Stem cell summer: high school students document internships via social media, Part 1

My fellow CIRM team members and I just got back from two days in Sacramento where we attended one of our favorite annual events: the CIRM SPARK Student Conference. SPARK, which is short for Summer Program to Accelerate Regenerative medicine Knowledge, is a CIRM-funded education program that offers California High School students an invaluable opportunity to gain hands-on training in stem cell research at some of the leading research institutes in California.

This meeting represents the culmination of the students’ internships in the lab this summer and gives each student the chance to present their project results and to hear from stem cell research experts and patient advocates. Every summer, without fail, I’m blown away by how much the students accomplish in such a short period of time and by the poise and clarity with which they describe their work. This year was no exception.

Best Instagram Post Award: Skyler Wong

To document the students’ internship experiences, we include a social media curriculum to the program. Each student posts Instagram photos and writes a blog essay describing their time in the lab. Members of the CIRM team reviewed and judged the Instagram posts and blogs. It was a very difficult job selecting only three Instagrams out of over 400 (follow them at #cirmsparklab) that were posted over the past eight weeks. Equally hard was choosing three blogs from the 58 student essays which seem to get better in quality each year.

Over the next week or so, we’re going to feature the three Instagram posts and three blogs that were ultimately awarded. Our two winners featured today are UC Davis SPARK student, Skyler Wong, a rising senior at Sheldon High School was one of the Instagram Award winners (see his photo above) and Stanford SPARK student Angelina Quint, a rising senior at Redondo Union High School, was one of the Blog Award winners. Here’s her blog:

Best Blog Award:
My SPARK 2018 summer stem cell research internship experience
By Angelina Quint

Angelina2

Angelina Quint

Being from Los Angeles, I began the SIMR program as a foreigner to the Bay Area. As my first research experience, I was even more so a foreigner to a laboratory setting and the high-tech equipment that seemingly occupied every edge and surface of Stanford’s Lorry I. Lokey Stem Cell building. Upon first stepping foot into my lab at the beginning of the summer, an endless loop of questions ran through my brain as I ventured deeper into this new, unfamiliar realm of science. Although excited, I felt miniscule in the face of my surroundings—small compared to the complexity of work that laid before me. Nonetheless, I was ready to delve deep into the unknown, to explore this new world of discovery that I had unlocked.

Participating in the CIRM research program, I was given the extraordinary opportunity to pursue my quest for knowledge and understanding. With every individual I met and every research project that I learned about, I became more invigorated to investigate and discover answers to the questions that filled my mind. I was in awe of the energy in the atmosphere around me—one that buzzed with the drive and dedication to discover new avenues of thought and complexity. And as I learned more about stem cell biology, I only grew more and more fascinated by the phenomenon. Through various classes taught by experts in their fields on topics spanning from lab techniques to bone marrow transplants, I learned the seemingly limitless potential of stem cell research. With that, I couldn’t help but correlate this potential to my own research; anything seemed possible.

However, the journey proved to be painstakingly arduous. I soon discovered that a groundbreaking cure or scientific discovery would not come quickly nor easily. I faced roadblocks daily, whether it be in the form of failed gel experiments or the time pressures that came with counting colonies. But to each I learned, and to each I adapted and persevered. I spent countless hours reading papers and searching for online articles. My curiosity only grew deeper with every paper I read—as did my understanding. And after bombarding my incredibly patient mentors with an infinite number of questions and thoughts and ideas, I finally began to understand the scope and purpose of my research. I learned that the reward of research is not the prestige of discovering the next groundbreaking cure, but rather the knowledge that perseverance in the face of obstacles could one day transform peoples’ lives for the better.

As I look back on my journey, I am filled with gratitude for the lessons that I have learned and for the unforgettable memories that I have created. I am eternally grateful to my mentors, Yohei and Esmond, for their guidance and support along the way. Inevitably, the future of science is uncertain. But one thing is always guaranteed: the constant, unhindered exchange of knowledge, ideas, and discovery between colleagues passionate about making a positive difference in the lives of others. Like a stem cell, I now feel limitless in my ability to expand my horizons and contribute to something greater and beyond myself. Armed with the knowledge and experiences that I have gained through my research, I aspire to share with others in my hometown the beauty of scientific discovery, just as my mentors have shared with me. But most of all, I hope that through my continued research, I can persist in fighting for new ways to help people overcome the health-related challenges at the forefront of our society.

