A true Hall of Fame winner

Dr. Larry Goldstein: Photo courtesy UCSD

You know you are working with some of the finest scientific minds in the world when they get elected to the prestigious National Academy of Sciences (NAS). It’s the science equivalent of the baseball, football or even Rock and Roll Hall of Fame. People only get in if their peers vote them in. It’s considered one of the highest honors in science, one earned over many decades of hard work. And when it comes to hard work there are few people who work harder than U.C. San Diego’s Dr. Lawrence Goldstein, one of the newly elected members of the NAS.

Dr. Goldstein – everyone calls him Larry – was the founder and director of the UCSD Stem Cell Program and the Sanford Stem Cell Clinical Center at UC San Diego Health and is founding scientific director of the Sanford Consortium for Regenerative Medicine.

For more than 25 years Larry’s work has targeted the brain and, in particular, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) better known as Lou Gehrig’s disease.

In 2012 his team was the first to create stem cell models for two different forms of Alzheimer’s, the hereditary and the sporadic forms. This gave researchers a new way of studying the disease, helping them better understand what causes it and looking at new ways of treating it.

His work has also helped develop a deeper understanding of the genetics of Alzheimer’s and to identify possible new targets for stem cell and other therapies.

Larry was typically modest when he heard the news, saying: “I have been very fortunate to have wonderful graduate students and fellows who have accomplished a great deal of excellent research. It is a great honor for me and for all of my past students and fellows – I am obviously delighted and hope to contribute to the important work of the National Academy of Sciences.”

But Larry doesn’t intend to rest on his laurels. He says he still has a lot of work to do, including “raising funding to test a new drug approach for Alzheimer’s disease that we’ve developed with CIRM support.”

Jennifer Briggs Braswell, PhD, worked with Larry at UCSD from 2005 to 2018. She says Larry’s election to the NAS is well deserved:

“His high quality publications, the pertinence of his studies in neurodegeneration to our current problems, and his constant, unwavering devotion to the next generation of scientists is matched only by his dedication to improving public understanding of science to motivate social, political, and financial support.  

“He has been for me a supportive mentor, expressing enthusiastic belief in the likely success of my good ideas and delivering critique with kindness and sympathy.   He continues to inspire me, our colleagues at UCSD and other communities, advocate publicly for the importance of science, and work tirelessly on solutions for neurodegenerative disorders.”

You can read about Larry’s CIRM-supported work here.

You can watch an interview with did with Larry a few years ago.

Stem Cells for Parkinson’s Disease

While the world has been turned upside down by the coronavirus pandemic, the virus poses an increased threat to people with Parkinson’s disease (PD). Having a compromised immune system, particularly involving the lungs, means people with PD are at higher risk of some of the more dangerous complications of COVID-19. So, this seems like an appropriate time for CIRM to hold a special Facebook Live “Ask the Stem Cell Team” About Parkinson’s disease.

We are holding the event on Tuesday, May 5th at noon PDT.

The initial reason for the Facebook Live was the CIRM Board approving almost $8 million for Dr. Krystof Bankiewicz at Brain Neurotherapy Bio, Inc. to run a Phase 1 clinical trial targeting PD. Dr. Bankiewicz is using a gene therapy approach to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The approach seeks to increase dopamine production in the brain, alleviating PD symptoms and potentially slowing down the disease progress.

Dr. Bankiewicz will be joined by two of CIRM’s fine Science Officers, Dr. Lila Collins and Dr. Kent Fitzgerald. They’ll talk about the research targeting Parkinson’s that CIRM is funding plus other promising research taking place.

And we are delighted to have a late addition to the team. Our CIRM Board member and patient advocate for Parkinson’s disease, Dr. David Higgins. David has a long history of advocacy for PD and adds the invaluable perspective of someone living with PD.

As always, we want this to be as interactive as possible, so we want to get your questions. You can do this on the day, posting them alongside the live feed, or you can send them to us ahead of time at info@cirm.ca.gov. We’ll do our best to answer as many as we can on the day, and those we don’t get to during the broadcast we’ll answer in a later blog.

We look forward to seeing you there.

Ask the Stem Cell Team About Autism

On March 19th we held a special Facebook Live “Ask the Stem Cell Team About Autism” event. We were fortunate enough to have two great experts – Dr. Alysson Muotri from UC San Diego, and CIRM’s own Dr. Kelly Shepard. As always there is a lot of ground to cover in under one hour and there are inevitably questions we didn’t get a chance to respond to. So, Dr. Shepard has kindly agreed to provide answers to all the key questions we got on the day.

