Fast Track Designation for a therapy making transplants safer for children with a fatal immune disorder

Bone marrow transplant

For children born with severe combined immunodeficiency (SCID) life can be very challenging. SCID means they have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life.

There are stem cell/gene therapies funded by the California Institute for Regenerative Medicine (CIRM), such as ones at UCLA and UCSF/St. Judes, but an alternative method of treating, and even curing the condition, is a bone marrow or hematopoietic stem cell transplant (HCT). This replaces the child’s blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, current HCT methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To change that, Dr. Judy Shizuru at Stanford University, with CIRM funding, developed an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells, creating the room needed to transplant new, healthy cells. The goal was to make stem cell transplants safer and more effective for the treatment of many life-threatening blood disorders.

That approach, JSP191, is now being championed by Jasper Therapeutics and they just got some very good news from the Food and Drug Administration (FDA). The FDA has granted JSP191 Fast Track Designation, which can speed up the review of therapies designed to treat serious conditions and fill unmet medical needs.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics, said this is good news for the company and patients: “This new Fast Track designation recognizes the potential role of JSP191 in improving clinical outcomes for these patients and will allow us to more closely work with the FDA in the upcoming months to determine a path toward a Biologics License Application (BLA) submission.”

Getting a BLA means Jasper will be able to market the antibody in the US and make it available to all those who need it.

This is the third boost from the FDA for Jasper. Previously the agency granted JSP191 both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

The researcher who is following her bliss, and tackling diseases of aging at the same time

Dr. Jill Helms, and associate! Photo courtesy Stanford University

Jill Helms is not your average Stanford University faculty member. Yes, she is a professor in the Department of Surgery. Yes, she has published lots of scientific studies. Yes, she is a stem cell scientist (funded by CIRM). And yes, she is playing a leading role in Ankasa Regenerative Therapeutics, a company focused on tissue repair and regeneration. But she is so much more than all that.  

She is a brilliant public speaker, a fashionista, and has ridden her horse to work (well, Stanford is referred to as The Farm, so why not!) and she lives on a farm of her own called “Follow Your Bliss.” The name comes from philosopher Joseph Campbell who wrote, “If you follow your bliss, you put yourself on a kind of path that has been there all the while, waiting for you. And the life you ought to be living is the one you are living.”  

Dr. Helms says that pretty much sums up her life. She says she feels enormously blessed.  

Well, we felt enormously blessed when she agreed to sit down with us and chat about her work, her life and her love of fashion for the California Institute for Regenerative Medicine podcast, Talking ‘Bout (re)Generation.  

We hope you enjoy the latest episode! 

Life lessons learned in the CIRM summer intern program

SPARK poster session; Photo by Esteban Cortez

When I was in high school I spent my summers working in a shoe shop and playing soccer with my mates. It never occurred to me that I could do something really  worthwhile with that time. So, when I meet the high school students who took part in the California Institute for Regenerative Medicine’s SPARK program I realized I had wasted a lot of time.

For those not familiar with SPARK, it stands for Summer Program to Accelerate Regenerative Medicine Knowledge. It’s a summer program offering high school students a chance to work in a world-class stem cell and gene therapy research facility. The quality of the work they do is truly remarkable. By the end of the summer they are doing projects that many full-time researchers would be proud of.

As part of that program the students also must write blogs and post photos and videos to Instagram to chart their progress. The quality of that work is equally impressive. Last week we posted items about the two best blogs from the students. But there were so many other fine entries that we thought it would be worthwhile to highlight elements of those.

For instance, Ricardo Rodriguez at Charles R. Drew University had some interesting observations on life, even when it’s not always working out the way you planned:

Ricardo Rodriguez: Photo by Esteban Cortez

“Cancer is not life going wrong so much as it is life changing. If mutation is random, then so is life. That beautiful randomness that drives evolution and extinction, change and stagnation, life and death, and for you to think that that part of your body could be simple in any way, whether it be simply evil, simply inconvenient, simply structured, is simply hilarious. There is beauty in your body’s complexity, adaptability, and resilience, and these attributes are not barred from any part of your life.”