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Early CIRM support helps stem cell pioneer develop promising new therapy for cancer

Irv Weissman

Irv Weissman, Ph.D., Photo: courtesy Stanford University

When you get praise from someone who has been elected to the National Academy of Sciences and has been named California Scientist of the Year you know you must be doing something right.

That’s how we felt the other day when Irv Weissman, Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine, issued a statement about how important the support of CIRM was in advancing his research.

The context was the recent initial public offering (IPO) of Forty Seven Inc.. a company co-founded by Dr. Weissman. That IPO followed news that two Phase 2 clinical trials being run by Forty Seven Inc. were demonstrating promising results against hard-to-treat cancers.

Dr. Weissman says the therapies used a combination of two monoclonal antibodies, 5F9 from Forty Seven Inc. and Rituximab (an already FDA-approved treatment for cancer and rheumatoid arthritis) which:

“Led to about a 50% overall remission rate when used on patients who had relapsed, multi-site disease refractory to rituximab-plus-chemotherapy. Most of those patients have shown a complete remission, although it’s too early to tell if this is complete for life.”

5F9 attacks a molecule called CD47 that appears on the surface of cancer cells. Dr. Weissman calls CD47 a “don’t eat me signal” that protects the cancer against the body’s own immune system. By blocking the action of CD47, 5F9 strips away that “don’t eat me signal” leaving the cancer vulnerable to the patient’s immune system. We have blogged about this work here and here.

The news from these trials is encouraging. But what was gratifying about Dr. Weissman’s statement is his generosity in sharing credit for the work with CIRM.

Here is what he wrote:

“What is unusual about Forty Seven is that not only the discovery, but its entire preclinical development and testing of toxicity, etc. as well as filing two Investigational New Drug [IND] applications to the Food and Drug Administration (FDA) in the US and to the MHRA in the UK, as well as much of the Phase 1 trials were carried out by a Stanford team led by two of the discoverers, Ravi Majeti and Irving Weissman at Stanford, and not at a company.

The major support came from the California Institute of Regenerative Medicine [CIRM], funded by Proposition 71, as well as the Ludwig Cancer Research Foundation at the Ludwig Center for Cancer Stem Cell Research at Stanford. CIRM will share in downstream royalties coming to Stanford as part of the agreement for funding this development.

This part of the state initiative, Proposition 71, is highly innovative and allows the discoverers of a field to guide its early phases rather than licensing it to a biotech or a pharmaceutical company before the value and safety of the discovery are sufficiently mature to be known. Most therapies at early-stage biotechs are lost in what is called the ‘valley of death’, wherein funding is very difficult to raise; many times the failure can be attributed to losing the expertise of the discoverers of the field.”

Dr. Weissman also had praise for CIRM’s funding model which requires companies that produce successful, profitable therapies – thanks to CIRM support – to return a portion of those profits to California. Most other funding agencies don’t have those requirements.

“US federal funds, from agencies such as the National Institutes of Health (NIH) similarly support discovery but cannot fund more than a few projects to, and through, early phase clinical trials. And, under the Bayh-Dole Act, the universities keep all of the equity and royalties derived from licensing discoveries. In that model no money flows back to the agency (or the public), and nearly a decade of level or less than level funding (at the national level) has severely reduced academic research. So this experiment of funding (the NIH or the CIRM model) is now entering into the phase that the public will find out which model is best for bringing new discoveries and new companies to the US and its research and clinical trials community.”

We have been funding Dr. Weissman’s work since 2006. In fact, he was one of the first recipients of CIRM funding.  It’s starting to look like a very good investment indeed.

 

Stem cell roundup: summer scientists, fat-blocking cells & recent human evolution

Stem cell photo of the week: high schooler becoming a stem cell pro this summer

InstagramAnnaJSPARK

High school student Anna Guzman learning important lab skills at UC Davis

This summer’s CIRM SPARK Programs, stem cell research internships for high school students, are in full swing. Along with research assignments in top-notch stem cell labs, we’ve asked the students to chronicle their internship experiences through Instagram. And today’s stem cell photo of the week is one of those student-submitted posts. The smiling intern in this photo set is Anna Guzman, a rising junior from Sheldon High School who is in the UC Davis SPARK Program. In her post, she describes the lab procedure she is doing:

“The last step in our process to harvest stem cells from a sample of umbilical cord blood! We used a magnet to isolate the CD34 marked stem cells [blood stem cells] from the rest of the solution.”