If you didn’t get a chance to see the event you can watch the video here. And feel free to share the link, and this blog, with anyone you think might be interested in the material.

Dr. Kelly Shepard

Can umbilical cord blood stem cells help reduce some of the symptoms?

This question was addressed by Dr. Muotri in the live presentation. To recap, a couple of clinical studies have been reported from scientists at Duke University and Sutter Health, but the results are not universally viewed as conclusive.  The Duke study, which focused on very young children, reported some improvements in behavior for some of the children after treatment, but it is important to note that this trial had no placebo control, so it is not clear that those patients would not have improved on their own. The Duke team has moved forward with larger trial and placebo control.

Does it have to be the child’s own cord blood or could donated blood work too?

In theory, a donated cord product could be used for similar purposes as a child’s own cord, but there is a caveat- the donated cord tissues must have some level of immune matching with the host in order to not be rejected or lead to other complications, which under certain circumstances, could be serious.

Some clinics claim that the use of fetal stem cells can help stimulate improved blood and oxygen flow to the brain. Could that help children with autism?

Fetal stem cells have been tested in FDA approved/sanctioned clinical trials for certain brain conditions such as stroke and Parkinson Disease, where there is clearer understanding of how and which parts of the brains are affected, which nerve cells have been lost or damaged, and where there is a compelling biological rationale for how certain properties the transplanted cells, such as their anti-inflammatory properties, could provide benefit.

Alysson Muotri in his lab and office at Sanford Consortium in La Jolla, California; Photograph by David Ahntholz http://www.twopointpictures.com http://www.davidahntholz.com

In his presentation, Dr. Muotri noted that neurons are not lost in autistic brains, so there is nothing that would be “replaced” by such a treatment. And although some forms of autism might include inflammation that could potentially be mitigated, it is unlikely that  the degree of benefit that might come from reducing inflammation would be worth the risks of the treatment, which includes intracranial injection of donated material.  Unfortunately, we still do not know enough about the specific causes and features of autism to determine if and to what extent stem cell treatments could prove helpful. But we are learning more every day, especially with some of the new technologies and discoveries that have been enabled by stem cell technology. 

Some therapies even use tissue from sheep claiming that a pill containing sheep pancreas can migrate to and cure a human pancreas, pills containing sheep brains can help heal human brains. What are your thoughts on those?

For some conditions, there may be a scientific rationale for how a specific drug or treatment could be delivered orally, but this really depends on the underlying biology of the condition, the means by which the drug exerts its effect, and how quickly that drug or substance will be digested, metabolized, or cleared from the body’s circulation. Many drugs that are delivered orally do not reach the brain because of the blood-brain barrier, which serves to isolate and protect the brain from potentially harmful substances in the blood circulation. For such a drug to be effective, it would have to be stable within the body for a period of time, and be something that could exert its effects on the brain either directly or indirectly.

Sheep brain or pancreas (or any other animal tissue consumed) in a pill form would be broken down into basic components immediately by digestion, i.e. amino acids, sugars, much like any other meat or food. Often complex treatments designed to be specifically targeted to the brain are delivered by intra-cranial/intrathecal injection, or by developing special strategies to evade the blood brain barrier, a challenge that is easier said than done. For autism, there is still a lot to be learned regarding how a therapeutic intervention might work to help people, so for now, I would caution against the use of dietary supplements or pills that are not prescribed or recommended by your doctor. 

What are the questions parents should ask before signing up for any stem cell therapy

There is some very good advice about this on the both the CIRM and ISSCR websites, including a handbook for patients that includes questions to ask anyone offering you a stem cell treatment, and also some fundamental facts that everyone should know about stem cells. https://www.closerlookatstemcells.org/patient-resources/

What kinds of techniques do we have now that we didn’t have in the past that can help us better understand what is happening in the brain of a child with autism.

We covered this in the online presentation. Some of the technologies discussed include:

– “disease in a dish” models from patient derived stem cells for studying causes of autism

–  new ways to make human neurons and other cell types for study

– organoid technology, to create more realistic brain tissues for studying autism

– advances in genomics and sequencing technologies to identify “signatures” of autism to help identify the underlying differences that could lead to a diagnosis

Alysson, you work with things called “brain organoids” explain what those are and could they help us in uncovering clues to the cause of autism and even possible therapies?

We blogged about this work when it was first published and you can read about it on our blog here.

