Getting faster, working smarter: how changing the way we work is paying big dividends

This blog is part of the Month of CIRM series

Speeding up the way you do things isn’t always a good idea. Just ask someone who got a ticket for going 65mph in a 30mph zone. But at CIRM we have found that doing things at an accelerated pace is paying off in a big way.

When CIRM started back in 2004 we were, in many ways, a unique organization. That meant we pretty much had to build everything from scratch, creating our own ways of asking for applications, reviewing those applications, funding them etc. Fast forward ten years and it was clear that, as good a job as we did in those early days, there was room for improvement in the way we operated.

So we made some changes. Big changes.

We adopted as our mantra the phrase “operational excellence.” It doesn’t exactly trip off the tongue but it does reflect what we were aiming for. The Business Dictionary defines operational excellence as:

 “A philosophy of the workplace where problem-solving, teamwork, and leadership results in the ongoing improvement in an organization.”

We didn’t want to just tinker with the way we worked, we wanted to reinvent every aspect of our operation. To do that we involved everyone in the operation. We held a series of meetings where everyone at CIRM, and I do mean everyone, was invited to join in and offer their ideas on how to improve our operation.

The end result was CIRM 2.0. At the time we described it as “a radical overhaul” of the way we worked. That might have been an understatement. We increased the speed, frequency and volume of the programs we offered, making it easier and more predictable for researchers to apply to us for funding, and faster for them to get that funding if they were approved.

For example, before 2.0 it took almost two years to go from applying for funding for a clinical trial to actually getting that funding. Today it takes around 120 days.

But it’s not just about speed. It’s also about working smarter. In the past if a researcher’s application for funding for a clinical trial failed it could be another 12 months before they got a chance to apply again. With many diseases 12 months could be a death sentence. So we changed the rules. Now if you have a project ready for a clinical trial you can apply any time. And instead of recommending or not recommending a project, basically voting it up or down, our independent panel of expert reviewers now give researchers with good but not great applications constructive feedback, enabling the researchers to make the changes needed to improve their project, and reapply for funding within 30 days.

This has not only increased the number of applications for clinical trials, it has also increased the quality of those applications.

We made similar changes in our Discovery and Translation programs. Increasing the frequency of each award, making it easier for researchers to know when the next round of funding was coming up. And we added incentives to encourage researchers to move successful projects on to the next level. We wanted to create a pipeline of the most promising projects steadily moving towards the clinic.

The motivation to do this comes from our patients. At CIRM we are in the time business. Many of the patients who are looking to stem cells to help them don’t have the luxury of time; they are rapidly running out of it. So we have a responsibility to do all we can to reduce the amount of time it takes to get the most promising therapies to them, without in any way compromising safety and jeopardizing their health.

By the end of 2016 those changes were very clearly paying dividends as we increased the frequency of reviews and the number of projects we reviewed but at the same time decreased the amount of time it took us to do all that.

Slide1

But we are not done yet. We have done a good job of improving the way we work. But there is always room to be even better, to go even faster and be more efficient.

We are not done accelerating. Not by a long shot.

Advertisements

Stem Cell Tools: Helping Scientists Understand Complex Diseases

Yesterday, we discussed a useful stem cell tool called the CIRM iPSC Repository, which will contain over 3000 human induced pluripotent stem cell (iPSC) lines – from patients and healthy individuals – that contain a wealth of information about human diseases. Now that scientists have access to these lines, they need the proper tools to study them. This is where CIRM’s Genomics Initiative comes into play.

Crunching stem cell data

In 2014, CIRM funded the Genomics Initiative, which created the Center of Excellence in Stem Cell Genomics (CESCG). The goal of the CESCG is to develop novel genomics and bioinformatics tools specifically for stem cell research. These technologies aim to advance our fundamental understanding of human development and disease mechanisms, improve current cell and tissue production methods, and accelerate personalized stem cell-based therapies.

The CESCG is a consortium between Stanford University, the Salk Institute and UC Santa Cruz. Together, the groups oversee or support more than 20 different research projects throughout California focused on generating and analyzing sequencing data from stem or progenitor cells. Sequencing technology today is not only used to decode DNA, but also used to study other genomic data like that provides information about how gene activity is regulated.