Only a few days in and Anna already looks like a pro! It’s important lab skills like this one that could land Anna a future job in the stem cell field. Check out #cirmsparklab on Instagram to view the ever-growing number of posts.

Swiss team identifies a cell type that block formation of fat cells

Jun21_2018_EPFL_TwoDifferentAspectsOfFat1871459512

(Left) Mature human fat cells grown in a Petri dish (green, lipid droplets). (Right) A section of mouse fat tissue showing, in the middle, a blood vessel (red circle) surrounded by fat cell blocking cells called Aregs (arrows). [Bart Deplancke/EPFL]

Liposuction surgery helps slim and reshape areas of a person’s body through the removal of excess fat tissue. While the patient is certainly happy to get rid of those extra pounds, that waste product is sought after by researchers because it’s a rich source of regenerative cells including fat stem cells.

The exact populations of cells in this liposuction tissue has been unclear, so a collaboration of Swiss researchers – at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) – used a cutting-edge technique allowing them to examine the gene activity within single cells.

The analysis was successful in identifying several newly defined subpopulations of cells in the fat tissue. To their surprise, one of those cell types did not specialize into fat cells but instead did the opposite: they inhibited other fat stem cells from giving rise to fat cells. The initial experiments were carried out in mice, but the team went on to show similar fat-blocking cells in human tissue. Further experiments will explore the tantalizing prospect of applying these cells to control obesity and the many diseases, like diabetes, that result from it.

The study was published June 20st in Nature.

Connection identified between recent human evolution & risk for premature birth
Evidence of recent evolution in a human gene that’s critical for maintaining pregnancy may help explain why some populations have a higher risk for giving birth prematurely than others. That’s according to a recent report by researchers at the University of Stanford School of Medicine.

The study, funded in part by CIRM’s Genomics Initiative, compared DNA from people with East Asian, European and African ancestry. They specifically examined the gene encoding the progesterone hormone receptor which helps keep a pregnant woman from going into labor too soon. The gene is also associated with preterm births, the leading cause of infant death in the U.S.

The team was very surprise to find that people with East Asian ancestry had an evolutionarily new version of the gene while the European and African populations had mixtures of new and ancient versions. These differences may explain why the risk for premature birth among East Asian populations is lower than among pregnant women of European and African descent, though environment clearly plays a role as well.

Pediatrics professor Gary Shaw, PhD, one of the team leaders, put the results in perspective:

“Preterm birth has probably been with us since the origin of the human species,” said Shaw in a press release, “and being able to track its evolutionary history in a way that sheds new light on current discoveries about prematurity is really exciting.”

The study was published June 21st in The American Journal of Human Genetics.

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

Can stem cells help people recovering from a stroke? You asked, and the experts answered

FacebookLive_AskExperts_Stroke_IMG_1656

We recently held our first ever Facebook Live event. It was focused on the use of stem cells and recovery from a stroke and featured three great guests: Dr. Gary Steinberg, chief of Neurosurgery at Stanford, Sonia Coontz, a patient of Dr. Steinberg’s, and CIRM’s own Science Officer Dr. Lila Collins.

We had an amazing response from people during the event and in the days since then with some 6,750 people watching the video and almost 1,000 people reacting by posting a comment or sharing it with friends. It was one of the most successful things we have ever done on Facebook so it’s not surprising that we plan on doing many more Facebook Live ‘Ask the Expert’ events in the future. We will post more details of that as we finalize them.

We tried to cover as many topics as possible during the hour but there were simply too many questions for us to get to all of them. So here is a recap of the key issues we covered, and a few we didn’t have a chance to answer.

Let’s start with Dr. Steinberg’s explanation of the research that led to his current clinical trial:

Dr. Steinberg: “I got interested in this about 18 years ago when I took human cells and transplanted them into rodent models of stroke. What we found was that when we transplanted those cells into the stroke region, the core of the stroke, they didn’t survive very well but when we moved them a few millimeters away from the stroke they not only survived but they migrated to the stroke.

The reason they migrate is that the stem cells have receptors on them that interact with chemicals given off by the stroke environment and that’s why they migrate to the stroke site. And when they get to the site they can turn into different kinds of cells. Very importantly we found these mice and rats that had behavioral problems – walking, moving – as a result of the stroke, we found we could improve their neurological outcomes with the stem cells.

