Stem cells stories that caught our eye: switching cell ID to treat diabetes, AI predicts cell fate, stem cell ALS therapy for Canada

Treating diabetes by changing a cell’s identity. Stem cells are an ideal therapy strategy for treating type 1 diabetes. That’s because the disease is caused by the loss of a very specific cell type: the insulin-producing beta cell in the pancreas. So, several groups are developing treatments that aim to replace the lost cells by transplanting stem cell-derived beta cells grown in the lab. In fact, Viacyte is applying this approach in an ongoing CIRM-funded clinical trial.

In preliminary animal studies published late last week, a Stanford research team has shown another approach may be possible which generates beta cells inside the body instead of relying on cells grown in a petri dish. The CIRM-funded Cell Metabolism report focused on alpha cells, another cell type in pancreas which produces the hormone glucagon.

glucagon

Microscopy of islet cells, round clusters of cells found in the pancreas. The brown stained cells are glucagon-producing alpha cells. Credit: Wikimedia Commons

After eating a meal, insulin is critical for getting blood sugar into your cells for their energy needs. But glucagon is needed to release stored up sugar, or glucose, into your blood when you haven’t eaten for a while. The research team, blocked two genes in mice that are critical for maintaining an alpha cell state. Seven weeks after inhibiting the activity of these genes, the researchers saw that many alpha cells had converted to beta cells, a process called direct reprogramming.

Does the same thing happen in humans? A study of cadaver donors who had been recently diagnosed with diabetes before their death suggests the answer is yes. An analysis of pancreatic tissue samples showed cells that produced both insulin and glucagon, and appeared to be in the process of converting from beta to alpha cells. Further genetic tests showed that diabetes donor cells had lost activity in the two genes that were blocked in the mouse studies.

It turns out that there’s naturally an excess of alpha cells so, as team lead Seung Kim mentioned in a press release, this strategy could pan out:

image-img-620-high

Seung Kim. Credit: Steve Fisch, Stanford University

“This indicates that it might be possible to use targeted methods to block these genes or the signals controlling them in the pancreatic islets of people with diabetes to enhance the proportion of alpha cells that convert into beta cells.”

Using computers to predict cell fate. Deep learning is a cutting-edge area of computer science that uses computer algorithms to perform tasks that border on artificial intelligence. From beating humans in a game of Go to self-driving car technology, deep learning has an exciting range of applications. Now, scientists at Helmholtz Zentrum München in Germany have used deep learning to predict the fate of cells.

170221081734_1_900x600

Using deep learning, computers can predict the fate of these blood stem cells.
Credit: Helmholtz Zentrum München.

The study, published this week in Nature Methods, focused on blood stem cells also called hematopoietic stem cells. These cells live in the bone marrow and give rise to all the different types of blood cells. This process can go awry and lead to deadly disorders like leukemia, so scientists are very interested in exquisitely understanding each step that a blood stem cell takes as it specializes into different cell types.

Researchers can figure out the fate of a blood stem cells by adding tags, which glow with various color, to the cell surface . Under a microscope these colors reveal the cells identity. But this method is always after the fact. There no way to look at a cell and predict what type of cell it is turning into. In this study, the team filmed the cells under a microscope as they transformed into different cell types. The deep learning algorithm processed the patterns in the cells and developed cell fate predictions. Now, compared to the typical method using the glowing tags, the researchers knew the eventual cell fates much sooner. The team lead, Carsten Marr, explained how this new technology could help their research:

“Since we now know which cells will develop in which way, we can isolate them earlier than before and examine how they differ at a molecular level. We want to use this information to understand how the choices are made for particular developmental traits.”

Stem cell therapy for ALS seeking approval in Canada. (Karen Ring) Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease that kills off the nerve cells responsible for controlling muscle movement. Patients with ALS suffer from muscle weakness, difficulty in speaking, and eventually breathing. There is no cure for ALS and the average life expectancy after diagnosis is just 2 – 5 years. But companies are pursuing stem cell-based therapies in clinical trials as promising treatment options.

One company in particular, BrainStorm Cell Therapeutics based in the US and Israel, is testing a mesenchymal stem cell-based therapy called NurOwn in ALS patients in clinical trials. In their Phase 2 trials, they observed clinical improvements in slowing down the rate of disease progression following the stem cell treatment.