Many of the projects within the CESCG are using these sequencing techniques to define the basic genetic properties of specific cell types, and will use this information to create better iPSC-based tissue models. For example, scientists can determine what genes are turned on or off in cells by analyzing raw data from RNA sequencing experiments (RNA is like a photocopy of DNA sequences and is the cell’s way of carrying out the instructions contained in the DNA. This technology sequences and identifies all the RNA that is generated in a tissue or cell at a specific moment).  Single cell RNA sequencing, made possible by techniques such as Drop-seq mentioned in yesterday’s blog, are now further revealing the diversity of cell types within tissues and creating more exact reference RNA sequences to identify a specific cell type.  By comparing RNA sequencing data from single cells of stem cell-based models to previously referenced cell types, researchers can estimate how accurate, or physiologically relevant, those stem cell models are.

Such comparative analyses can only be done using powerful software that can compare millions of sequence data at the same time. Part of a field termed bioinformatics, these activities are a significant portion of the CESCG and several software tools are being created within the Initiative.  Josh Stuart, a faculty member at UC Santa Cruz School of Engineering and a primary investigator in the CESCG, explained their team’s vision:

Josh Stuart

“A major challenge in the field is recognizing cell types or different states of the same cell type from raw data. Another challenge is integrating multiple data sets from different labs and figuring out how to combine measurements from different technologies. At the CESCG, we’re developing bioinformatics models that trace through all this data. Our goal is to create a database of these traces where each dot is a cell and the curves through these dots explain how the cells are related to one another.”

Stuart’s hope is that scientists will input their stem cell data into the CESCG database and receive a scorecard that explains how accurate their cell model is based on a specific genetic profile. The scorecard will help will not only provide details on the identity of their cells, but will also show how they relate to other cell types found in their database.

The Brain of Cells

An image of a 3D brain organoid grown from stem cells in the Kriegstein Lab at UCSF. (Photo by Elizabeth DiLullo)

A good example of how this database will work is a project called the Brain of Cells (BOC). It’s a collection of single cell RNA sequencing data from thousands of fetal-derived brain cells provided by multiple labs. The idea is that researchers will input RNA sequencing data from the stem cell-derived brain cells they make in their labs and the BOC will give them back a scorecard that describes what types of cells they are and their developmental state by comparing them to the referenced brain cells.

One of the labs that is actively involved in this project and is providing the bulk of the BOC datasets is Arnold Kriegstein’s lab at UC San Francisco. Aparna Bhaduri, a postdoctoral fellow in the Kriegstein lab working on the BOC project, outlined the goal of the BOC and how it will benefit researchers:

“The goal of the Brain of Cells project is to find ways to leverage existing datasets to better understand the cells in the developing human brain. This tool will allow researchers to compare cell-based models (such as stem cell-derived 3D organoids) to the actual developing brain, and will create a query-able resource for researchers in the stem cell community.”

Pablo Cordero, a former postdoc in Josh Stuart’s lab who designed a bioinformatics tool used in BOC called SCIMITAR, explained how the BOC project is a useful exercise in combining single cell data from different external researchers into one map that can predict cell type or cell fate.

“There is no ‘industry standard’ at the moment,” said Cordero. “We have to find various ways to perform these analyses. Approximating the entire human cell lineage is the holy grail of regenerative medicine since in theory, we would have maps of gene circuits that guide cell fate decisions.”

Once the reference data from BOC is ready, the group will use a bioinformatics program called Sample Psychic to create the scorecards for outside researchers. Clay Fischer, project manager of the CESCG at UC Santa Cruz, described how Sample Psychic works:

Clay Fischer

“Sample Psychic can look at how often genes are being turned off and on in cells. It uses this information to produce a scorecard, which shows how closely the data from your cells maps up to the curated cell types and can be used to infer the probability of the cell type.”

The BOC group believes that the analyses and data produced in this effort will be of great value to the research community and scientists interested in studying developmental neuroscience or neurodegeneration.

What’s next?

The Brain of Cells project is still in its early stages, but soon scientists will be able to use this nifty tool to help them build better and more accurate models of human brain development and brain-related diseases.

CESCG is also pursuing stem cell data driven projects focused on developing similar databases and scorecards for heart cells and pancreatic cells. These genomics and bioinformatics tools are pushing the envelope to a day when scientists can connect the dots between how different cell states and cell fates are determined by computational analysis and leverage this information to generate better iPSC-based systems for disease modeling in the lab or therapeutics in the clinic.