With the help of CIRM, which has been very generous, we were fortunate enough to receive about $24 million in funding over the last 8 years, from 2010, to move this therapy into the clinic to understand the basic mechanisms of the recovery and to start clinical trials

One of the surprising things was that our initial notion was that the cells we transplanted into the brains would initially turn into the cells in the brain affected by the stroke and reconstitute those circuits. We were shocked to find that that was not what was happening, that only a few of the transplanted cells turned into neurons. The way they were recovering function was by secreting very powerful growth factors and molecules and proteins that enhanced native recovery or the ability of the normal brain to recover itself. Some of these processes included outgrowth of neurons, new connections, new synapses, not from the stem cells but from the native cells already in the brain.

This is not cell replacement but enhancing native recovery and, in a simple sense, what the cells are doing, we believe, is to change the adult brain, which has a hard time recovering from a stroke, into an infant brain and infants recover very well after a stroke.”

All this work was focused on ischemic strokes, where a blockage cuts off blood flow to the brain. But people like Cheryl Ward wanted to know: “Will this work for hemorrhagic stroke?” That’s where a blood vessel in the brain leaks or ruptures.

Dr. Steinberg: “I suspect we will be generalizing this therapy into hemorrhagic patients very, very soon and there’s no reason why it shouldn’t work there. The reason we didn’t start there is that 85% of strokes are ischemic and only 15% are hemorrhagic so it’s a smaller population but a very, very important population because when patients have a hemorrhage from a stroke they are often more seriously disabled than from ischemic.”

Dr. Lila Collins: “I would like to highlight one trial for hemorrhagic stroke with the Mayo Clinic and that’s using mesenchymal stem cells (normally found in bone marrow or blood). It’s an early stage, Phase 1 safety study in patients with recent cerebral hemorrhage.  They are looking at improvements in neurological function and patients have to be treated within 72 hours after the stroke.”

Dr. Steinberg explained that because it’s more difficult to enroll patients within 72 hours of a stroke that we may end up offering a combination of therapies spread out over months or even years.

Dr. Steinberg: “It may be that and we may figure this out in the next 5 to 10 years, that you might want to treat patients acutely (right away) with an intravenous therapy in the first 72 hours and then you might want to come in again sub-acutely within a few months, injecting the cells into the brain near the stroke, and then maybe come in chronically a few years later if there are still problems and place the cells directly in the brain. So, lots of ways to think about how to use this in the future.”

James Russell suffered a stroke in 2014 and wrote:

“My left side was affected. My vision was also impacted. Are any stroke patients being given stem cells seeing possible improvement in visual neglect?”

Dr. Steinberg: “We don’t know the answer to that yet, it’s quite possible. It’s true these vision circuits are not dead and could be resurrected. We have not targeted visual pathways in our work, we have targeted motor functions, but I would also be optimistic that we could target patients who have vision problems from stroke. It’s a very important area.

A number of people wondered if stem cells can help people recovering from a stroke can they also help people with other neurological conditions.

Hanifa Gaphoor asked “What about Parkinson’s disease?” and Ginnievive Patch wondered “Do you feel hopeful for neurological illnesses like Huntington’s disease and ALS? Dr. Steinberg was cautiously optimistic.

Dr. Steinberg: “We’ve extended this kind of treatment not just for ischemic stroke but into traumatic brain injury (TBI) and we just completed a trial for patients with chronic TBI or who have suffered a trauma to the brain. Many other indications may be possible. In fact, now that we know these circuits are not dead or irreversibly injured, we believe we could even extend this to neurodegenerative diseases like ALS, Parkinson’s, maybe even to Alzheimer’s disease in the future. So, lots of hope but we don’t want to oversell this, and we want to make sure this is done in a rigorous fashion.”

Several people had questions about using their own adipose, or fat stem cells, in therapies being offered at clinics around the US and in other countries. Cheri Hicks asked: “I’m curious if adipose stem cell being used at clinics at various places is helpful or beneficial?”