Mindy Rodriguez at Beckman City of Hope says she learned valuable lessons from working with mice, creatures she previously considered scary, dirty and vicious, but later came to like:

“The CIRM SPARK program reinforced the value of facing my fears by exploring the unknown and most importantly taught me to be comfortable with the uncomfortable. In both cases, I found that it is our response to fear that shapes who we are. We can either run away from the thing that scares us or take each moment as a learning opportunity, embracing change over comfort.”

Manvi Ketireddy at work at UC Davis

Manvi Ketireddy at UC Davis had a similar experience, learning to accept things not working out.

“A researcher must be persistent and have the ability to endure lots of failures. I think that is what I love about research: the slight possibility of discovery and answers amid constant defeat is one of the greatest challenges to exist. And boy, do I love challenges.”

Ameera Ali in the lab (fish not included)

Ameera Ali at Sanford Burnham Prebys says she had struggled for years to decide on a career direction, but the internship gave her a fresh perspective on it all.

“Growing up, I never really knew what I wanted to do for a living, and I think that’s because I wanted to do everything. In kindergarten I wanted to be a paleontologist. In 5th grade I wanted to be the CEO of The San Diego Union Tribune, and in 9th grade I wanted to be a physicist at NASA. By 10th grade I was having an existential crisis about what to do with my life, and so began the search for my purpose at the ripe old age of 15.

So now, writing this blog, I never thought I’d end up spending so much of my time in a room filled floor to ceiling with fish tanks. You might be wondering, how does one end up going from physicist to fish farmer? Well, I’m not completely sure to be honest, but it’s been a very fun and interesting experience nonetheless.”

She says by the end she says what initially felt like mundane chores were actually moments worth celebrating.

“These aquatic friends have taught me a lot of valuable life lessons, like being appreciative of the little things in life, caring for others and see things from a different perspective, and realizing that

working in a biology lab allows me to explore my passions, be creative, and be a mother to hundreds of fish children on the side.”

SPARK attracts students from all over California, and it’s that diversity that makes it so important.

Alexa Gastelum

My name is Alexa Gastelum and I am from a small border town called Calexico. It is located in the Imperial Valley around two hours away from San Diego. I found out about this Internship from my Math teacher and Mesa Coordinator. They discussed what it was about, and I immediately knew that I wanted to apply. I have always been interested in doing labs and researching so I knew that it would be the perfect opportunity for me. It is not normal to be presented with an opportunity like this from where I’m from because it is a small and low-income town. When I told my family about this internship they were very supportive. They agreed that I needed to apply for it since it was an extremely good opportunity. Even though I would need to spend my summer away from my hometown, they were okay with it because they knew that I could not miss out on the opportunity. I decided to write my personal statement on a disease that hit close to home with my family which was Alzheimer’s. It is a disease that runs in my family and my uncle passed from it. I believe that this is what sparked my interest because I wanted to understand how it worked and how it affects the brain.

At the SPARK event Alexa told me her grandmother was so proud of her for being accepted at the program that she was going around town telling everyone about it. Her grandmother, and all the other grandmothers and mothers and fathers, had every reason to be proud of these students. They are remarkable young people and we look forward to following their careers in the years to come.

Fighting for his life and the lives of other stroke survivors

Sean Entin, stroke survivor and founder of Stroke Hacker

The word “miraculous” gets tossed around a lot in the world of medicine, mostly by people who have made an unexpected recovery from a deadly or life-threatening condition. In Sean Entin’s case calling his recovery from an almost-fatal stroke could be called miraculous, but I think you would also have to say it’s due to hard work, determination, and an attitude that never even considered giving up.

Sean had a stroke in 2011. Doctors didn’t think he’d survive. He was put into a coma and underwent surgery to create an opening in his skull to give his brain time and space to heal. When he woke he couldn’t walk or talk, couldn’t count. Doctors told him he would never walk again.

They didn’t know Sean. Fast forward to today. Sean is active, has completed two 5k races – that’s two more than me – and has created Stroke Hacker, a program designed to help others going through what he did.

Sean is a remarkable man, which is why I sat down to chat with him for the latest episode of the California Institutes for Regenerative Medicine’s podcast, ‘Talking ‘Bout (re)Generation’.

He is a fascinating man, and he makes for fascinating company. Enjoy the podcast.