Related Links:

Building California’s stem cell research community, from the ground up

For week three of the Month of CIRM, our topic is infrastructure. What is infrastructure? Read on for a big picture overview and then we’ll fill in the details over the course of the week.

When CIRM was created in 2001, our goal was to grow the stem cell research field in California. But to do that, we first had to build some actual buildings. Since then, our infrastructure programs have taken on many different forms, but all have been focused on a single mission – helping accelerate stem cell research to patients with unmet medical needs.
CIRM_Infrastucture-program-iconScreen Shot 2017-10-16 at 10.58.38 AM

In the early 2000’s, stem cell scientists faced a quandary. President George W. Bush had placed limits on how federal funds could be used for embryonic stem cell research. His policy allowed funding of research involving some existing embryonic stem cell lines, but banned research that developed or conducted research on new stem lines.

Many researchers felt the existing lines were not the best quality and could only use them in a limited capacity. But because they were dependent on the government to fund their work, had no alternative but to comply. Scientists who chose to use non-approved lines were unable to use their federally funded labs for stem cell work.

The creation of CIRM changed that. In 2008, CIRM launched its Major Facilities Grant Program. The program had two major goals:

1) To accommodate the growing numbers of stem cell researchers coming in California as a result of CIRM’s grants and funding.

2) To provide new research space that didn’t have to comply with the federal restrictions on stem cell research.

Over the next few years, the program invested $271million to help build 12 new research facilities around California from Sacramento to San Diego. The institutions used CIRM’s funding to leverage and attract an additional $543 million in funds from private donors and institutions to construct and furnish the buildings.

These world-class laboratories gave scientists the research space they needed to work with any kind of stem cell they wanted and develop new potential therapies. It also enabled the institutions to bring together under one roof, all the stem cell researchers, who previously had been scattered across each campus.

One other important benefit was the work these buildings provided for thousands of construction workers at a time of record unemployment in the industry. Here’s a video about the 12 facilities we helped build:

But building physical facilities was just our first foray into developing infrastructure. We were far from finished.

In the early days of stem cell research, many scientists used cells from different sources, created using different methods. This meant it was often hard to compare results from one study to another. So, in 2013 CIRM created an iPSC Repository, a kind of high tech stem cell bank. The repository collected tissue samples from people who have different diseases, turned those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and then made those samples available to researchers around the world. This not only gave researchers a powerful resource to use in developing a deeper understanding of different diseases, but because the scientists were all using the same cell lines that meant their findings could be compared to each other.

That same year we also launched a plan to create a new, statewide network of clinics that specialize in using stem cells to treat patients. The goal of the Alpha Stem Cell Clinics Network is to support and accelerate clinical trials for programs funded by the agency, academic researchers or industry. We felt that because stem cell therapies are a completely new way of treating diseases and disorders, we needed a completely new way of delivering treatments in a safe and effective manner.

The network began with three clinics – UC San Diego, UCLA/UC Irvine, and City of Hope – but at our last Board meeting was expanded to five with the addition of UC Davis and UCSF Benioff Children’s Hospital Oakland. This network will help the clinics streamline challenging processes such as enrolling patients, managing regulatory procedures and sharing data and will speed the testing and distribution of experimental stem cell therapies. We will be posting a more detailed blog about how our Alpha Clinics are pushing innovative stem cell treatments tomorrow.

As the field advanced we knew that we had to find a new way to help researchers move their research out of the lab and into clinical trials where they could be tested in people. Many researchers were really good at the science, but had little experience in navigating the complex procedures needed to get the green light from the US Food and Drug Administration (FDA) to test their work in a clinical trial.

So, our Agency created the Translating (TC) and Accelerating Centers (AC). The idea was that the TC would help researchers do all the preclinical testing necessary to apply for permission from the FDA to start a clinical trial. Then the AC would help the researchers set up the trial and actually run it.

In the end, one company, Quintiles IMS, won both awards so we combined the two entities into one, The Stem Cell Center, a kind of one-stop-shopping home to help researchers move the most promising treatments into people.

That’s not the whole story of course – I didn’t even mention the Genomics Initiative – but it’s hard to cram 13 years of history into a short blog. And we’re not done yet. We are always looking for new ways to improve what we do and how we do it. We are a work in progress, and we are determined to make as much progress as possible in the years to come.