Dr. Steinberg: “I get emails or calls from patients every week saying should I go to Russia, India or Mexico and get stem cell transplants which are done not as part of a rigorous trial and I discourage patients from getting stem cells that are not being given in a controlled fashion. For one thing, patients have been getting hurt by these treatments in these clinics; they have developed tumors and infections and other problems. In many cases we don’t even know what the cells are, there’s not published information and the patients pay cash for this, of course.”

At CIRM we also worry about people going to clinics, in the US and in other countries, where they are getting therapies that have not been approved by the US Food and Drug Administration (FDA) or other appropriate regulatory bodies. That’s why we have created this page on our website to help people who want a stem cell therapy but don’t know what to look for in a clinical trial or what questions to ask to make sure it’s a legitimate trial, one that’s been given the go-ahead by the FDA.

Bret Ryan asked: “What becomes of the implanted cells?”

Dr. Steinberg: We found after transplanting the cells, one week after the transplant, we see a new abnormality in the premotor cortex, the area of the brain that controls motor function. We saw a new abnormality there or a new signal that disappears after a month and never comes back. But the size of that temporary abnormality after one week correlates very closely with the degree of recovery after six months, one year and two years.

One of the interesting things is that it doesn’t seem to be necessary for the cells to survive long term to have beneficial effects. The cells we used in the SanBio trial don’t survive more than a month and yet they seem to aid recovery function in our pilot studies which is sustained for years.”

And of course, many people, such as Karen Smart, wanted to know how they could get the therapy. Right now, the clinical trial is fully enrolled but Stanford is putting together a waiting list for future trials. If you are interested and would like more information, please email: stemcellstudy@stanford.edu.

Sonia Coontz, the patient who was also a key part of the Facebook Live event, has an amazing story to tell. She was left devastated, physically and emotionally, after having a stroke. But then she heard about Dr. Steinberg’s clinical trial and it changed her life. Here’s her story.

We were thrilled to receive all of your comments and questions during our first Facebook Live event. It’s this kind of dialogue between scientists, patients and the public that will be critical for the continued support of our mission to accelerate stem cell treatments to patients with unmet medical needs.

Due to the response, we plan to regularly schedule these “Ask the Expert” events. What disease area would you like us to focus on next time? Leave us a comment or email info@cirm.ca.gov

 

Friday Stem Cell Roundup: Making Nerves from Blood; New Clues to Treating Parkinson’s

Stanford lab develops method to make nerve cells from blood.

wernig_ineurons_blood

Induced neuronal (iN) cells derived from adult human blood cells. Credit: Marius Wernig, Stanford University.

Back in 2010, Stanford Professor Marius Wernig and his team devised a method to directly convert skin cells into neurons, a nerve cell. This so-called transdifferentiation technique leapfrogs over the need to first reprogram the skin cells into induced pluripotent stem cells. This breakthrough provided a more efficient path to studying how genetics plays a role in various mental disorders, like autism or schizophrenia, using patient-derived cells. But these types of genetic analyses require data from many patients and obtaining patient skin samples hampered progress because it’s not only an invasive, somewhat painful procedure but it also takes time and money to prepare the tissue sample for the transdifferentiation method.

This week, the Wernig lab reported on a solution to this bottleneck in the journal, PNAS. The study, funded in part by CIRM, describes a variation on their transdifferentiation method which converts T cells from the immune system, instead of skin cells, into neurons. The huge advantage with T cells is that they can be isolated from readily available blood samples, both fresh or frozen. In a press release, Wernig explains this unexpected but very welcomed result:

“It’s kind of shocking how simple it is to convert T cells into functional neurons in just a few days. T cells are very specialized immune cells with a simple round shape, so the rapid transformation is somewhat mind-boggling. We now have a way to directly study the neuronal function of, in principle, hundreds of people with schizophrenia and autism. For decades we’ve had very few clues about the origins of these disorders or how to treat them. Now we can start to answer so many questions.”

Two studies targeting Parkinson’s offer new clues to treating the disease (Kevin McCormack)
Despite decades of study, Parkinson’s disease remains something of a mystery. We know many of the symptoms – trembling hands and legs, stiff muscles – are triggered by the loss of dopamine producing cells in the brain, but we are not sure what causes those cells to die. Despite that lack of certainty researchers in Germany may have found a way to treat the disease.

Mitochondria

Simple diagram of a mitochondria.

They took skin cells from people with Parkinson’s and turned them into the kinds of nerve cell destroyed by the disease. They found the cells had defective mitochondria, which help produce energy for the cells. Then they added a form of vitamin B3, called nicotinamide, which helped create new, healthy mitochondria.