Can stem cells help people who have had a stroke? Ask the experts.

Stroke is the third leading cause of death and disability in the US. Every 45 seconds someone in the US has a stroke. Every year around 275,000 people die from a stroke many more survive but are often impaired by the brain attack. The impact is not just physical, but psychological and emotional. It takes an enormous toll on individuals and their families. So, it’s not surprising that there is a lot of research underway to try and find treatments to help people, including using stem cells.

That’s why CIRM is hosting a special Facebook Live ‘Ask the Stem Cell Team About Stroke event on Wednesday, March 25th at noon PDT. Just head over to our Facebook Page on the 25th at noon to hear from two great guests.

We will be joined by Dr. Tom Carmichael, a Professor of Neurology and the Co-Director of the UCLA Broad Stem Cell Center. He has a number of CIRM grants focused on helping repair the damage caused by strokes.

CIRM Senior Science Officer, Dr. Lila Collins, will also join us to talk about other stem cell research targeting stroke, its promise and some of the problems that still need to be overcome.

You will have a chance to ask questions of both our experts, either live on the day or by sending us questions in advance at info@cirm.ca.gov.

Why “Ask the Stem Cell Team” Remains Important

These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.

With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.

In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.

And we have some great experts to discuss the use of stem cells in helping people with autism.

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page

Ask the Stem Cell Team About Autism

Do an online search for “autism stem cells” and you quickly come up with numerous websites offering stem cell therapies for autism. They offer encouraging phrases like “new and effective approach” and “a real, lasting treatment.” They even include dense scientific videos featuring people like Dr. Arnold Caplan, a professor at Case Western Reserve University who is known as the “father of the mesenchymal stem” (it would be interesting to know if Dr. Caplan knows he is being used as a marketing tool?)

The problem with these sites is that they are offering “therapies” that have never been proven to be safe, let alone effective. They are also very expensive and are not covered by insurance. Essentially they are preying on hope, the hope that any parent of a child with autism spectrum disorder (ASD) will do anything and everything they can to help their child.

But there is encouraging news about stem cells and autism, about their genuine potential to help children with ASD. That’s why we are holding a special Facebook Live “Ask the Stem Cell Team” about Autism on Thursday, March 19th at noon (PDT).    

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shephard.

We’ll take a look at Dr. Muotri’s work and also discuss the work of other researchers in the field, such as Dr. Joanne Kurtzberg’s work at Duke University.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you missed the “broadcast” not to worry, you can watch it here:

The Top CIRM Blogs of 2019

This year the most widely read blog was actually one we wrote back in 2018. It’s the transcript of a Facebook Live: “Ask the Stem Cell Team” event about strokes and stroke recovery. Because stroke is the third leading cause of death and disability in the US it’s probably no surprise this blog has lasting power. So many people are hoping that stem cells will help them recover from a stroke.

But of the blogs that we wrote and posted this year there’s a really interesting mix of topics.

The most read 2019 blog was about a potential breakthrough in the search for a treatment for type 1 diabetes (T1D).  Two researchers at UC San Francisco, Dr. Matthias Hebrok and Dr. Gopika Nair developed a new method of replacing the insulin-producing cells in the pancreas that are destroyed by type 1 diabetes. 

Dr. Matthias Hebrok
Dr. Gopika Nair

Dr. Hebrok described it as a big advance saying: “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

It’s not too surprising a blog about type 1 diabetes was at the top. This condition affects around 1.25 million Americans, a huge audience for any potential breakthrough. However, the blog that was the second most read is the exact opposite. It is about a rare disease called cystinosis. How rare? Well, there are only around 500 children and young adults in the US, and just 2,000 worldwide diagnosed with this condition.  

It might be rare but its impact is devastating. A genetic mutation means children with this condition lack the ability to clear an amino acid – cysteine – from their body. The buildup of cysteine leads to damage to the kidneys, eyes, liver, muscles, pancreas and brain.

Dr. Stephanie Cherqui

UC San Diego researcher Dr. Stephanie Cherqui and her team are taking the patient’s own blood stem cells and, in the lab, genetically re-engineering them to correct the mutation, then returning the cells to the patient. It’s hoped this will create a new, healthy blood system free of the disease.

Dr. Cherqui says if it works, this could help not just people with cystinosis but a wide array of other disorders: “We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders.”