Saving Ronnie: Stem Cell & Gene Therapy for Fatal Bubble Baby Disease [Video]

During this second week of the Month of CIRM, we’ve been focusing on the people who are critical to accomplishing our mission to accelerate stem cell treatments to patients with unmet medical needs.

These folks include researchers, like Clive Svendsen and his team at Cedars-Sinai Medical Center who are working tirelessly to develop a stem cell therapy for ALS. My colleague Karen Ring, CIRM’s Social Media and Website Manager, featured Dr. Svendsen and his CIRM-funded clinical trial in Monday’s blog. And yesterday, in recognition of Stem Cell Awareness Day, Kevin McCormack, our Senior Director of Public Communications, blogged about the people within the stem cell community who have made, and continue to make, the day so special.

Today, in a new video, I highlight a brave young patient, Ronnie, and his parents who decided to participate in a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco in an attempt to save Ronnie’s life from an often-fatal disease called severe combined immunodeficiency (SCID). This disorder, also known as bubble baby disease, leaves newborns without a functioning immune system which can turn a simple cold into a potentially deadly infection.

Watch this story’s happy ending in the video above.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Can Stem Cell Therapies Help ALS Patients?

A scientist’s fifteen-year journey to develop a stem cell-based therapy that could one day help ALS patients.

Jan Kaufman

Photo of Clive Svendsen (top left) and Jan & Jeff Kaufman

“Can stem cells help me Clive?”

The sentence appeared slowly on a computer screen, each character separated by a pause while its author searched for the next character using a device controlled by his eye muscle.

The person asking the question was Jeff Kaufman, a Wisconsin man in his 40s completely paralyzed by amyotrophic lateral sclerosis (ALS). On the receiving end was Clive Svendsen, PhD, then a scientist at the University of Wisconsin-Madison, determined to understand how stem cells could help patients like Jeff.

Also known as Lou Gehrig’s disease, ALS is a rapid, aggressive neurodegenerative disease with a two to four-year life expectancy. ALS destroys the nerve cells that send signals from the brain and spinal cord to the muscles that control movement. Denervation, or loss of nerves, causes muscle weakness and atrophy, leaving patients unable to control their own bodies. Currently there are two FDA-approved ALS drugs in the US – riluzole and a new drug called edaravone (Radicava). However, they only slow disease progression in some ALS patients by a few months and there are no effective treatments that stop or cure the disease.

Given this poor prognosis, making ALS the focus of his research career was an easy decision. However, developing a therapeutic strategy was challenging to Svendsen. “The problem with ALS is we don’t know the cause,” he said. “Around 10% of ALS cases are genetic, and we know some of the genes involved, but 90% of cases are sporadic.” He explained that this black box makes it difficult for scientists to know where to start when trying to develop treatments for sporadic ALS cases that have no drug targets.

From Parkinson’s disease to ALS

Svendsen, who moved to Cedars-Sinai in Los Angeles to head the Cedars-Sinai Board of Governors Regenerative Medicine Institute in 2010, has worked on ALS for the past 15 years. Before that, he studied Parkinson’s disease, a long-term neurodegenerative disorder that affects movement, balance and speech. Unlike ALS, Parkinson’s patients have a longer life expectancy and more treatment options that alleviate symptoms of the disease, making their quality of life far better than ALS patients.

Clive Svendsen, PhD, Director, Regenerative Medicine Institute. (Image courtesy of Cedars-Sinai)

“I chose to work on ALS mainly because of the effects it has on ALS families,” explained Svendsen. “Being normal one day, and then becoming rapidly paralyzed was hard to see.”

The transition from Parkinson’s to ALS was not without a scientific reason however. Svendsen was studying how an important growth factor in the brain called Glial Cell Line-Derived Neurotrophic Factor or GDNF could be used to protect dopamine neurons in order to treat Parkinson’s patients. However other research suggested that GDNF was even more effective at protecting motor neurons, the nerve cells destroyed by ALS.

Armed with the knowledge of GDNF’s ability to protect motor neurons, Svendsen and his team developed an experimental stem cell-based therapy that they hoped would treat patients with the sporadic form of ALS. Instead of using stem cells to replace the motor neurons lost to ALS, Svendsen placed his bets on making another cell type in the brain, the astrocyte.