In an article in Science & Technology Research News Dr. Michela Deleidi, the lead researcher on the team, said this could offer new pathways to treat Parkinson’s:

“This substance stimulates the faulty energy metabolism in the affected nerve cells and protects them from dying off. Our results suggest that the loss of mitochondria does indeed play a significant role in the genesis of Parkinson’s disease. Administering nicotinamide riboside may be a new starting-point for treatment.”

The study is published in the journal Cell Reports.

While movement disorders are a well-recognized feature of Parkinson’s another problem people with the condition suffer is sleep disturbances. Many people with Parkinson’s have trouble falling asleep or remaining asleep resulting in insomnia and daytime sleepiness. Now researchers in Belgium may have uncovered the cause.

Working with fruit flies that had been genetically modified to have Parkinson’s symptoms, the researchers discovered problems with neuropeptidergic neurons, the type of brain cell that helps regulate sleep patterns. Those cells seemed to lack a lipid, a fat-like substance, called phosphatidylserine.

In a news release Jorge Valadas, one of the lead researchers, said replacing the missing lipid produced promising results:

“When we model Parkinson’s disease in fruit flies, we find that they have fragmented sleep patterns and difficulties in knowing when to go to sleep or when to wake up. But when we feed them phosphatidylserine–the lipid that is depleted in the neuropeptidergic neurons–we see an improvement in a matter of days.”

Next, the team wants to see if the same lipids are low in people with Parkinson’s and if they are, look into phosphatidylserine – which is already approved in supplement form – as a means to help ease sleep problems.

Can stem cells help people recover from a stroke? Join us for a Facebook Live event this Thursday, May 31 for the answers

AskExpertsMAY2018[1]

Stroke is one of the leading causes of death in the US and the leading cause of serious, long-term disability. But could stem cell therapies change that and help people who’ve had a brain attack?  Could stem cells help repair the damage caused by a stroke and restore a person’s ability to speak normally, to be able to walk without a limp or regain strength in their hands and arms?

To find out the answers to these and other questions joins us for “Ask the Expert”, a special Facebook Live event this Thursday, May 31, from noon till 1pm PDT

 The event will feature Dr. Gary Steinberg, the Chair of Neurosurgery at Stanford University. Dr. Steinberg is currently running a CIRM-funded clinical trial targeting stroke.

We will also be joined by CIRM Senior Science Officer Lila Collins, PhD who can talk about the broad range of other projects using stem cells to help people recover from a stroke.

We are also delighted to welcome Sonia Coontz, who suffered a devastating stroke several years ago and made a remarkable recovery after getting a stem cell therapy.

To join us for the event, all you have to do is go to our Facebook page on Thursday at noon (PDT) and you should see a video playing, which you can watch on mobile or desktop. Click the video to enter viewing mode.

Also, make sure to “like” our page before the event to receive a notification that we’ve gone live.

And we want to hear from you, so you will be able to post questions for the experts to answer or, you can email them directly to us at info@cirm.ca.gov

We look forward to seeing you there.

 

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

‘Ask The Expert’ on Facebook Live about the power of stem cells to reverse damage caused by a stroke.

facebook-live-brand-awarenessIt’s not often you get a chance to ask a world class stem cell expert a question about their work, and how it might help you or someone you love. But on Thursday, May 31 you can do just that.

CIRM is hosting a special ‘Ask the Expert’ event on Facebook Live. The topic is Strokes and Stem Cells. Just head over to our Facebook Page on May 31st from noon till 1pm PST to experience it live. You can also re-watch the event any time after the broadcast has ended from our Facebook videos page.

Steinberg

We will be joined by Dr. Gary Steinberg, chair of neurosurgery at Stanford University, who will talk to us about his work in helping reverse the damage caused by a stroke, even for people who experienced a brain attack several years ago.

CIRM Senior Science Officer, Dr. Lila Collins, will talk about other stem cell research targeting stroke, its promise and some of the problems that still need to be overcome.

You will have a chance to ask questions of both our experts, either live on the day or by sending us questions in advance at info@cirm.ca.gov.

We’ll post reminders on Facebook so make sure to follow us. But for now, mark the date and time on your diary and please feel free to share this information with anyone you think might be interested.

It promises to be a fascinating event.