In a recent update from our friends at the Signals Blog, BrainStorm has announced that it is seeking regulatory approval of its NurOwn treatment for ALS patients in Canada. They will be working with the Centre for Commercialization of Regenerative Medicine (CCRM) to apply for a special regulatory approval pathway with Health Canada, the Canadian government department responsible for national public health.

In a press release, BrainStorm CEO Chaim Lebovits, highlighted this new partnership and his company’s mission to gain regulatory approval for their ALS treatment:

“We are pleased to partner with CCRM as we continue our efforts to develop and make NurOwn available commercially to patients with ALS as quickly as possible. We look forward to discussing with Health Canada staff the results of our ALS clinical program to date, which we believe shows compelling evidence of safety and efficacy and may qualify for rapid review under Canada’s regulatory guidelines for drugs to treat serious or life-threatening conditions.”

Stacey Johnson who wrote the Signals Blog piece on this story explained that while BrainStorm is not starting a clinical trial for ALS in Canada, there will be significant benefits if its treatment is approved.

“If BrainStorm qualifies for this pathway and its market authorization request is successful, it is possible that NurOwn could be available for patients in Canada by early 2018.  True access to improved treatments for Canadian ALS patients would be a great outcome and something we are all hoping for.”

CIRM is also funding stem cell-based therapies in clinical trials for ALS. Just yesterday our Board awarded Cedars-Sinai $6.15 million dollars to conduct a Phase 1 trial for ALS patients that will use “cells called astrocytes that have been specially re-engineered to secrete proteins that can help repair and replace the cells damaged by the disease.” You can read more about this new trial in our latest news release.

Stem cell stories that caught our eye: drug safety for heart cells, worms hijack plant stem cells & battling esophageal cancer

Devising a drug safety measuring stick in stem cell-derived heart muscle cells
One of the mantras in the drug development business is “fail early”. That’s because most of the costs of getting a therapy to market occur at the later stages when an experimental treatment is tested in clinical trials in people. So, it’s best for a company’s bottom line and, more importantly, for patient safety to figure out sooner rather than later if a therapy has dangerous toxic side effects.

Researchers at Stanford reported this week in Science Translational Medicine on a method they devised that could help weed out cancer drugs with toxic effects on the heart before the treatment is tested in people.

In the lab, the team grew beating heart muscle cells, or cardiomyocytes, from induced pluripotent stem cells derived from both healthy volunteers and kidney cancer patients. A set of cancer drugs called tyrosine kinase inhibitors which are known to have a range of serious side effects on the heart, were added to the cells. The effect of the drugs on the heart cell function were measured with several different tests which the scientists combined into a single “safety index”.

roundup_wu

A single human induced pluripotent stem cell-derived cardiomyocyte. Cells such as these were used to assess tyrosine kinase inhibitors for cardiotoxicity in a high-throughput fashion. Credit: Dr. Arun Sharma at Dr. Joseph Wu’s laboratory at Stanford University

They found that the drugs previously shown to have toxic effects on patients’ hearts had the worst safety index values in the current study. And because these cells were in a lab dish and not in a person’s heart, the team was able to carefully examine cell activity and discovered that the toxic effects of three drugs could be alleviated by also adding insulin to the cells.

As lead author Joseph Wu, director of the Stanford Cardiovascular Institute, mentions in a press release, the development of this drug safety index could provide a powerful means to streamline the drug development process and make the drugs safer:

“This type of study represents a critical step forward from the usual process running from initial drug discovery and clinical trials in human patients. It will help pharmaceutical companies better focus their efforts on developing safer drugs, and it will provide patients more effective drugs with fewer side effects”

Worm feeds off of plants by taking control of their stem cells
In what sounds like a bizarre mashup of a vampire movie with a gardening show, a study reported this week pinpoints how worms infiltrate plants by commandeering the plants’ own stem cells. Cyst nematodes are microscopic roundworms that invade and kill soybean plants by sucking out their nutrients. This problem isn’t a trivial matter since nematodes wreak billions of dollars of damage to the world’s soybean crops each year. So, it’s not surprising that researchers want to understand how exactly these critters attack the plants.

nematode-feeding-site

A nematode, the oblong object on the left, activates the vascular stem cell pathway in the developing nematode feeding site on a plant root. Credit: Xiaoli Guo, University of Missouri

Previous studies by Melissa Goellner Mitchum, a professor at the University of Missouri, had shown that the nematodes release protein fragments, called peptides, near a plant’s roots that help divert the flow of plant nutrients to the worm.

