Them bones them bones them dry bones – and how to help repair them

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

Broken bones

People say that with age comes wisdom, kindness and confidence. What they usually don’t say is that it also comes with aches and pains and problems we didn’t have when we were younger. For example, as we get older our bones get thinner and more likely to break and less likely to heal properly.

That’s a depressing opening paragraph isn’t it. But don’t worry, things get better from here because new research from Germany has found clues as to what causes our bones to become more brittle, and what we can do to try and stop that.

Researchers at the Max Planck Institute for Biology of Ageing and CECAD Cluster of Excellence for Ageing Research at the University of Cologne have identified changes in stem cells from our bone marrow that seem to play a key role in bones getting weaker as we age.

To explain this we’re going to have to go into the science a little, so bear with me. One of the issues the researchers focused on is the role of epigenetics, this is genetic information that doesn’t change the genes themselves but does change their activity. Think of it like a light switch. The switch doesn’t change the bulb, but it does control when it’s on and when it’s off. So this team looked at the epigenome of MSCs, the stem cells found in the bone marrow. These cells play a key role in the creation of cartilage, bone and fat cells.

In a news release, Dr. Andromachi Pouikli, one of the lead researchers in the study, says these MSCs don’t function as well as we get older.

“We wanted to know why these stem cells produce less material for the development and maintenance of bones as we age, causing more and more fat to accumulate in the bone marrow. To do this, we compared the epigenome of stem cells from young and old mice. We could see that the epigenome changes significantly with age. Genes that are important for bone production are particularly affected.”

So, they took some stem cells from the bone marrow of mice and tested them with a solution of sodium acetate. Now sodium acetate has a lot of uses, including being used in heating pads, hand warmers and as a food seasoning, but in this case the solution was able to make it easier for enzymes to get access to genes and boost their activity.

“This treatment impressively caused the epigenome to rejuvenate, improving stem cell activity and leading to higher production of bone cells,” Pouikli said.

So far so good. But does this work the same way in people? Maybe so. The team analyzed MSCs from people who had undergone hip surgery and found that they showed the same kind of age-related changes as the cells from mice.

Clearly there’s a lot more work to do before we can even think about using this finding as a solution to aging bones. But it’s an encouraging start.

The study is published in the journal Nature Aging.

Learning life lessons in the lab

Rohan Upadhyay, CIRM SPARK student 2021

One of the most amazing parts of an amazing job is getting to know the students who take part in CIRM’s SPARK (Summer Program to Accelerate Regenerative Medicine Knowledge) program. It’s an internship giving high school students, that reflect the diversity of California, a chance to work in a world-class stem cell research facility.

This year because of the pandemic I didn’t get a chance to meet them in person but reading the blogs they wrote about their experiences I feel as if I know them anyway.

The blogs were fun, creative, engaging and dealt with many issues, as well as stem cell and gene therapy research.

A common theme was how hard the students, many of whom knew little about stem cells before they started, had to work just to understand all the scientific jargon.

Areana Ramirez, who did her internship at UC Davis summed it up nicely when she wrote:

“Despite the struggles of taking over an hour to read a scientific article and researching what every other word meant, it was rewarding to know that all of the strain I had put on my brain was going toward a larger understanding of what it means to help others. I may not know everything about osteogenic differentiation or the polyamine pathway, but I do know the adversities that patients with Snyder-Robinson are facing and the work that is being done to help them. I do know how hard each one of our mentors are working to find new cures and are coming up with innovating ideas that will only help humankind.”

Lauren Ginn at City of Hope had the same experience, but said it taught her a valuable lesson:

“Make no mistake, searching for answers through research can sometimes feel like shooting arrows at a bulls-eye out of sight. Nonetheless, what CIRM SPARK has taught me is the potential for exploration that lies in the unknown. This internship showed me that there is so much more to science than the facts printed in textbooks.”

Rohan Upadhyay at UC Davis discovered that even when something doesn’t work out, you can still learn a lot:

“I asked my mentor (Gerhard Bauer) about what he thought had occurred. But unlike the textbooks there was no obvious answer. My mentor and I could only speculate what had occurred. It was at this point that I realized the true nature of research: every research project leads to more questions that need to be answered. As a result there is no endpoint to research. Instead there are only new beginnings.”