Rooting for the underdog

Astrocytes are the underdog cells of the brain, often overshadowed by neurons that send and receive information from the central nervous system to our bodies. Astrocytes have many important roles, one of the most critical being to support the functions of neurons. In ALS, astrocytes are also affected but in a different way than motor neurons. Instead of dying, ALS astrocytes become dysfunctional and thereby create a toxic environment inhospitable to the motors neurons they are supposed to assist.

Fluorescent microscopy of astrocytes (red) and cell nuclei (blue). Image: Wikipedia.

“While the motor neurons clearly die in ALS, the astrocytes surrounding the motor neurons are also sick,” said Svendsen. “It’s a huge challenge to replace a motor neuron and make it grow a cable all the way to the muscle in an adult human. We couldn’t even get this to work in mice. So, I knew a more realistic strategy would be to replace the sick astrocytes in an ALS patients with fresh, healthy astrocytes. This potentially would have a regenerative effect on the environment around the existing motor neurons.”

The big idea was to combine both GDNF and astrocyte replacement. Svendsen set out to make healthy astrocytes from human brain stem cells that also produce therapeutic doses of GDNF and transplant these cells into the ALS patient spinal cord. Simply giving patients GDNF via pill wouldn’t work because the growth factor is unable to enter the brain or spinal cord tissue where it is needed. The hope, instead, was that the astrocytes would secrete the protective factor that would keep the patients’ motor neurons healthy and alive.

With critical funding from a CIRM Disease Team grant, Svendsen and his colleagues at Cedars-Sinai tested the feasibility of transplanting human brain stem cells (also referred to as neural progenitor cells) that secreted GDNF into a rat model of ALS. Their results were encouraging – the neural progenitor cells successfully developed into astrocytes and secreted GDNF, which collectively protected the rat motor neurons.

Svendsen describes the strategy as “a double whammy”: adding both healthy astrocytes and GDNF secretion to protect the motor neurons. “Replacing astrocytes has the potential to rejuvenate the niche where the motor neurons are. I think that’s a very powerful experimental approach to ALS.”

A fifteen year journey from bench to bedside

With promising preclinical data under his belt, Svendsen and his colleagues, including Robert Baloh, MD, PhD, director of neuromuscular medicine at the Cedars-Sinai Department of Neurology, and neurosurgeon J. Patrick Johnson, MD, designed a clinical trial that would test this experimental therapy in ALS patients. In October 2016, CIRM approved funding for a Phase I/IIa clinical trial assessing the safety of this novel human neural progenitor cell and gene therapy.

Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, director of neuromuscular medicine in the Cedars-Sinai Department of Neurology, in the lab. Svendsen is the sponsor of a current ALS clinical trial at Cedars-Sinai and the overall director of the program. Baloh is the principal investigator for the clinical trial. (Image courtesy of Cedars-Sinai)

This is a first-in-human study, and as such, the U.S. Food and Drug Administration (FDA) required the team to transplant the cells into only one side of the lumbar spinal cord, which effectively means that only one of the patient’s legs will get the treatment. This will allow for a comparison of the function and progression of ALS in the leg on the treated side of the spinal cord compared with the leg on the untreated side.

The trial was approved to treat a total of 18 patients and started in May 2017.

 Svendsen, who first started working on ALS back in 2002, describes his path to the clinic as a “very long and windy road.” He emphasized that this journey wouldn’t be possible without the hard work of his team, Cedars-Sinai and financial support from CIRM.

“It took ten years of preclinical studies and an enormous amount of work from many different people. Just producing the cells that we’re going to use took three years and a lot of trials and tribulations to make it a clinically viable product. It was really thanks to CIRM’s funding and the support of Cedars-Sinai that we got through it all. Without that kind of infrastructure, I can safely say we wouldn’t be here today.”

This “behind-the-scenes” view of how much time and effort it takes to translate a stem cell therapy from basic research into the clinic isn’t something that the public is often exposed to or aware of. Just as “Rome wasn’t built in a day,” Svendsen stressed that good quality stem cell trials take time, and that it’s important for people know how complicated these trials are.

It’s all about the patients

So, what motivates Svendsen to continue this long and harrowing journey to develop a treatment for ALS? He said the answer is easy. “I’m doing it for the patients,” he explained. “I’m not doing this for the money or glory. I just want to develop something that works for ALS, so we can help these patients.”

Svendsen revisited his story about Jeff Kaufman, a man he befriended at the Wisconsin ALS Chapter in 2003. Jeff had three daughters and a son, a wonderful wife, and was a successful lawyer when he was diagnosed with ALS.