“These parasites damage root systems by creating a unique feeding cell within the roots of their hosts and leeching nutrients out of the soybean plant. This can lead to stunting, wilting and yield loss for the plant,” Mitchum explained in a press release.

In the current PLOS Pathogens study, Mitchum’s team identified another peptide produced by the nematode that is identical to a plant peptide that instructs stem cells to form the plant equivalent of blood vessels. This devious mimicking of the plant peptides is what allows the nematode to trick the plant stem cells into building vessels that reroute the plants’ nutrients directly to the worm.

Mitchum described the big picture implications of this fascinating discovery:

“Understanding how plant-parasitic nematodes modulate host plants to their own benefit is a crucial step in helping to create pest-resistant plants. If we can block those peptides and the pathways nematodes use to overtake the soybean plant, then we can enhance resistance for this very valuable global food source.”

Finding vulnerabilities in treatment-resistant esophageal cancer stem cells

diagram_showing_internal_radiotherapy_for_cancer_of_the_oesophagus_cruk_162-svg

Illustration of radiation therapy for esophageal cancer.
Credit: Cancer Research UK

The incidence of esophageal cancer has increased more than any other disease over the past 30 years. And while some patients respond well to chemotherapy and radiation treatment, most do not because the cancer becomes resistant to these treatments.

Focusing on cancer stem cells, researchers at Trinity College Dublin have identified an approach that may overcome treatment resistance.

Within tumors are thought to lie cancer stem cells that, just like stem cells, have the ability to multiply indefinitely. Even though they make up a small portion of a tumor, in some patients the cancer stem cells evade the initial rounds of treatment and are responsible for the return of the cancer which is often more aggressive. Currently, there’s no effective way to figure out how well a patient with esophageal cancer will response to treatment.

In the current study published in Oncotarget, the researchers found that a genetic molecule called miR-17 was much less abundant in the esophageal cancer stem cells. In fact, the cancer stem cells with the lowest levels of miR-17, were the most resistant to radiation therapy. The researchers went on to show that adding back miR-17 to the highly resistant cells made them sensitive again to the radiation. Niamh Lynam-Lennon, the study’s first author, explained in a press release that these results could have direct clinical applications:

“Going forward, we could use synthetic miR-17 as an addition to radiotherapy to enhance its effectiveness in patients. This is a real possibility as a number of other synthetic miR-molecules are currently in clinical trials for treating other diseases.”

Curing the Incurable through Definitive Medicine

“Curing the Incurable”. That was the theme for the first annual Center for Definitive and Curative Medicine (CDCM) Symposium held last week at Stanford University, in Palo Alto, California.

The CDCM is a joint initiative amongst Stanford Healthcare, Stanford Children’s Health and the Stanford School of Medicine. Its mission is to foster an environment that accelerates the development and translation of cell and gene therapies into clinical trials.

The research symposium focused on “the exciting first-in-human cell and gene therapies currently under development at Stanford in bone marrow, skin, cardiac, neural, pancreatic and neoplastic diseases.” These talks were organized into four different sessions: cell therapies for neurological disorders, stem cell-derived tissue replacement therapies, genome-edited cell therapies and anti-cancer cell-based therapies.

A few of the symposium speakers are CIRM-funded grantees, and we’ll briefly touch on their talks below.

Targeting cancer

The keynote speaker was Irv Weissman, who talked about hematopoietic or blood-forming stem cells and their value as a cell therapy for patients with blood disorders and cancer. One of the projects he discussed is a molecule called CD47 that is found on the surface of cancer cells. He explained that CD47 appears on all types of cancer cells more abundantly than on normal cells and is a promising therapeutic target for cancer.

Irv Weissman

Irv Weissman

“CD47 is the first gene whose overexpression is common to all cancer. We know it’s molecular mechanism from which we can develop targeted therapies. This would be impossible without collaborations between clinicians and scientists.”