Melanie Nguyen, also at UC Davis, wrote her blog as a poem. But she saved the best part for the prose at the end:

“Like a hematopoietic stem cell, I have learned that I am able to pursue my different interests, to be multi-potential. One can indulge in the joys of biology while simultaneously live out their dreams of being an amateur poet. I choose it all. Similarly, a bone marrow stem cell can become whatever it may please—red, white, platelet. It’s ability to divide and differentiate is the source of its ingenuity. I view myself in the same light. Whether I can influence others with research, words, or stories, I know that with each route I will be able to make change in personalized ways.”

For Lizbeth Bonilla, at Stanford, her experiences transcended the personal and took on an even bigger significance:

“As a first-generation Mexican American, my family was thrilled about this internship and opportunity especially knowing it came from a prestigious institution. Unfortunately there is very little to no representation in our community in regards to the S.T.E.M. field. Our dreams of education and prosperity for the future have to be compromised because of the lack of support and resources. To maintain pride in our culture, we focus on work ethics and family, hoping it will be the next generations’ time to bring successful opportunities home. However, while this is a hope widely shared the effort to have it realized is often limited to men. A Latina woman’s success and interest in education are still celebrated, but not expected. As a first-generation Latina, I want to prove that I can have a career and hopefully contribute to raising the next leading generation, not with the hope that dreams are possible but to be living proof that they are.”

Reading the blogs it was sometimes easy to forget these are 16 and 17 year old students. They write with creativity, humor, thoughtfulness and maturity. They learned a lot about stem cell research over the summer. But I think they also learned a lot more about who they are as individuals and what they can achieve.

A little history in the making by helping the tiniest patients

Dr. Diana Farmer stands with Dr. Aijun Wang and their UC Davis research team.

It’s appropriate that at the start of Women’s History Month, UC Davis’ Dr. Diana Farmer is making a little history of her own. She launched the world’s first clinical trial using stem cells to treat spina bifida before the child is born.

Spina bifida is a birth defect caused when a baby’s spinal cord fails to develop properly in the womb. In myelomeningocele, the most severe form of spina bifida, a portion of the spinal cord or nerves is exposed in a sac through an opening in the spine. Most people with myelomeningocele have changes in their brain structure, leg weakness, and bladder and bowel dysfunction. 

Illustration of spina bifida

While surgery can help, Dr. Farmer says it is far from perfect: “Currently, the standard of care for our patients is fetal surgery, which, while promising, still leaves more than half of children with spina bifida unable to walk independently. There is an extraordinary need for a treatment that prevents or lessens the severity of this devastating condition. Our team has spent more than a decade working up to this point of being able to test such a promising therapy.” 

The team at UC Davis – in a CIRM-funded study – will use a stem cell “patch” that is placed over the exposed spinal cord, then surgically close the opening, hopefully allowing the stem cells to regenerate and protect the spinal cord.

In a news release Dr. Aijun Wang, a stem cell bioengineer, says the team has been preparing for this trial for years, helping show in animals that it is safe and effective. He is hopeful it will prove equally safe and effective in people: “Our cellular therapy approach, in combination with surgery, should encourage tissue regeneration and help patients avoid devastating impairments throughout their lives.” 

Dr. Farmer says the condition, while rare, disproportionately affects Latinx babies and if the procedure works could have an enormous impact on their lives and the lives of their families: “A successful treatment for MMC would relieve the tremendous emotional and economic cost burden on families. We know it initially costs approximately $532,000 per child with spina bifida. But the costs are likely several million dollars more due to ongoing treatments, not to mention all the pain and suffering, specialized childcare, and lost time for unpaid caregivers such as parents.”

Here is video of two English bulldogs who had their spinal injuries repaired at UC Davis using stem cells. This was part of the research that led to the clinical trial led by Dr. Farmer and Dr. Wang.

Unlocking a key behind why our bones get weaker as we age

Magnified image of a bone with osteoporosis. Photo Courtesy Sciencephoto.com

Getting older brings with it a mixed bag of items. If you are lucky you can get wiser. If you are not so lucky you can get osteoporosis. But while scientists don’t know how to make you wiser, they have gained some new insights into what makes bones weak and so they might be able to help with the osteoporosis.

Around 200 million people worldwide suffer from osteoporosis, a disease that causes bones to become so brittle that in extreme cases even coughing can lead to a fracture.