“Jeff had basically everything, and then he was stricken with ALS. I still remember going to his house and he could only move his eyes at that point. He tapped out the words ‘Can stem cells help me Clive?’ on his computer screen. And my heart sank because I knew how much and how long it was going to take. I was very realistic so I said, ‘Yes Jeff, but it’s going to take time and money. And even then, it’s a long shot.’ And he told me to go for it, and that stuck in my brain.”

It’s people like Jeff that make Svendsen get out of bed every morning and doggedly pursue a treatment for ALS. Sadly, Jeff passed away due to complications from ALS in 2010. Svendsen says what Jeff and other patients go through is tragic and unfair.

“There’s a gene that goes along with ALS and it’s called the ‘nice person gene,’” he said. “People with ALS are nice. I can’t explain it, but neurologists would say the same thing. You feel like it’s just not fair that it happens to those people.”

The future of stem cell therapies for ALS

It’s clear from speaking with Svendsen, that he is optimistic about the future of stem cell-based therapies for ALS. Scientists still need to unravel the actual causes of ALS. But the experimental stem cell treatments currently in development, including Svendsen’s, will hopefully prove effective at delaying disease progression and give ALS patients more quality years to live.

In the meantime, what concerns Svendsen is how vulnerable ALS patients are to being misled by unapproved stem cell clinics that claim to have cures. “Unfortunately, there are a lot of charlatans out there, and there are a lot of false claims being made. People feed off the desperation that you have in ALS. It’s not fair, and it’s completely wrong. They’ll mislead patients by saying ‘For $40,000 you can get a cure!’”

Compelling stories of patients cured of knee pain or diseases like ALS with injections of their own adult stem cells pop up in the news daily. Many of these stories refer to unapproved treatments from clinics that don’t provide scientific evidence that these treatments are safe and effective. Svendsen said there are reasonable, research-backed trials that are attempting to use adult stem cells to treat ALS. He commented, “I think it’s hard for the public to wade through all of these options and understand what’s real and what’s not real.”

Svendsen’s advice for ALS patients interested in enrolling in a stem cell trial or trying a new stem cell treatment is to be cautious. If a therapy sounds too good to be true, it probably is, and if it costs a lot of money, it probably isn’t legitimate, he explained.

He also wants patients to understand the reality of the current state of ALS stem cell trials. The approved stem cell trials he is aware of are not at the treatment stage yet.

“If you’re enrolled in a stem cell trial that is funded and reputable, then they will tell you honestly that it’s not a treatment. There is currently no approved treatment using stem cells for ALS,” Svendsen said.

This might seem like discouraging news to patients who don’t have time to wait for these trials to develop into treatments, but Svendsen pointed out that the when he started his research 15 years ago, the field of stem cell research was still in its infancy. A lot has been accomplished in the past decade-and-a-half and with talented scientists dedicated to ALS research like Svendsen, the next 15 years will likely offer new insights into ALS and hopefully stem cell-based treatments for a devastating disease that has no cure.

Svendsen hopes that one day, when someone like Jeff Kaufman asks him “Can stem cells help me Clive?” He’ll be able to say, yes they can, yes they can.

Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

CIRM-Funded Clinical Trials Targeting Blood and Immune Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our blood and immune disorders portfolio, specifically focusing on sickle cell disease, HIV/AIDS, severe combined immunodeficiency (SCID, also known as bubble baby disease) and rare disease called chronic granulomatous disease (CGD).

CIRM has funded a total of eight trials targeting these disease areas, all of which are currently active. Check out the infographic below for a list of those trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM-Funded Clinical Trials Targeting Cancers

Welcome to the Month of CIRM!

As we mentioned in last Thursday’s blog, during the month of October we’ll be looking back at what CIRM has done since the agency was created by the people of California back in 2004. To start things off, we’ll be focusing on CIRM-funded clinical trials this week. Supporting clinical trials through our funding and partnership is a critical cornerstone to achieving our mission: to accelerate stem cell treatments to patients with unmet medical needs.