 

At the end of his talk, Weissman acknowledged the importance of CIRM’s funding for advancing an antibody therapeutic targeting CD47 into a clinical trial for solid cancer tumors. He said CIRM’s existence is essential because it “funds [stem cell-based] research through the [financial] valley of death.” He further explained that CIRM is the only funding entity that takes basic stem cell research all the way through the clinical pipeline into a therapy.

Improving bone marrow transplants

judith shizuru

Judith Shizuru

Next, we heard a talk from Judith Shizuru on ways to improve current bone-marrow transplantation techniques. She explained how this form of stem cell transplant is “the most powerful form of cell therapy out there, for cancers or deficiencies in blood formation.” Inducing immune system tolerance, improving organ transplant outcomes in patients, and treating autoimmune diseases are all applications of bone marrow transplants. But this technique also carries with it toxic and potentially deadly side effects, including weakening of the immune system and graft vs host disease.

Shizuru talked about her team’s goal of improving the engraftment, or survival and integration, of bone marrow stem cells after transplantation. They are using an antibody against a molecule called CD117 which sits on the surface of blood stem cells and acts as an elimination signal. By blocking CD117 with an antibody, they improved the engraftment of bone marrow stem cells in mice and also removed the need for chemotherapy treatment, which is used to kill off bone marrow stem cells in the host. Shizuru is now testing her antibody therapy in a CIRM-funded clinical trial in humans and mentioned that this therapy has the potential to treat a wide variety of diseases such as sickle cell anemia, leukemias, and multiple sclerosis.

Tackling stroke and heart disease

img_1327We also heard from two CIRM-funded professors working on cell-based therapies for stroke and heart disease. Gary Steinberg’s team is using human neural progenitor cells, which develop into cells of the brain and spinal cord, to treat patients who’ve suffered from stroke. A stroke cuts off the blood supply to the brain, causing the death of brain cells and consequently the loss of function of different parts of the body.  He showed emotional videos of stroke patients whose function and speech dramatically improved following the stem cell transplant. One of these patients was Sonia Olea, a young woman in her 30’s who lost the ability to use most of her right side following her stroke. You can read about her inspiring recover post stem cell transplant in our Stories of Hope.

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Joe Wu followed with a talk on adult stem cell therapies for heart disease. His work, which is funded by a CIRM disease team grant, involves making heart cells called cardiomyocytes from human embryonic stem cells and transplanting these cells into patient with end stage heart failure to improve heart function. His team’s work has advanced to the point where Wu said they are planning to file for an investigational new drug (IND) application with the US Food and Drug Administration (FDA) in six months. This is the crucial next step before a treatment can be tested in clinical trials. Joe ended his talk by making an important statement about expectations on how long it will take before stem cell treatments are available to patients.

He said, “Time changes everything. It [stem cell research] takes time. There is a lot of promise for the future of stem cell therapy.”

Life after SPARK: CIRM high school intern gets prestigious scholarship to Stanford

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Ranya Odeh

Ranya Odeh

Meet Ranya Odeh. She is a senior at Sheldon high school in Elk Grove, California, and a 2016 CIRM SPARK intern. The SPARK program provides stem cell research internships to underprivileged high school students at leading research institutes in California.

This past summer, Ranya worked in Dr. Jan Nolta’s lab at UC Davis improving methods that turn mesenchymal stem cells into bone and fat cells. During her internship, Ranya did an excellent job of documenting her journey in the lab on Instagram and received a social media prize for her efforts.

Ranya is now a senior in high school and was recently accepted into Stanford University through the prestigious QuestBridge scholarship program. She credits the CIRM SPARK internship as one of the main reasons why she was awarded this scholarship, which will pay for all four years of her college.

I reached out to Ranya after I heard about her exciting news and asked her to share her story so that other high school students could learn from her experience and be inspired by her efforts.


How did you learn about the CIRM SPARK program?

At my high school, one of our assignments is to build a website for the Teen Biotech Challenge (TBC) program at UC Davis. I was a sophomore my first year in the program, and I didn’t feel passionate about my project and website. The year after, I saw that some of my friends had done the CIRM SPARK internship after they participated in the TBC program. They posted pictures about their internship on Instagram, and it looked like a really fun and interesting thing to do. So I decided to build another website (one that I was more excited about) in my junior year on synthetic biology. Then I entered my website in the TBC and got first prize in the Nanobiotechnology field. Because I was one of the winners, I got the SPARK internship.