Scientists have known for some time that the cells that form the building blocks of our skeletons are found in the bone marrow. They are called mesenchymal stem cells (MSCs) and they have the ability to turn into a number of different kinds of cells, including bone or fat. The keys to deciding which direction the MSCs take are things called epigenetic factors, these basically control which genes are switched on or off and in what order. Now researchers from the UCLA School of Dentistry have identified an enzyme that plays a critical role in that process.

The team found that when the enzyme KDM4B is missing in MSCs those cells are more likely to become fat cells rather than bone cells. Over time that leads to weaker bones and more fractures.

In a news release Dr. Cun-Yu Wang, the lead researcher, said: “We know that bone loss comes with age, but the mechanisms behind extreme cases such as osteoporosis have, up until recently, been very vague.”

To see if they were on the right track the team created a mouse model that lacked KDM4B. Just as they predicted the MSCs in the mouse created more fat than bone, leading to weaker skeletons.

They also looked at mice who were placed on a high fat diet – something known to increase bone loss and weaker bones in people – and found that the diet seemed to reduce KDM4B which in turn produced weaker bones.

In the news release Dr. Paul Krebsbach, Dean of the UCLA School of Dentistry, said the implications for the research are enormous. “The work of Dr. Wang, his lab members and collaborators provides new molecular insight into the changes associated with skeletal aging. These findings are an important step towards what may lead to more effective treatment for the millions of people who suffer from bone loss and osteoporosis.”

The study is published in the journal Cell Stem Cell.

CIRM Board Approves Four New Clinical Trials

A breakdown of CIRM’s clinical trials by disease area

This past Thursday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved four new clinical trials in addition to ten new discovery research awards.

These new awards bring the total number of CIRM-funded clinical trials to 68.  Additionally, these new additions have allowed the state agency to exceed the goal of commencing 50 new trials outlined in its five year strategic plan.

$8,970,732 was awarded to Dr. Steven Deeks at the University of California San Francisco (UCSF) to conduct a clinical trial that modifies a patient’s own immune cells in order to treat and potentially cure HIV. 

Current treatment of HIV involves the use of long-term antiretroviral therapy (ART).  However, many people are not able to access and adhere to long-term ART.

Dr. Deeks and his team will take a patient’s blood and extract T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient.

The goal of this one time therapy is to act as a long-term control of HIV with patients no longer needing to take ART, in effect a form of HIV cure.  This approach would also address the needs of those who are not able to respond to current approaches, which is estimated to be 50% of those affected by HIV globally. 

$3,728,485 was awarded to Dr. Gayatri Rao from Rocket Pharmaceuticals to conduct a clinical trial using a gene therapy for infantile malignant osteopetrosis (IMO), a rare and life-threatening disorder that develops in infancy.  IMO is caused by defective bone cell function, which results in blindness, deafness, bone marrow failure, and death very early in life. 

The trial will use a gene therapy that targets IMO caused by mutations in the TCIRG1 gene.  The team will take a young child’s own blood stem cells and inserting a functional version of the TCIRG1 gene.  The newly corrected blood stem cells are then introduced back into the child, with the hope of halting or preventing the progression of IMO in young children before much damage can occur. 

Rocket Pharmaceuticals has used the same gene therapy approach for modifying blood stem cells in a separate CIRM funded trial for a rare pediatric disease, which has shown promising results.

$8,996,474 was awarded to Dr. Diana Farmer at UC Davis to conduct a clinical trial of in utero repair of myelomeningocele (MMC), the most severe form of spina bifida.  MMC is a birth defect that occurs due to incomplete closure of the developing spinal cord, resulting in neurological damage to the exposed cord.  This damage leads to lifelong lower body paralysis, and bladder and bowel dysfunction.

Dr. Farmer and her team will use placenta tissue to generate mesenchymal stem cells (MSCs).  The newly generated MSCs will be seeded onto an FDA approved dural graft and the product will be applied to the spinal cord while the infant is still developing in the womb.  The goal of this therapy is to help promote proper spinal cord formation and improve motor function, bladder function, and bowel function. 

The clinical trial builds upon the work of CIRM funded preclinical research.

$8,333,581 was awarded to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease (SCD).  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease.

“Today is a momentus occasion as CIRM reaches 51 new clinical trials, surpassing one of the goals outlined in its five year strategic plan,” says Maria T. Millan, M.D., President and CEO of CIRM.  “These four new trials, which implement innovative approaches in the field of regenerative medicine, reflect CIRM’s ever expanding and diverse clinical portfolio.”

