is affiliated with the Stem Cell Program and Institute for Regenerative Cures. His lab is focused on leveraging institutional expertise to bring curative therapies to rare, genetically linked neurological disorders.

“We are developing novel therapeutics targeted to the underlying genetic condition for diseases such as CDKL5 deficiency disorder, Angelman, Jordan and Rett syndromes, and Juvenile Huntington’s disease,” said Fink.

The lab is developing therapies to target the underlying genetic condition using DNA-binding domains to modify gene expression in therapeutically relevant ways. They are also creating novel delivery platforms to allow these therapeutics to reach their intended target: the brain.

“The hope is that these highly innovative methods will speed up the progress of bringing therapies to these rare neurodegenerative disease communities,” said Fink.Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program.

Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program, October 18, 2019. (AJ Cheline/UC Davis)

Developing potential lifetime cures

Among Nolta’s concerns is how expensive gene therapy treatments can be.

“Some of the therapies cost half a million dollars and that’s simply not available to everyone. If you are someone with no insurance or someone on Medicare, which reimburses about 65 percent, it’s harder for you to get these life-saving therapies,” said Nolta.

To help address that for cancer patients at UC Davis, Nolta has set up a team known as the “CAR T Team.”

Chimeric antigen receptor (CAR) T-cell therapy is a type of immunotherapy in which a patient’s own immune cells are reprogrammed to attack a specific protein found in cancer cells.

“We can develop our own homegrown CAR T-cells,” said Nolta. “We can use our own good manufacturing facility to genetically engineer treatments specifically for our UC Davis patients.”

Although safely developing stem cell treatments can be painfully slow for patients and their families hoping for cures, Nolta sees progress every day. She envisions a time when gene therapy treatments are no longer considered experimental and doctors will simply be able to prescribe them to their patients.

“And the beauty of the therapy is that it can work for the lifetime of a patient,” said Nolta.

Exploring tough questions, looking for answers

COVID-19 and social and racial injustice are two of the biggest challenges facing the US right now. This Thursday, October 8th, we are holding a conversation that explores finding answers to both.

The CIRM Alpha Stem Cell Clinic Network Symposium is going to feature presentations about advances in stem cell and regenerative research, highlighting treatments that are already in the clinic and being offered to patients.

But we’re also going to dive a little deeper into the work we support, and use it to discuss two of the most pressing issues of the day.

One of the topics being featured is research into COVID-19. To date CIRM has funded 17 different projects, including three clinical trials. We’ll talk about how these are trying to find ways to help people infected with the virus, seeing if stem cells can help restore function to organs and tissues damaged by the virus, and if we can use stem cells to help develop safe and effective vaccines.

Immediately after that we are going to use COVID-19 as a way of exploring how the people most at risk of being infected and suffering serious consequences, are also the ones most likely to be left out of the research and have most trouble accessing treatments and vaccines.

Study after study highlights how racial and ethnic minorities are underrepresented in clinical trials and disproportionately affected by debilitating diseases. We have a responsibility to change that, to ensure that the underserved are given the same opportunity to take part in clinical trials as other communities.

How do we do that, how do we change a system that has resisted change for so long, how do we overcome the mistrust that has built up in underserved communities following decades of abuse? We’ll be talking about with experts who are on the front lines of this movement.

It promises to be a lively meeting. We’d love to see you there. It’s virtual – of course – it’s open to everyone, and it’s free.

Here’s where you can register and find out more about the Symposium

Explaining COVID can be a pitch

When people ask me what I do at CIRM I sometimes half-jokingly tell them that I’m the official translator: I take complex science and turn it into everyday English. That’s important. The taxpayers of California have a right to know how their money is being spent and how it might benefit them. But that message can be even more effective when it comes from the scientists themselves.

Recently we asked some of the scientists we are funding to do research into COVID-19 to record what’s called an “elevator pitch”. This is where they prepare an explanation of their work that is in ordinary English and is quite short, short enough to say it to someone as you ride in an elevator. Hence the name.