What did you enjoy most about your SPARK experience?

For me, it was seeing that researchers aren’t just scientists in white lab coats. The Nolta lab (where I did my SPARK internship) had a lot of personality that I wasn’t really expecting. Working with stem cells was so cool but it was also nice to see at the same time that people in the lab would joke around and pull pranks on each other. It made me feel that if I wanted to have a future in research, which I do, it wouldn’t be doing all work all the time.

What was it like to do research for the first time?

Ranya taking care of her stem cells!

Ranya taking care of her stem cells!

The SPARK internship was my first introduction to research. During my first experiment, I remember I was changing media and I thought that I was throwing my cells away by mistake. So I freaked out, but then my mentor told me that I hadn’t and everything was ok. That was still a big deal and I learned a lesson to ask more questions and pay more attention to what I was doing.

Did the SPARK program help you when you applied to college?

Yes, I definitely feel like it did. I came into the internship wanting to be a pharmacist. But my research experience working with stem cells made me want to change my career path. Now I’m looking into a bioengineering degree, which has a research aspect to it and I’m excited for that. Having the SPARK internship on my college application definitely helped me out. I also got to have a letter of recommendation from Dr. Nolta, which I think played a big part as well.

Tell us about the scholarship you received!

I got the QuestBridge scholarship, which is a college match scholarship for low income, high achieving students. I found out about this program because my career counselor gave me a brochure. It’s actually a two-part scholarship. The first part was during my junior year of high school and that one didn’t involve a college acceptance. It was an award that included essay coaching and a conference that told you about the next step of the scholarship.

The second part during my senior year was called the national college match scholarship. It’s an application on its own that is basically like a college application. I submitted it and got selected as a finalist. After I was selected, they have partner colleges that offer full scholarships. You rank your choice of colleges and apply to them separately with a common application. If any of those colleges want to match you and agree to pay for all four years of your college, then you will get matched to your top choice. There’s a possibility that more than one college would want to match you, but you will only get matched with the one that you rank the highest. That was Stanford for me, and I am very happy about that.

Why did you pick Stanford as your top choice?

It’s the closest university to where I grew up that is very prestigious. It was also one of the only colleges I’ve visited. When I was walking around on campus, I felt I could see myself there as a student and with the Stanford community. Also, it will be really nice to be close to my family.

What do you do in your free time?

I don’t have a lot of free time because I’m in Academic Decathalon and I spend most of my time doing that. When I do have free time, I like to watch Netflix, blogs on YouTube, and I try to go to the gym [laughs].

Did you enjoy posting about your SPARK internship on Instagram?

I had a lot of fun posting pictures of me in the lab on Instagram. It was also nice during the summer to see other SPARK students in different programs talk about the same things. We shared jokes about micropipettes and culturing stem cells. It was really cool to see that you’re not the only one posting nerdy science pictures. I also felt a part of a larger community outside of the SPARK program. Even people at my school were seeing and commenting on what I was doing.

UC Davis CIRM SPARK program 2016

UC Davis CIRM SPARK program 2016

I also liked that I got feedback about what I was doing in the lab from other SPARK students. When I posted pictures during my internship, I talked about working with mesenchymal stem cells. Because we all post to the same #CIRMSPARKlab hashtag, I saw students from CalTech commenting that they worked with those stem cells too. That motivated me to work harder and accomplish more in my project. Instagram also helped me with my college application process. I saw that there were other students in the same position as me that were feeling stressed out. We also gave each other feedback on college essays and having advice about what I was doing really helped me out.

Do you think it’s important for students to be on social media?

Yes, I think it’s important with boundaries of course. There are probably some people who are on social media too often, and you should have a balance. But it’s nice to see what other students are doing to prepare for college and to let loose and catch up with your friends.

What advice would you give to younger high school students about pursuing science?

I feel like students can’t expect things to be brought to them. If they are interested in science, they need to take the initiative to find something that they are going to want to do. The CIRM internship was brought to my attention. But I have friends that were interested in medicine and they found their own internships and ways to learn more about what they wanted to do. So my advice is to take initiative and not be scared of rejection, because if you’re scared of rejection you’re not going to do anything.