The Board also approved ten awards that are part of CIRM’s Quest Awards Prgoram (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

The awards are summarized in the table below:

  APPLICATION  TITLE  INSTITUTION  AWARD AMOUNT  
    DISC2-12169  Human-induced pluripotent stem cell-derived glial enriched progenitors to treat white matter stroke and vascular dementia.  UCLA  $250,000
  DISC2-12170Development of COVID-19 Antiviral Therapy Using Human iPSC-Derived Lung Organoids  UC San Diego  $250,000
  DISC2-12111Hematopoietic Stem Cell Gene Therapy for X-linked Agammaglobulinemia  UCLA  $250,000
  DISC2-12158Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALSUniversity of Southern California  $249,997
    DISC2-12124Dual angiogenic and immunomodulating nanotechnology for subcutaneous stem cell derived islet transplantation for the treatment of diabetes  Lundquist Institute  $250,000
  DISC2-12105Human iPSC-derived chimeric antigen receptor-expressing macrophages for cancer treatment  UC San Diego  $250,000
  DISC2-12164Optimization of a human interneuron cell therapy for traumatic brain injury  UC Irvine  $250,000
  DISC2-12172Combating COVID-19 using human PSC-derived NK cells  City of Hope  $249,998
  DISC2-12126The First Orally Delivered Cell Therapy for the Treatment of Inflammatory Bowel Disease  Vitabolus Inc.  $249,000
    DISC2-12130Transplantation of Pluripotent Stem Cell Derived Microglia for the Treatment of Adult-onset Leukoencephalopathy (HDLS/ALSP)  UC Irvine  $249,968

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

How stem cells are helping her win the fight of her life

We have all read about people who smoke a pack of cigarettes and drink a bottle of whiskey a day and somehow manage to live a long, healthy life. Then there are people like Sandra Dillon. She lived as healthy a life as you can imagine; she exercised a lot, ate a healthy diet and didn’t smoke. Yet at the age of 28 she was diagnosed with a rare and deadly form of blood cancer called myelofibrosis.

Sandra underwent the traditional forms of treatment but those proved ineffective and time seemed to be running out. Then she heard about a clinical trial for a new, experimental stem cell therapy, with Dr. Catriona Jamieson at the University of California San Diego.

Sandra says she wasn’t looking forward to it, but she was in a lot of pain, was getting much sicker and none of the treatments she tried was working.

“At the time I was actually quite afraid of seeing doctors or going to medical institutions. My experience had been rough, and I knew that I had to overcome my fear of going to hospitals and being treated. But it was a chance to have hope and to be on something that might work when there was nothing else available.”

Dr. Jamieson’s approach (CIRM helped support her early work in this area) had led to her identifying how abnormal gene activity was responsible for the progression of this form of blood cancer. With that knowledge she then identified a specific small molecule known to inhibit this mutant gene activity, and how it could halt the disease.

That’s what happened with Sandra. She says after years of pain and exhaustion, of fearing that she was running out of time, the treatment produced impressive results.

“It was pretty amazing. I had really low expectations from how sick I was and that this was experimental, and it was cancer and you expect it to be awful. And my experience was the opposite of what I’d expected. I started to feel incredible. The pain, after a few months, the side effects from my cancer started to come down.”

Today Sandra’s cancer is still in remission. She is back to her old, healthy, energetic self. She says she doesn’t consider herself a stem cell pioneer but is glad her participation in the trial might also benefit others.

“It’s helped me but the opportunity that it could also help other people is truly meaningful.”

The treatment she received was approved by the US Food and Drug Administration in 2019, the first approval for a therapy that had CIRM support.

I recently had the great pleasure of interviewing Sandra as part of our CIRM 2020 Grantee Meeting.

Partners in health

From left to right: Heather Dahlenburg, Jan Nolta, Jeannine Logan White, Sheng Yang
From left to right: Heather Dahlenburg, staff research associate; Jan Nolta, director of the Stem Cell Program; Jeannine Logan White, advanced cell therapy project manager; Sheng Yang, graduate student, Bridges Program, Humboldt State University, October 18, 2019. (AJ Cheline/UC Davis)

At CIRM we are modest enough to know that we can’t do everything by ourselves. To succeed we need partners. And in UC Davis we have a terrific partner. The work they do in advancing stem cell research is exciting and really promising. But it’s not just the science that makes them so special. It’s also their compassion and commitment to caring for patients.

