Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

De-stressing stem cells and the Bonnie & Clyde of stem cells

Dr. John Cashman

The cells in our body are constantly signalling with each other, it’s a critical process by which cells communicate not just with other cells but also with elements within themselves. One of the most important signalling pathways is called Wnt. This plays a key role in early embryonic and later development. But when Wnt signalling goes wrong, it can also help spur the growth of cancer.

Researchers at the Human BioMolecular Research Institute (HBRI) and Stanford University, have reported on a compound that can trigger a cascade of events that create stress and ultimately impact Wnt’s ability to control the ability of cells to repair themselves.

In a news release Dr. Mark Mercola, a co-author of a CIRM-funded study – published in the journal Cell Chemical Biology – says this is important: “because it explains why stressed cells cannot regenerate and heal tissue damage. By blocking the ability to respond to Wnt signaling, cellular stress prevents cells from migrating, replicating and differentiating.”

The researchers discovered a compound PAWI-2 that shows promise in blocking the compound that causes this cascade of problems. Co-author Dr. John Cashman says PAWI-2 could lead to treatments in a wide variety of cancers such as pancreatic, breast, prostate and colon cancer.

“As anti-cancer PAWI-2 drug development progresses, we expect PAWI-2 to be less toxic than current therapeutics for pancreatic cancer, and patients will benefit from improved safety, less side effects and possibly with significant cost-savings.”

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Speaking of cancer….

Stem cells have many admirable qualities. However, one of their less admirable ones is their ability to occasionally turn into cancer stem cells. Like regular stem cells these have the ability to renew and replicate themselves over time, but as cancer stem cells they use that ability to help fuel the growth and spread of cancer in the body. Now, researchers at U.C. San Diego are trying to better understand how those regular stem cells become cancer stem cells, so they can stop that process.

In a CIRM-funded study Dr. Catriona Jamieson and her team identified two molecules, APOBEC3C and ADAR1, that play a key role in this process.

In a news release Jamieson said: “APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells — they drive the cells into malignancy.”

So they studied blood samples from 54 patients with leukemia and 24 without. They found that in response to inflammation, APOBEC3C promotes the rapid production of pre-leukemia stem cells. That in turn enables ADAR1 to go to work, interfering with gene expression in a way that helps those pre-leukemia stem cells turn into leukemia stem cells.

They also found when they blocked the action of ADAR1 or silenced the gene in patient cells in the laboratory, they were able to stop the formation of leukemia stem cells.

The study is published in the journal Cell Reports.

Everything you wanted to know about COVID vaccines but never got a chance to ask

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a rare treat, an interview with Moderna’s Dr. Derrick Rossi.

Moderna co-founder Dr. Derrick Rossi

It’s not often you get a chance to sit down with one of the key figures in the fight against the coronavirus and get to pick his brain about the best ways to beat it. We were fortunate enough to do that on Wednesday, talking to Dr. Derrick Rossi, the co-founder of Moderna, about the vaccine his company has developed.

CIRM’s President and CEO, Dr. Maria Millan, was able to chat to Dr. Rossi for one hour about his background (he got support from CIRM in his early post-doctoral research at Stanford) and how he and his colleagues were able to develop the COVID-19 vaccine, how the vaccine works, how effective it is, how it performs against new variations of the virus.

He also told us what he would have become if this science job hadn’t worked out.

All in all it was a fascinating conversation with someone whose work is offering a sense of hope for millions of people around the world.

If you missed it first time around you can watch it here.

How a CIRM scholar helped create a life-saving COVID vaccine

Dr. Derrick Rossi might be the most famous man whose name you don’t recognize. Dr. Rossi is the co-founder of Moderna. Yes, that Moderna. The COVID-19 vaccine Moderna. The vaccine that in clinical trials proved to be around 95 percent effective against the coronavirus.

Dr. Rossi also has another claim to fame. He is a former CIRM scholar. He did some of his early research, with our support, in the lab of Stanford’s Dr. Irv Weissman.

So how do you go from a lowly post doc doing research in what, at the time, was considered a rather obscure scientific field, to creating a company that has become the focus of the hopes of millions of people around the world?  Well, join us on Wednesday, January 27th at 9am (PST) to find out.