To hear more about Ranya’s SPARK internship experience, read her blog “Here’s what you missed this summer on the show coats.” You can also follow her on Instagram and Twitter. For more information about the CIRM SPARK internship program, please visit the CIRM website.


Related Links:

Stem Cell Profiles in Courage: Karl’s Fight with Cancer

Karl Trede

Karl Trede

When I think of a pioneer I have an image in my head of people heading west across the Americans plains in the 18th century, riding in a covered wagon pulled by weary oxen.

Karl Trede doesn’t fit that image at all. He is a trim, elegant man who has a ready smile and a fondness for Hawaiian shirts. But he is no less a pioneer for all that. That’s why we profiled him in our 2016 Annual Report.

In 2006 Karl was diagnosed with cancer of the throat. He underwent surgery to remove his vocal chords and thought he had beaten the cancer. A few years later, it came back. That was when Karl became the first person ever treated in a CIRM-funded clinical trial testing a new anti-tumor therapy targeting cancer stem cells that so far has helped hold the disease at bay.

Here is Karl’s story, in his own words:

“I had some follow-up tests and those showed spots in my lungs. Over the course of several years, they saw those spots grow, and we knew the cancer had spread to my lungs. I went to Stanford and was told there was no effective treatment for it, fortunately it was slow growing.

Then one day they said we have a new clinical trial we’re going to start would you be interested in being part of it.

I don’t believe I knew at the time that I was going to be the first one in the trial [now that’s what I call a pioneer] but I thought I’d give it a whirl and I said ‘Sure’. I wasn’t real concerned about being the first in a trial never tested in people before. I figured I was going to have to go someday so I guess if I was the first person and something really went wrong then they’d definitely learn something; so, to me, that was kind of worth my time.

Fortunately, I lasted 13 months, 72 treatments with absolutely no side effects. I consider myself really lucky to have been a part of it.

It was an experience for me, it was eye opening. I got an IV infusion, and the whole process was 4 hours once a week.

Dr. Sikic (the Stanford doctor who oversees the clinical trial) made it a practice of staying in the room with me when I was getting my treatments because they’d never tried it in people, they’d tested it in mice, but hadn’t tested it in people and wanted to make sure they were safe and nothing bad happened.

The main goals of the trial were to define what the side effects were and what the right dose is and they got both of those. So I feel privileged to have been a part of this.

My wife and I (Vita) have four boys. They’re spread out now – two in the San Francisco Bay Area, one in Oregon and one in Nevada. But we like to get together a few times a year. They’re all good cooks, so when we have a family get together there’s a lot of cooking involved.

The Saturday after Thanksgiving, in 2015, the boys decided they wanted to have a rib cook-off for up to around 30 people and I can proudly say that I kicked their ass on the rib cook-off. I have an electric cooker and I just cook ‘em slow and long. I do a cranberry sauce, just some home made bbq sauces

I’m a beef guy, I love a good steak, a good ribeye or prime rib, I make a pretty mean Oso bucco, I make a good spaghetti sauce, baked chicken with an asparagus mousse that is pretty good.

I just consider myself a lucky guy.”

Karl Trede with CIRM President Randy Mills at the 2016 December Board meeting.

Karl Trede with CIRM President Randy Mills at the 2016 December Board meeting.


Related Links:

Stories that caught our eye: frail bones in diabetics, ethics of future IVF, Alzheimer’s

The connection between diabetes and frail bones uncovered
Fundamentally, diabetes is defined by abnormally high blood sugar levels. But that one defect over time carries an increased risk for a wide range of severe health problems. For instance, compared to healthy individuals, type 2 diabetics are more prone to poorly healing bone fractures – a condition that can dramatically lower one’s quality of life.

image-img-320-high

Bones of the healthy animals (top) form larger calluses during healing which lead to stronger repaired bones. Bones of the diabetic mice (bottom) have smaller calluses and the healed bones are more brittle. Image: Stanford University

To help these people, researchers are trying to tease out how diabetes impacts bone health. But it’s been a complicated challenge since there are many factors at play. Is it from potential side effects of diabetes drugs? Or is the increased body weight associated with type 2 diabetes leading to decreased bone density? This week a CIRM-funded team at Stanford pinpointed skeletal stem cells, a type of adult stem cell that goes on to make all the building blocks of the bone, as important pieces to this scientific puzzle.