Over the next four days, we will post infographics that summarize CIRM-funded trials focused on therapies for cancer, neurologic disorders, heart and metabolic disease, and blood disorders. Today, we review the nine CIRM-funded clinical trial projects that target cancer. The therapeutic strategies are as varied as the types of cancers the researchers are trying to eradicate. But the common element is developing cutting edge methods to outsmart the cancer cell’s ability to evade standard treatment.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

An unexpected link: immune cells send muscle injury signal to activate stem cell regeneration

We’ve written many blogs over the years about research focused on muscle stem cell function . Those stories describe how satellite cells, another name for muscle stem cells, lay dormant but jump into action to grow new muscle cells in response to injury and damage. And when satellite function breaks down with aging as well as with diseases like muscular dystrophy, the satellite cells drop in number and/or lose their capacity to divide, leading to muscle degeneration.

Illustration of satellite cells within muscle fibers. Image source: APSU Biology

One thing those research studies don’t focus on is the cellular and molecular signals that cause the satellite cells to say, “Hey! We need to start dividing and regenerating!” A Stanford research team examining this aspect of satellite cell function reports this week in Nature Communications that immune cells play an unexpected role in satellite cell activation. This study, funded in part by CIRM, provides a fundamental understanding of muscle regeneration and repair that could aid the development of novel treatments for muscle disorders.

ADAMTS1: a muscle injury signal?
To reach this conclusion, the research team drew upon previous studies that indicated a gene called Adamts1 was turned on more strongly in the activated satellite cells compared to the dormant satellite cells. The ADAMTS1 protein is a secreted protein so the researchers figured it’s possible it could act as a muscle injury signal that activates satellites cells. When ADAMTS1 was applied to mouse muscle fibers in a petri dish, satellite cells were indeed activated.

Next, the team examined ADAMTS1 in a mouse model of muscle injury and found the protein clearly increased within one day after muscle injury. This timing corresponds to when satellite cells drop out of there dormant state after muscle injury and begin dividing and specializing into new muscle cells. But follow up tests showed the satellite cells were not the source of ADAMTS1. Instead, a white blood cell called a macrophage appeared to be responsible for producing the protein at the site of injury. Macrophages, which literally means “big eaters”, patrol our organs and will travel to sites of injury and infection to keep them clean and healthy by gobbling up dead cells, bacteria and viruses. They also secrete various proteins to alert the rest of the immune system to join the fight against infection.

Immune cell’s double duty after muscle injury: cleaning up the mess and signaling muscle regeneration
To confirm the macrophages’ additional role as the transmitter of this ADAMTS1 muscle injury signal, the researchers generated transgenic mice whose macrophages produce abnormally high levels of ADAMTS1. The activation of satellite cells in these mice was much higher than in normal mice lacking this boost of ADAMTS1 production. And four months after birth, the increased activation led to larger muscles in the transgenic mice. In terms of muscle regeneration, one-month old transgenic mice recovered from muscle injury faster than normal mice. Stanford professor Brian Feldman, MD, PhD, the senior author of the study, described his team’s initial reaction to their findings in an interview with Scope, Stanford Medicine’s blog:

“While, in retrospect, it might make intuitive sense that the same cells that are sent into a site of injury to clean up the mess also carry the tools and signals needed to rebuild what was destroyed, it was not at all obvious how, or if, these two processes were biologically coupled. Our data show a direct link in which the clean-up crew releases a signal to launch the rebuild. This was a surprise.”

Further experiments showed that ADAMTS1 works by chopping up a protein called NOTCH that lies on the surface of satellite cells. NOTCH provides signals to the satellite cell to stay in a dormant state. So, when ADAMTS1 degrades NOTCH, the dormancy state of the satellite cells is lifted and they begin to divide and transform into muscle cells.

A pathway to novel muscle disorder therapies?
One gotcha with the ADAMTS1 injury signal is that too much activation can lead to a depletion of satellite cells. In fact, after 8 months, muscle regeneration actually weakened in the transgenic mice that were designed to persistently produce the protein. Still, this novel role of macrophages in stimulating muscle regeneration via the secreted ADAMTS1 protein opens a door for the Stanford team to explore new therapeutic approaches to treating muscle disorders:

“We are excited to learn that a single purified protein, that functions outside the cell, is sufficient to signal to muscle stem cells and stimulate them to differentiate into muscle,” says Dr. Feldman. “The simplicity of that type of signal in general and the extracellular nature of the mechanism in particular, make the pathway highly tractable to manipulation to support efforts to develop therapies that improve health.”

Stem Cell Stories That Caught Our Eye: Halting Brain Cancer, Parkinson’s disease and Stem Cell Awareness Day

Stopping brain cancer in its tracks.