CIRM’s President and CEO, Dr. Maria Millan, will hold a live conversation with Dr. Rossi and we want you to be part of it. You can join us to listen in, and even post questions for Dr. Rossi to answer. Think of the name dropping credentials you’ll get when say to your friends; “Well, I asked Dr. Rossi about that and he told me…..”

Being part of the conversation is as simple as clicking on this link:

After registering, you will receive a confirmation email containing information about joining the webinar.

We look forward to seeing you there.

Progress in the fight against Sickle Cell Disease

Marissa Cors, sickle cell disease patient advocate

Last November Marissa Cors, a patient advocate in the fight against Sickle Cell Disease (SCD), told the Stem Cellar “A stem cell cure will end generations of guilt, suffering, pain and early death. It will give SCD families relief from the financial, emotional and spiritual burden of caring someone living with SCD. It will give all of us an opportunity to have a normal life. Go to school, go to work, live with confidence.” With each passing month it seems we are getting closer to that day.

CIRM is funding four clinical trials targeting SCD and another project we are supporting has just been given the green light by the Food and Drug Administration to start a clinical trial. Clearly progress is being made.

Yesterday we got a chance to see that progress. We held a Zoom event featuring Marissa Cors and other key figures in the fight against SCD, CIRM Science Officer Dr. Ingrid Caras and Evie Junior. Evie is a pioneer in this struggle, having lived with sickle cell all his life but now hoping to live his life free of the disease. He is five months past a treatment that holds out the hope of eradicating the distorted blood cells that cause such devastation to people with the disease.

You can listen to his story, and hear about the other progress being made. Here’s a recording of the Zoom event.

You can also join Marissa every week on her live event on Facebook, Sickle Cell Experience Live.

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe

CIRM-Funded Project Targeting Sickle Cell Disease Gets Green Light for Clinical Trial

Dr. Matthew Porteus

The US Food and Drug Administration (FDA) has granted Investigational New Drug (IND) permission enabling Graphite Bio to test the investigational, potentially revolutionary gene editing therapy GPH101 developed under the supervision of Matthew Porteus, MD, PhD, in a clinical trial for people with sickle cell disease (SCD).

The California Institute for Regenerative Medicine (CIRM) has been supporting this project with a $5.2 million grant, enabling Dr. Porteus and his team at the Institute of Stem Cell Biology and Regenerative Medicine at Stanford University to conduct the preclinical manufacturing and safety studies required by the FDA.

“We congratulate the Graphite Bio team for obtaining the IND, a critical step in bringing the GPH101 gene therapy forward for Sickle Cell Disease,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM is committed to the national Cure Sickle Cell initiative and are delighted that this technology, the product of CIRM funded research conducted by Dr. Porteus at Stanford, is progressing to the next stage of development”

Sickle cell disease is caused by a genetic mutation that turns normally smooth, round red blood cells into rigid, sickle shaped cells. Those cells clump together, clogging up blood vessels, causing intense pain, damaging organs and increasing the risk of strokes and premature death. There are treatments that help control the damage, but the only cure is a bone marrow stem cell transplant, which can only happen if the patient has a stem cell donor (usually a close relative) who has matching bone marrow.  

The investigational therapy GPH101 harnesses the power of CRISPR and natural DNA repair mechanisms to cut out the single mutation in the sickle globin gene and paste in the correct “code.” Correction of this mutation would reverse the defect and result in healthy non-sickling red blood cells.  

CEDAR, a Phase 1/2, multi-center, open-label clinical study is designed to evaluate the safety, preliminary efficacy and pharmacodynamics of GPH101 in adult and adolescent patients with severe SCD.

For patient advocate Nancy Rene, the news is personal: “It’s always exciting to hear about the progress being made in sickle cell research.  If successful it will mean that my grandson, and especially other young adults, can look forward to a life free of pain and organ damage.  They can actually begin to plan their lives, thinking about careers and families. I want to thank Dr. Porteus and all of the scientists who are working so hard for people with sickle cell disease. This is wonderful news.”

CIRM has funded four clinical trials for Sickle Cell Disease using different approaches and has a unique partnership with the National Heart, Lung and Blood Institutes under the NIH “Cure Sickle Cell” initiative.