What follows is an excerpt from an article by Lisa Howard on the work they do at UC Davis. When you read it you’ll see why we are honored to be a part of this research.

Gene therapy research at UC Davis

UC Davis’ commitment to stem cell and gene therapy research dates back more than a decade.

In 2010, with major support from the California Institute for Regenerative Medicine (CIRM), UC Davis launched the UC Davis Institute for Regenerative Cures, which includes research facilities as well as a Good Manufacturing Practice (GMP) facility.

In 2016, led by Fred Meyers, a professor in the School of Medicine, UC Davis launched the Center for Precision Medicine and Data Sciences, bringing together innovations such as genomics and biomedical data sciences to create individualized treatments for patients.

Last year, the university launched the Gene Therapy Center, part of the IMPACT Center program.

Led by Jan Nolta, a professor of cell biology and human anatomy and the director of the UC Davis Institute for Regenerative Cures, the new center leverages UC Davis’ network of expert researchers, facilities and equipment to establish a center of excellence aimed at developing lifelong cures for diseases.

Nolta began her career at the University of Southern California working with Donald B. Kohn on a cure for bubble baby disease, a condition in which babies are born without an immune system. The blood stem cell gene therapy has cured more than 50 babies to date.

Work at the UC Davis Gene Therapy Center targets disorders that potentially can be treated through gene replacement, editing or augmentation.

“The sectors that make up the core of our center stretch out across campus,” said Nolta. “We work with the MIND Institute a lot. We work with the bioengineering and genetics departments, and with the Cancer Center and the Center for Precision Medicine and Data Sciences.”

A recent UC Davis stem cell study shows a potential breakthrough for healing diabetic foot ulcers with a bioengineered scaffold made up of human mesenchymal stem cells (MSCs). Another recent study revealed that blocking an enzyme linked with inflammation enables stem cells to repair damaged heart tissue. A cell gene therapy study demonstrated restored enzyme activity in Tay-Sachs disease affected cells in humanized mouse models.

Several cell and gene therapies have progressed to the point that ongoing clinical trials are being conducted at UC Davis for diseases, including sickle-cell anemia, retinopathy, muscle injury, dysphasia, advanced cancer, and Duchenne muscular dystrophy, among others.

“Some promising and exciting research right now at the Gene Therapy Center comes from work with hematopoietic stem cells and with viral vector delivery,” said Nolta.

Hematopoietic stem cells give rise to other blood cells. A multi-institutional Phase I clinical trial using hematopoietic stem cells to treat HIV-lymphoma patients is currently underway at UC Davis.

.Joseph Anderson

Joseph Anderson

“We are genetically engineering a patient’s own blood stem cells with genes that block HIV infection,” said Joseph Anderson, an associate professor in the UC Davis Department of Internal Medicine. The clinical trial is a collaboration with Mehrdad Abedi, the lead principal investigator.

“When the patients receive the modified stem cells, any new immune system cell, like T-cell or macrophage, that is derived from one of these stem cells, will contain the HIV-resistant genes and block further infection,” said Anderson.

He explained that an added benefit with the unique therapy is that it contains an additional gene that “tags” the stem cells. “We are able to purify the HIV-resistant cells prior to transplantation, thus enriching for a more protective cell population.

Kyle David Fink

Kyle David Fink

Kyle David Fink, an assistant professor of neurology at UC Davis, is affiliated with the Stem Cell Program and Institute for Regenerative Cures. His lab is focused on leveraging institutional expertise to bring curative therapies to rare, genetically linked neurological disorders.

“We are developing novel therapeutics targeted to the underlying genetic condition for diseases such as CDKL5 deficiency disorder, Angelman, Jordan and Rett syndromes, and Juvenile Huntington’s disease,” said Fink.

The lab is developing therapies to target the underlying genetic condition using DNA-binding domains to modify gene expression in therapeutically relevant ways. They are also creating novel delivery platforms to allow these therapeutics to reach their intended target: the brain.

“The hope is that these highly innovative methods will speed up the progress of bringing therapies to these rare neurodegenerative disease communities,” said Fink.Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program.

Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program, October 18, 2019. (AJ Cheline/UC Davis)

Developing potential lifetime cures

Among Nolta’s concerns is how expensive gene therapy treatments can be.