Experiments by a team of NIH-funded scientists suggests a potential method for halting the expansion of certain brain tumors.Michelle Monje, M.D., Ph.D., Stanford University.

Scientists at Stanford Medicine discovered that you can halt aggressive brain cancers called high-grade gliomas by cutting off their supply of a signaling protein called neuroligin-3. Their research, which was funded by CIRM and the NIH, was published this week in the journal Nature. 

The Stanford team, led by senior author Michelle Monje, had previously discovered that neuroligin-3 dramatically spurred the growth of glioma cells in the brains of mice. In their new study, the team found that removing neuroligin-3 from the brains of mice that were transplanted with human glioma cells prevented the cancer cells from spreading.

Monje explained in a Stanford news release,

“We thought that when we put glioma cells into a mouse brain that was neuroligin-3 deficient, that might decrease tumor growth to some measurable extent. What we found was really startling to us: For several months, these brain tumors simply didn’t grow.”

The team is now exploring whether targeting neuroligin-3 will be an effective therapeutic treatment for gliomas. They tested two inhibitors of neuroligin-3 secretion and saw that both were effective in stunting glioma growth in mice.

Because blocking neuroligin-3 doesn’t kill glioma cells and gliomas eventually find ways to grow even in the absence of neuroligin-3, Monje is now hoping to develop a combination therapy with neuroligin-3 inhibitors that will cure patients of high-grade gliomas.

“We have a really clear path forward for therapy; we are in the process of working with the company that owns the clinically characterized compound in an effort to bring it to a clinical trial for brain tumor patients. We will have to attack these tumors from many different angles to cure them. Any measurable extension of life and improvement of quality of life is a real win for these patients.”

Parkinson’s Institute CIRM Research Featured on KTVU News.

The Bay Area Parkinson’s Institute and Clinical Center located in Sunnyvale, California, was recently featured on the local KTVU news station. The five-minute video below features patients who attend the clinic at the Parkinson’s Institute as well as scientists who are doing cutting edge research into Parkinson’s disease (PD).

Parkinson’s disease in a dish. Dopaminergic neurons made from PD induced pluripotent stem cells. (Image courtesy of Birgitt Schuele).

One of these scientists is Dr. Birgitt Schuele, who recently was awarded a discovery research grant from CIRM to study a new potential therapy for Parkinson’s using human induced pluripotent stem cells (iPSCs) derived from PD patients. Schuele explains that the goal of her team’s research is to “generate a model for Parkinson’s disease in a dish, or making a brain in a dish.”

It’s worth watching the video in its entirety to learn how this unique institute is attempting to find new ways to help the growing number of patients being diagnosed with this degenerative brain disease.

Click on photo to view video.

Mark your calendars for Stem Cell Awareness Day!

Every year on the second Wednesday of October is Stem Cell Awareness Day (SCAD). This is a day that our agency started back in 2009, with a proclamation by former California Mayor Gavin Newsom, to honor the important accomplishments made in the field of stem cell research by scientists, doctors and institutes around the world.

This year, SCAD is on October 11th. Our Agency will be celebrating this day with a special patient advocate event on Tuesday October 10th at the UC Davis MIND Institute in Sacramento California. CIRM grantees Dr. Jan Nolta, the Director of UC Davis Institute for Regenerative Cures, and Dr. Diana Farmer, Chair of the UC Davis Department of Surgery, will be talking about their CIRM-funded research developing stem cell models and potential therapies for Huntington’s disease and spina bifida (a birth defect where the spinal cord fails to fully develop). You’ll also hear an update on  CIRM’s progress from our President and CEO (Interim), Maria Millan, MD, and Chairman of the Board, Jonathan Thomas, PhD, JD. If you’re interested in attending this event, you can RSVP on our Eventbrite Page.

Be sure to check out a list of other Stem Cell Awareness Day events during the month of October on our website. You can also follow the hashtag #StemCellAwarenessDay on Twitter to join in on the celebration!

One last thing. October is an especially fun month because we also get to celebrate Pluripotency Day on October 4th. OCT4 is an important gene that maintains stem cell pluripotency – the ability of a stem cell to become any cell type in the body – in embryonic and induced pluripotent stem cells. Because not all stem cells are pluripotent (there are adult stem cells in your tissues and organs) it makes sense to celebrate these days separately. And who doesn’t love having more reasons to celebrate science?