CIRM-funded treatment gets orphan drug and rare pediatric disease designations from FDA

From left to right: Brian Lookofsky , Taylor Lookofsky, and Rosa Bacchetta, M.D.
Picture taken October 2019

Last year, CIRM awarded $5.53 million to Rosa Bacchetta, M.D. at Stanford University to complete the work necessary to conduct a clinical trial for IPEX syndrome. This is a rare disease caused by mutations in the FOXP3 gene, which leaves people with the condition vulnerable to immune system attacks on their organs and tissues. These attacks can be devastating, even fatal.

Flash forward to the present day and the CIRM-funded treatment that Dr. Bacchetta has been working on has received both an orphan drug and a rare pediatric disease designation from the Food and Drug Administration (FDA).

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

“The designations granted by the FDA are a strong encouragement for our team to meet the goal of submitting the IND in 2021 and start the clinical trial for IPEX patients who are so much looking forward to new therapeutic options.” said Dr. Bacchetta.

But this begs the question, what exactly is IPEX syndrome? What is the approach that Dr. Bacchetta is working on? For those of you interested in the deeper scientific dive, we will elaborate on this complex disease and promising approach.

IPEX syndrome is a rare disease that primarily affects males and is caused by a genetic mutation that leads to lack of function of specialized immune cells called regulatory T cells (Tregs).

Without functional Tregs, a patient’s own immune cells attack the body’s own tissues and organs, a phenomenon known as autoimmunity.  This affects many different areas such as the intestines, skin, and hormone-producing glands and can be fatal in early childhood. 

Current treatment options include a bone marrow transplant and immune suppressing drugs.  However, immune suppression is only partially effective and can cause severe side effects while bone marrow transplants are limited due to lack of matching donors.

Dr. Rosa Bacchetta and her team at Stanford will take a patient’s own blood in order to obtain CD4+ T cells.  Then, using gene therapy, they will insert a normal version of the mutated gene into the CD4+ T cells, allowing them to function like normal Treg cells.  These Treg-like cells would then be reintroduced back into the patient, hopefully creating an IPEX-free blood supply and resolving the autoimmunity.

Furthermore, if successful, this treatment could be adapted for treatment of other, more common, autoimmune conditions where Treg cells are the underlying problem.

The same day that CIRM approved funding for this approach, Taylor Lookofsky, a young man with IPEX syndrome, talked about the impact the condition has had on his life.

It’s a powerful reminder that syndromes like this, because they affect a small number of people, are often overlooked and have few resources devoted to finding new treatments and cures. After hearing Taylor’s story, you come to appreciate his courage and determination, and why the funding CIRM provides is so important in helping researchers like Dr. Bacchetta find therapies to help people like Taylor.

The full transcript of his talk can be accessed on a previous blog post.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

Exploring tough questions, looking for answers

COVID-19 and social and racial injustice are two of the biggest challenges facing the US right now. This Thursday, October 8th, we are holding a conversation that explores finding answers to both.

The CIRM Alpha Stem Cell Clinic Network Symposium is going to feature presentations about advances in stem cell and regenerative research, highlighting treatments that are already in the clinic and being offered to patients.

But we’re also going to dive a little deeper into the work we support, and use it to discuss two of the most pressing issues of the day.

One of the topics being featured is research into COVID-19. To date CIRM has funded 17 different projects, including three clinical trials. We’ll talk about how these are trying to find ways to help people infected with the virus, seeing if stem cells can help restore function to organs and tissues damaged by the virus, and if we can use stem cells to help develop safe and effective vaccines.

Immediately after that we are going to use COVID-19 as a way of exploring how the people most at risk of being infected and suffering serious consequences, are also the ones most likely to be left out of the research and have most trouble accessing treatments and vaccines.

Study after study highlights how racial and ethnic minorities are underrepresented in clinical trials and disproportionately affected by debilitating diseases. We have a responsibility to change that, to ensure that the underserved are given the same opportunity to take part in clinical trials as other communities.

How do we do that, how do we change a system that has resisted change for so long, how do we overcome the mistrust that has built up in underserved communities following decades of abuse? We’ll be talking about with experts who are on the front lines of this movement.

It promises to be a lively meeting. We’d love to see you there. It’s virtual – of course – it’s open to everyone, and it’s free.

Here’s where you can register and find out more about the Symposium