“Some of the therapies cost half a million dollars and that’s simply not available to everyone. If you are someone with no insurance or someone on Medicare, which reimburses about 65 percent, it’s harder for you to get these life-saving therapies,” said Nolta.

To help address that for cancer patients at UC Davis, Nolta has set up a team known as the “CAR T Team.”

Chimeric antigen receptor (CAR) T-cell therapy is a type of immunotherapy in which a patient’s own immune cells are reprogrammed to attack a specific protein found in cancer cells.

“We can develop our own homegrown CAR T-cells,” said Nolta. “We can use our own good manufacturing facility to genetically engineer treatments specifically for our UC Davis patients.”

Although safely developing stem cell treatments can be painfully slow for patients and their families hoping for cures, Nolta sees progress every day. She envisions a time when gene therapy treatments are no longer considered experimental and doctors will simply be able to prescribe them to their patients.

“And the beauty of the therapy is that it can work for the lifetime of a patient,” said Nolta.

Battling COVID and turning back the clock on stem cell funding

Coronavirus

Battling the virus that causes COVID-19 is something that is top of everyone’s mind right now. That’s why CIRM is funding 17 different projects targeting the virus. But one of the most valuable tools in helping develop vaccines against a wide variety of diseases in the past is now coming under threat. We’ll talk about both issues in a live broadcast we’re holding on Wednesday, October 14th at noon (PDT).

That date is significant because it’s Stem Cell Awareness Day and we thought it appropriate to host a meeting looking at two of the most important issues facing the field.

The first part of the event will focus on the 17 projects that CIRM is funding that target COVID-19. This includes three clinical trials aiming to treat people who have been infected with the virus and are experiencing some of the more severe effects, such as damaged lungs.

We’ll also look at some of the earlier stage research that includes:

  • Work to help develop a vaccine
  • Using muscle stem cells to help repair damage to the diaphragm in patients who have spent an extended period on a ventilator
  • Boosting immune system cells to help fight the virus

The second part of the event will look at ways that funding for stem cell research at the federal level is once again coming into question. The federal government has already imposed new restrictions on funding for fetal tissue research, and now there are efforts in Congress to restrict funding for embryonic stem cell research.

The impacts could be significant. Fetal tissue has been used for decades to help develop some of the most important vaccines used today including rubella, chickenpox, hepatitis A, and shingles. They have also been used to make approved drugs against diseases including hemophilia, rheumatoid arthritis, and cystic fibrosis.

We’ll look at some of the reasons why we are seeing these potential restrictions on the medical research and what impact they could have on the ability to develop new treatments for the coronavirus and other deadly diseases.

You can watch the CIRM Stem Cell Awareness Day live event by going here: https://www.youtube.com/c/CIRMTV/videos at noon on Wednesday, October 14th.

Feel free to share news about this event with anyone you think might be interested.

We look forward to seeing you there.

Exploring tough questions, looking for answers

COVID-19 and social and racial injustice are two of the biggest challenges facing the US right now. This Thursday, October 8th, we are holding a conversation that explores finding answers to both.

The CIRM Alpha Stem Cell Clinic Network Symposium is going to feature presentations about advances in stem cell and regenerative research, highlighting treatments that are already in the clinic and being offered to patients.

But we’re also going to dive a little deeper into the work we support, and use it to discuss two of the most pressing issues of the day.

One of the topics being featured is research into COVID-19. To date CIRM has funded 17 different projects, including three clinical trials. We’ll talk about how these are trying to find ways to help people infected with the virus, seeing if stem cells can help restore function to organs and tissues damaged by the virus, and if we can use stem cells to help develop safe and effective vaccines.

Immediately after that we are going to use COVID-19 as a way of exploring how the people most at risk of being infected and suffering serious consequences, are also the ones most likely to be left out of the research and have most trouble accessing treatments and vaccines.

Study after study highlights how racial and ethnic minorities are underrepresented in clinical trials and disproportionately affected by debilitating diseases. We have a responsibility to change that, to ensure that the underserved are given the same opportunity to take part in clinical trials as other communities.

How do we do that, how do we change a system that has resisted change for so long, how do we overcome the mistrust that has built up in underserved communities following decades of abuse? We’ll be talking about with experts who are on the front lines of this movement.

It promises to be a lively meeting. We’d love to see you there. It’s virtual – of course – it’s open to everyone, and it’s free.

Here’s where you can register and find out more about the Symposium