Reporting in Science Translational Medicine, the team, led by Michael Longaker – co-director of Stanford’s Institute for Stem Cell Biology and Regenerative Medicine – found that, compared to healthy animals, type 2 diabetic mice have a reduced number of skeletal stem cells after bone fracture. A study of the local cellular “neighborhood” of these stem cells showed that the diabetic mice also had a reduction in the levels of a protein called hedgehog. Blocking hedgehog activity in healthy mice led to the slow bone healing seen in the diabetic mice. More importantly, boosting hedgehog levels near the site of the fracture in diabetic mice lead to bone healing that was just as good as in the healthy mice.

To see if this result might hold up in humans, the team analyzed hedgehog levels in bone samples retrieved from diabetics and non-diabetics undergoing joint replacement surgeries. Sure enough, hedgehog was depleted in the diabetic bone exactly reflecting the mouse results.

Though more studies will be needed to develop a hedgehog-based treatment in humans, Longaker talked about the exciting big picture implications of this result in a press release:

longaker

Michael Longaker

“We’ve uncovered the reason why some patients with diabetes don’t heal well from fractures, and we’ve come up with a solution that can be locally applied during surgery to repair the break. Diabetes is rampant worldwide, and any improvement in the ability of affected people to heal from fractures could have an enormously positive effect on their quality of life.”

 

Getting the ethics ahead of the next generation of fertility treatments
The Business Insider ran an article this week with a provocative title, “Now is the time to talk about creating humans from stem cells.” I initially read too much into that title because I thought the article was advocating the need to start the push for the cloning of people. Instead, author Rafi Letzter was driving at the importance for concrete, ethical discussion right now about stem cell technologies for fertility treatments that may not be too far off.

web_12-the-mice-at-11-month

These mice were born from artificial eggs that were made from stem cells in a dish.
It’s great news for infertility specialist but carries many ethical dilemmas. 
(Image: K. Hayashi, Kyushu University)

In particular, he alludes to a paper from October (read our blog about it) that reported the creation of female mouse eggs from stem cells. These eggs were fertilized, implanted into the mother and successfully developed into living mice. What’s more, one set of stem cells were derived from mouse skin samples via the induced pluripotent stem cell method. This breakthrough could one day make it possible for an infertile woman to simply go through a small skin biopsy or mouth swab to generate an unlimited number of eggs for in vitro fertilization (IVF). Just imagine how much more efficient, less invasive and less costly this procedure could be compared to current IVF methods that require multiple hormone injections and retrieval of eggs from a woman’s ovaries.

But along with that hope for couples who have trouble conceiving a child comes a whole host of ethical issues. Here, Letzter refers to a perspective letter published on Wednesday in Science Translation Medicine by scientists and ethicists about this looming challenge for researchers and policymakers.

It’s an important read that lays out the current science, the clinical possibilities and regulatory and ethical questions that must be addressed sooner than later. In an interview with Letzter, co-author Eli Adashi, from the Alpert Medical School at Brown University, warned against waiting too long to heed this call to action:

eadashi_photo_

Eli Adashi

“Let’s start the [ethical] conversation now. Like all conversations it will be time consuming. And depending how well we do it, and we’ve got to do it well, it will be demanding. It will not be wise to have that conversation when you’re seeing a paper in Science or Nature reporting the complete process in a human. That would not be wise on our collective part. We should be as much as possible ready for that.”

 

 

Tackling Frontotemporal dementia and Alzheimer’s by hitting the same target.
To develop new disease therapies, you usually need to understand what is going wrong at a cellular level. In some cases, that approach leads to the identification of a specific protein that is either missing or in short supply. But this initial step is just half the battle because it may not be practical to make a drug out of the protein itself. So researchers instead search for other proteins or small molecules that lead to an increase in the level of the protein.

A CIRM-funded project at the Gladstone Institutes has done just that for the protein called progranulin. People lacking one copy of the progranulin gene carry an increased risk for  frontotemporal dementia (FTD), a degenerative disease of the brain that is the most common cause of dementia in people under 60 years of age. FTD symptoms are often mistaken for Alzheimer’s. In fact, mutations in progranulin are also associated with Alzheimer’s.