Sickled cells

The third most read blog was about another rare disease, but one that has been getting a lot of media attention this past year. Sickle cell disease affects around 100,000 Americans, mostly African Americans. In November the Food and Drug Administration (FDA) approved Oxbryta, a new therapy that reduces the likelihood of blood cells becoming sickle shaped and clumping together – causing blockages in blood vessels.

But our blog focused on a stem cell approach that aims to cure the disease altogether. In many ways the researchers in this story are using a very similar approach to the one Dr. Cherqui is using for cystinosis. Genetically correcting the mutation that causes the problem, creating a new, healthy blood system free of the sickle shaped blood cells.

Two other blogs deserve honorable mentions here as well. The first is the story of James O’Brien who lost the sight in his right eye when he was 18 years old and now, 25 years later, has had it restored thanks to stem cells.

The fifth most popular blog of the year was another one about type 1 diabetes. This piece focused on the news that the CIRM Board had awarded more than $11 million to Dr. Peter Stock at UC San Francisco for a clinical trial for T1D. His approach is transplanting donor pancreatic islets and parathyroid glands into patients, hoping this will restore the person’s ability to create their own insulin and control the disease.

2019 was certainly a busy year for CIRM. We are hoping that 2020 will prove equally busy and give us many new advances to write about. You will find them all here, on The Stem Cellar.

Facebook Live: Ask the Stem Cell Team

On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.

What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state. Paul Hartman.  San Leandro, California

Dr. Kelly Shepard

Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1)  our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism.  Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer.  There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.

************************************

STROKE

What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold

Dr. Lila Collins

Dr. Lila Collins: Hi Elvis, this is an evolving story.  I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized.  As you note, some of the treated subjects had promising motor recoveries. 

SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release.  While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI).  In this trial, SanBio saw positive results on motor recovery with their product.  In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well.  SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds. 

Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke.  The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.

*****************************

I am a stroke survivor will stem cell treatment able to restore my motor skills? Ruperto

Dr. Lila Collins:

Hi Ruperto. Restoring motor loss after stroke is a very active area of research.  I’ll touch upon a few ongoing stem cell trials.  I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.

Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier.  UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic).  Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.

There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours.  After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery.  Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.

Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke).  The trial has an accelerated FDA designation, called RMAT and a special protocol assessment.  This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing.  Results from this trial should be available in about two years. 

********************************

Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?

Dr. Lila Collins:

Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.

That said, hemorrhagic strokes are not rare and tend to be more deadly.  These strokes are caused by bleeding into or around the brain which damages neurons.  They can even increase pressure in the skull causing further damage.  Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.

While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.

We are aware of a clinical trial targeting acute hemorrhagic stroke that is being run by the Mayo clinic in Jacksonville Florida.

****************************

I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell

Dr. Lila Collins:

Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision).  The results could be:

  1. Visual loss from damage to the retina
  2. You could have a normal eye with damage to the area of the brain that controls the eye’s movement
  3. You could have damage to the part of the brain that interprets vision.

You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged. 

Replacing lost neurons is an active effort that at the moment is still in the research stages.  As you can imagine, this is complex because the neurons have to make just the right connections to be useful. 

*****************************

VISION

Is there any stem cell therapy for optical nerve damage? Deanna Rice

Dr. Ingrid Caras

Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments.  However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma

****************************

I read an article about ReNeuron’s retinitis pigmentosa clinical trial update.  In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors? Leonard

Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.

****************************

My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen

Dr. Ingrid Caras: The results will be available sometime in 2020.

*****************************

I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors.  My questions are: Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving? Leonard Furber, an RP Patient

Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.

Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye.   The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.

**********************************

DIABETES

What advances have been made using stem cells for the treatment of Type 2 Diabetes? Mary Rizzo

Dr. Ross Okamura

Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells.  The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations. 

Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases.  Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients.  Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns.  However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.

To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin.  While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.

It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.

***********************************

SPINAL CORD INJURY

Is there any news on clinical trials for spinal cord injury? Le Ly

Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.

“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”

Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.

In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.

*********************************

ALS

Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson

Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed.  So we will not expect to see the results probably for another year or two.

***********************************

AUTISM

Are there treatments for autism or fragile x using stem cells? Magda Sedarous

Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail.  CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.

**********************************

PARKINSON’S DISEASE

What is happening with Parkinson’s research? Hanifa Gaphoor

Dr. Kent Fitzgerald

Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research. 

The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.  

This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc.  Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix. 

Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease. 

Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients.   As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced.  The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient. 

One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s.  This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).

Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should. 

The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.   