It sounds easy enough. But it’s not. When you are used to talking in the language of science day in and day out, suddenly switching codes to talk about your work in plain English can take some practice. Also, you have spent years, often decades, on this work and to have to explain it in around one minute is no easy thing.

But our researchers rose to the challenge. Here’s some examples of just how well they did.

It’s all about the patients

Ronnie, born with a fatal immune disorder now leading a normal life thanks to a CIRM-funded stem cell/gene therapy: Photo courtesy of his mum Upasana

Whenever you are designing something new you always have to keep in mind who the end user is. You can make something that works perfectly fine for you, but if it doesn’t work for the end user, the people who are going to work with it day in and day out, you have been wasting your time. And their time too.

At CIRM our end users are the patients. Everything we do is about them. Starting with our mission statement: to accelerate stem cell treatments to patients with unmet medical needs. Everything we do, every decision we make, has to keep the needs of the patient in mind.

So, when we were planning our recent 2020 Grantee Meeting (with our great friends and co-hosts UC Irvine and UC San Diego) one of the things we wanted to make sure didn’t get lost in the mix was the face and the voice of the patients. Often big conferences like this are heavy on science with presentations from some of the leading researchers in the field. And we obviously wanted to make sure we had that element at the Grantee meeting. But we also wanted to make sure that the patient experience was front and center.

And we did just that. But more on that in a minute. First, let’s talk about why the voice of the patient is important.

Some years ago, Dr. David Higgins, a CIRM Board member and patient advocate for Parkinson’s Disease (PD), said that when researchers are talking about finding treatments for PD they often focus on the dyskinesia, the trembling and shaking and muscle problems. However, he said if you actually asked people with PD you’d find they were more concerned with other aspects of the disease, the insomnia, anxiety and depression among other things. The key is you have to ask.

Frances Saldana, a patient advocate for research into Huntington’s disease

So, we asked some of our patient advocates if they would be willing to be part of the Grantee Meeting. All of them, without hesitation, said yes. They included Frances Saldana, a mother who lost three of her children to Huntington’s disease; Kristin MacDonald, who lost her sight to a rare disorder but regained some vision thanks to a stem cell therapy and is hoping the same therapy will help restore some more; Pawash Priyank, whose son Ronnie was born with a fatal immune disorder but who, thanks to a stem cell/gene therapy treatment, is now healthy and leading a normal life.

Because of the pandemic everything was virtual, but it was no less compelling for that. We interviewed each of the patients or patient advocates beforehand and those videos kicked off each session. Hearing, and seeing, the patients and patient advocates tell their stories set the scene for what followed. It meant that the research the scientists talked about took on added significance. We now had faces and names to highlight the importance of the work the scientists were doing. We had human stories. And that gave a sense of urgency to the work the researchers were doing.

But that wasn’t all. After all the video presentations each session ended with a “live” panel discussion. And again, the patients and patient advocates were a key part of that. Because when scientists talk about taking their work into a clinical trial they need to know if the way they are setting up the trial is going to work for the patients they’re hoping to recruit. You can have the best scientists, the most promising therapy, but if you don’t design a clinical trial in a way that makes it easy for patients to be part of it you won’t be able to recruit or retain the people you need to test the therapy.

Patient voices count. Patient stories count.

But more than anything, hearing and seeing the people we are trying to help reminds us why we do this work. It’s so easy to get caught up in the day to day business of our jobs, struggling to get an experiment to work, racing to get a grant application in before the deadline. Sometimes we get so caught up in the minutiae of work we lose sight of why we are doing it. Or who we are doing it for.

At CIRM we have a saying; come to work every day as if lives depend on you, because lives depend on you. Listening to the voices of patients, seeing their faces, hearing their stories, reminds us not to waste a moment. Because lives depend on all of us.

Here’s one of the interviews that was featured at the event. I do apologize in advance for the interviewer, he’s rubbish at his job.