Previous studies have shown that increasing levels of progranulin in animals with diseases that mimic FTP and Alzheimer’s symptoms can reverse symptoms. But little was known how progranulin protein levels were regulated in the cells. Amanda Mason, the lead author on the Journal of Biological Chemistry report, explained in a press release how they tackled this challenge:

“We wanted to know what might regulate the levels of progranulin. Many processes in biology are controlled by adding or removing a small chemical group called phosphate, so we started there.”

These phosphate groups hold a lot of energy in their chemical bonds and can be harnessed to activate or turn off the function of proteins and DNA. The team systematically observed the effects of enzymes that add and remove phosphate groups and zeroed in on one called Ripk1 that leads to increases in progranulin levels. Now the team has set their sights on Ripk1 as another potential target for developing a therapeutic that could be effective against both FTP and Alzheimer’s. Steve Finkbeiner, the team lead, gave a big picture perspective on these promising results:

finkbeiner-profile

Steve Finkbeiner

“This is an exciting finding. Alzheimer’s disease was discovered over 100 years ago, and we have essentially no drugs to treat it. To find a possible new way to treat one disease is wonderful. To find a way that might treat two diseases is amazing.”

 

Your Guide to Awesome Stem Cell Conferences in 2017

Welcome to 2017, a year that will likely be full of change and new surprises. I’m hoping that some of these surprises will be in regenerative medicine with new stem cell therapies showing promise or effectiveness in clinical trials.

A great way to stay on top of new advances in stem cell research is to attend scientific conferences and meetings. Some of them are well known and highly attended like the International Society for Stem Cell Research (ISSCR) conference, which this year will be in Boston in June. There are also a few smaller, more intimate conferences focusing on specific topics from discovery research to clinical therapies.

There are loads of stem cell meetings this year, but a few that I would like to highlight. Here’s my abbreviated stem cell research conference and meeting guide for 2017. Some are heavy duty research-focused events and probably not suitable for someone without a science background; they’re also expensive to sign up for. I’ve marked those with an * asterix.


January 8-12th, Keystone Symposium (Fee to register)*

Keystone will be hosting two concurrent stem cell meetings in Tahoe next week, which are geared for researchers in the field. One will be on neurogenesis during development and in the adult brain and the other will be on transcriptional and epigenetic control in stem cells. CIRM is one of the co-funders of this meeting and will be hosting a panel focused on translating basic research into clinical trials. Keystone symposiums are small, intimate meetings rich with scientific content and great for networking. Be on the look out for blog coverage about this meeting in the coming weeks.


February 3rd, Stanford Center for Definitive and Curative Medicine Symposium (Free to the public)

This free symposium at Stanford University in Palo Alto, CA will present first-in-human cell and gene therapies for a number of disorders including bone marrow, skin, cardiac, neural, uterine, pancreatic and neoplastic disorders. Speakers include scientists, translational biologists and clinicians. Irv Weissman, a Stanford professor and CIRM grantee focused on translational cancer research, will be the keynote speaker. Space is limited so sign up ASAP!


March 23rd, CIRM Alpha Stem Cell Clinics Symposium (Free to the public)

This free one-day meeting will bring together scientists, clinicians, patient advocates, and other partners to describe how the CIRM Alpha Stem Cell Clinics Network is making stem cell therapies a reality for patients. The City of Hope Alpha Clinic is part of a statewide effort funded by CIRM to develop a network of “Alpha Clinics” that has one unifying goal: to accelerate the development and delivery of stem cell treatments to patients.

City of Hope Medical Center and Alpha Stem Cell Clinic

City of Hope Medical Center and Alpha Stem Cell Clinic


June 14-17th, International Society for Stem Cell Research (Fee to register)*

The Annual ISSCR stem cell research conference will be hosted in Boston this year. This is an international conference focusing on new developments in stem cell science and technology. CIRM was one of the funders of the conference last year when ISSCR was in San Francisco. It’s one of my favorite research events to attend full of interesting scientific presentations and great for meeting future collaborators.


For a more comprehensive 2017 stem cell conference and meeting guide, check out Paul Knoepfler’s Niche blog.

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.