********************************

HUNTINGTON’S DISEASE

Any plans for Huntington’s? Nikhat Kuchiki

Dr. Lisa Kadyk

Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded.   One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells.   When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons.  Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease.   Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.   

There are other, non-cell-based therapies also being tested in clinical trials now, using  anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein.  Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure, Voyager)

******************************

TRAUMATIC BRAIN INJURY (TBI)

My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:

  • Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
  •  
  • I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
  • Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?

Dr. Kelly Shepard:  TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred  previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.

********************************

We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?

Dr. Stephen Lin

Dr. Stephen Lin:  Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors.  Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes.  At present no regulatory approved clinical therapy has been developed using this approach. 

************************************

PREDATORY STEM CELL CLINICS

What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult? Kathy Jean Schultz

Dr. Geoff Lomax

Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”

In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.

  • First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
  • We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
  • Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.

*****************************************

I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial? Cheri Hicks

Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.

I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:

 1) I wonder on where the typical injection cells are coming from?

  2) I wonder what is the actual cost of the cells?

3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?

*********************************

Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:

  • There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
  • Most of the evidence presented is case reports that individuals have benefited
  • The challenge we face is not know the exact type of injury and cell treatments used.
  • Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
  • Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
  • You are correct that there have not been reports of serious injury for knee injections
  • However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.

*************************************

Do stem cells have benefits for patients going through chemotherapy and radiation therapy? Ruperto

Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.

Dr. Ingrid Caras: That’s an interesting and valid question.  There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries.  In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.

There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”).  It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain.  In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.

*****************************************

Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia?  Don Reed.

Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease.   In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves.  This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system.  For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”.   To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes.   Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.  

A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells.  The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells. 

*****************************************

Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason

Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.

********************************

What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas

Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment.  Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach.  CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations.  Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed.  It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.

CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.

While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or  metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.

**********************************

Explain the differences between gene therapy and stem cell therapy? Renee Konkol

Dr. Stephen Lin:  Gene therapy is the direct modification of cells in a patient to treat a disease.  Most gene therapies use modified, harmless viruses to deliver the gene into the patient.  Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis. 

Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease.  Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy.  Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells.  The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).

Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients.  Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.

***********************************

Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known? James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC

Dr. Stephen Lin:  Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting.  Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial.  CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials.  The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect.   Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.

*****************************************

Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs. Sajid

Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture.  These are quite different than MSCs and offer a new path to be explored for repairing and generating bone. 

What would you like to know about stem cell research? This is your chance to ask the experts.

There’s a lot of fiction, a lot of misinformation surrounding stem cells and stem cell research. There are claims that are not based on solid science and clinics that are offering so-called “treatments” that are unproven, even dangerous for patients. Now you have a chance to talk to the experts in the field and get solid answers from them about what’s working, what’s not, and how you can find a therapy that might be appropriate for you.

Do you have questions about the latest in research using stem cells to help people recovering from a stroke? We’ll have someone who can answer them.

Want to know if stem cells can help people battling cancer? Or what’s happening in finding a stem cell treatment for diabetes or sickle cell disease, even autism, Alzheimer’s or Parkinson’s disease? We’ll have experts to answers those.

This is all happening in a special Facebook Live “Ask the Stem Cell Team” event on Thursday, December 12th from 10.30am to 11.30am PDT. To take part all you have to do is tune in on the day and post a question or you can send us one ahead of time at info@cirm.ca.gov

We will do our best to answer as many of them as we can during the Facebook Live event, and those we don’t have time to get to we’ll answer in a blog at a later date.

So join us.

CIRM Team answers your questions about stem cell research

It’s not often you get the chance to ask a group of world class experts any question you like about stem cells and stem cell research, but that’s what we are offering you. We’re going to hold our next Facebook Live “Ask the Stem Cell Team” event focused solely on your questions with answers from our Team here at CIRM.

We are still finalizing the date – likely early December before the holiday madness hits – but we’d like to start collecting your questions now. So, let us know what you’d like to know.

It can be anything from how do stem cells work (come to think of it I’d like to know that myself) to what is the latest in using stem cells to help people recovering from a stroke or heart attack, battling cancer or caring for a loved one experiencing Alzheimer’s or dementia.

We will do our best to answer as many of these as we can, and of course we are also ready to answer any questions you post on our Facebook “Live” page during the event itself. Any questions we can’t get to on the day we’ll answer in a blog at a later date.

So. Send your questions to info@cirm.ca.gov We’re looking forward to hearing from you.