The California Institute for Regenerative Medicine (CIRM) has invested more than $80 million in stroke research, including one clinical trial currently underway.

How CIRM’s Bridges internship program inspired this student to pursue a career in regenerative medicine 

Samira Alwahabi

For more than a decade, the California Institute for Regenerative Medicine (CIRM) has funded educational and research training programs to give students the opportunity to explore stem cell science right here in California.  

One such project—the Bridges to Stem Cell Research Program—helps train future generations of scientists by preparing undergraduate and master’s students from several California universities for careers in stem cell and regenerative medicine research. To date, there have been 1,663 Bridges alumni, and another 109 Bridges trainees are completing their internships in 2022. 

Samira Alwahabi, a Bridges scholar and undergraduate student majoring in Biological Sciences at California State University, Fullerton was one of the many participants in last year’s Bridges program. She completed her internship in the Calvin Kuo Lab at Stanford University, which she says was nothing short of incredible. 

Samira and Alan N. (another CIRM scholar from CSUF) in the lab

“Not only was I able to be a part of cutting-edge stem cell research but I also gained incredible mentors and friends within academic medicine, all of whom push me to be the best version of myself,” Samira says.  

After completing her internship last year, Samira graduated cum laude with a degree in cell and developmental biology. She is currently working in the Kuo Lab at Stanford University as a lab technician. Her next steps include applying to medical school to become a physician, wherein she will use her research experience to better understand medical innovations that translate into improved quality of care for patients.     

“I am eternally grateful to the California Institute for Regenerative Medicine and California State University, Fullerton for giving me the opportunity to enter the field of biomedical research,” Samira adds. “The ability to discover, experiment, and learn something new every day brought a new excitement to my life, exposing my interest in translational medicine.” 

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Smoking marijuana could be bad for your heart, but there is an unusual remedy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Smoking medical marijuana: Photo courtesy Elsa Olofsson

Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.

There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.

Now this latest study, from researchers at Stanford Medicine,  shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.

The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:

  • Were significantly more likely than others to have a heart attack.
  • Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.

The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.

They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.

In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”

On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.

“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

Stem Cell Agency Board Approves Funding for Rare Immune Disorder

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Taylor Lookofsky (center), a person with IPEX syndrome, with his father Brian and Dr. Rosa Bacchetta

IPEX syndrome is a rare condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. The syndrome mostly affects boys, is diagnosed in the first year of life and is often fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) invested almost $12 million in a therapy being tested in a clinical trial to help these patients.

Children born with IPEX syndrome have abnormalities in the FOXP3 gene. This gene controls the production of a type of immune cell called a T Regulatory or Treg cell. Without a normal FOXP3 +Treg cells other immune cells attack the body leading to the development of IPEX syndrome, Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive.

Current treatments involve the use of steroids to suppress the immune system – which helps ease symptoms but doesn’t slow down the progression of the disease – or a bone marrow stem cell transplant.  However, a transplant requires a healthy, closely matched donor to reduce the risk of a potentially fatal transplant complication called graft vs host disease, in which the donated immune cells attack the recipient’s tissues.

Dr. Rosa Bacchetta and her team at Stanford University have developed a therapy using the patient’s own natural CD4 T cells that, in the lab, have been genetically modified to express the FoxP3 gene and converted into Treg cells. Those cells are then re-infused into the patient with a goal of determining if this approach is both safe and beneficial. Because the cells come from the patients there will be fewer concerns about the need for immunosuppressive treatment to stop the body rejecting the cells. It will also help avoid the problems of finding a healthy donor and graft vs host disease.

Dr. Bacchetta has received approval from the Food and Drug Administration (FDA) to test this approach in a Phase 1 clinical trial for patients suffering with IPEX syndrome.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives,” says Dr. Maria T. Millan, the President and CEO of CIRM. “Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders resulting from dysfunctional regulatory T cells.”

In addition to a strong scientific recommendation to fund the project the review team also praised it for the applicants’ commitment to the principles of Diversity, Equity and Inclusion in their proposal. The project proposes a wide catchment area, with a strong focus on enrolling people who are low-income, uninsured or members of traditionally overlooked racial and ethnic minority communities.

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928