How the Tooth Fairy is helping unlock the secrets of autism

Our 2021-22 Annual Report is now online. It’s filled with information about the work we have done over the last year (we are on a fiscal calendar year from July 1 – June 30), the people who have helped us do that work, and some of the people who have benefited from that work. One of those is Dr. Alysson Muotri, a professor in the Departments of Pediatrics and Cellular & Molecular Medicine at the University of California, San Diego.

Dr. Alysson Muotri, in his lab at UCSD

For Dr. Alysson Muotri, trying to unlock the secrets of the brain isn’t just a matter of scientific curiosity, it’s personal. He has a son with autism and Dr. Muotri is looking for ways to help him, and millions of others like him around the world.

He created the Tooth Fairy project where parents donated more than 3,000 baby teeth from  children with autism and children who are developing normally. Dr. Muotri then turned cells from those teeth into neurons, the kind of brain cell affected by autism. He is using those cells to try and identify how the brain of a child with autism differs from a child who is developing normally.

“We’ve been using cells from this population to see what are the alterations (in the gene) and if we can revert them back to a normal state. If you know the gene that is affected, and autism has a strong genetic component, by genome sequencing you can actually find what are the genes that are affected and in some cases there are good candidates for gene therapy. So, you just put the gene back. And we can see that in the lab where we are correcting the gene that is mutated, the networks start to function in a way that is more neurotypical or normal. We see that as highly promising, there’s a huge potential here to help those individuals.”

He is also creating brain organoids, three-dimensional structures created from stem cells that mimic some of the actions and activities of the brain. Because these are made from human cells, not mice or other animals, they may be better at indicating if new therapies have any potential risks for people.

“We can test drugs in the brain organoids of the person and see if it works, see if there’s any toxicity before you actually give the drug to a person, and it will save us time and money and will increase our knowledge about the human brain.”

He says he still gets excited seeing how these cells work. “It’s amazing, it’s a miracle. Every time I see it, it’s like seeing dolphins in the sea because it’s so beautiful.”

Dr. Muotri is also a big proponent of diversity, equity and inclusion in scientific research. He says in the past it was very much a top-down model with scientists deciding what was important. He says we need to change that and give patients and communities a bigger role in shaping the direction of research.

“I think this is something we scientists have to learn, how to incorporate patients in our research. These communities are the ones we are studying, and we need to know what they want and not assume that what we want is what they want. They should be consulted on our grants, and they should participate in the design of our experiments. That is the future.”

Meet the man who is unlocking the secrets of autism and sending mini-brains into space

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Alysson Muotri, UC San Diego

Normally if you meet someone who has a mini-fridge filled with brains, your first thought is to call the police. But when that someone is Dr. Alysson Muotri, a professor at U.C. San Diego, your second thought is “do tell me more.”

Alysson is a researcher who is fascinated by the human brain. He is working on many levels to try and unlock its secrets and give us a deeper understanding of how our brains evolved and how they work.

One of the main focuses of his work is autism (he has a son on the autism spectrum) and he has found a way to see what is happening inside the cells affected by autism—work that is already leading to the possibility of new treatments.

As for those mini-brains in his lab? Those are brain organoids, clumps of neurons and other cells that resemble—on a rudimentary level—our brains. They are ideal tools for seeing how our brains are organized, how the different cells signal and interact with each other. He’s already sent some of these brain organoids into space.

Brain in space

Alysson talks about all of this, plus how our brains compare to those of Neanderthals, on the latest episode of our podcast, Talking ‘Bout (re)Generation.

It’s a fascinating conversation. Enjoy.

Raising awareness about mental health

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

World Mental Health Day is observed on 10 October every year. It’s a time to try and raise awareness about mental health issues and the impact they have not just on the individual but their family, their community and all of us. The theme for World Mental Health Day 2021 is ‘mental health in an unequal world.’

Dr. Le Ondra Clark Harvey: Photo courtesy CCCBHA

To highlight the issues raised on World Mental Health Day we talked to one of CIRM’s newest Board member, Dr. Le Ondra Clark Harvey. She’s a psychologist and the CEO of the California Council of Community Behavioral Health Agencies (CCCBHA) a statewide advocacy organization representing mental health and substance use disorder non-profit agencies that collectively serve over 750 thousand Californians annually.

What made you want to be on the CIRM Board?

I was recommended to apply for the CIRM Board by a member of CCCBHA, the organization I am privileged to lead and serve. I saw the position as an opportunity to shed light on cognitive disorders that many do not readily think of when they think about stem cell research. The appointment also has personal meaning to me as I have a grandfather who is a cancer survivor and  who has an Alzheimer’s diagnosis.  Breast cancer has also affected women in my family, including myself, and I know that the research that CIRM funds can assist with finding a cure and providing accessible treatment options for all Californians. 

A lot of people might not think that stem cells would have a role in addressing mental health issues, what role do you think they can play?

You are correct, most people do not immediately think of stem cell therapies as a remedy to brain health disorders. However, there are many cognitive disorders and symptoms that can be mitigated, and hopefully someday ameliorated, as a result of stem cell therapies. For example, autism and other developmental disabilities, dementia, Alzheimer’s, Tourette’s and tardive dyskinesia.  

What are the biggest challenges we face in addressing mental health issues in this country?

Stigma remains a significant barrier that impacts the ability to provide – particularly among racially and ethnically diverse communities. In my own practice, I’ve seen how stigma can prevent individuals from entering into care even when access issues have been mitigated. Public awareness campaigns, and culturally specific advocacy efforts and practices must be integrated into treatment models in order to provide individuals with the specific care they need. 

Do you think that the widespread media attention paid to Naomi Osaka and Simone Biles has helped raise awareness about mental health and perhaps also reduced some of the stigma surrounding it?

Yes, I do. Also, the pandemic has opened many individuals eyes, and engendered a sense of empathy, about the prevalence and impact that isolation and loneliness can have on a person. 

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

Cashing in on COVID-19

Coronavirus particles, illustration. Courtesy KTSDesign/Science Photo Library

As the coronavirus pandemic continues to spread, one of the few bright spots is how many researchers are stepping up and trying to find new ways to tackle it, to treat it and hopefully even cure it. Unfortunately, there are also those who are simply trying to cash in on it.

In the last few years the number of predatory clinics offering so-called “stem cell therapies” for everything from Alzheimer’s and multiple sclerosis to autism and arthritis has exploded in the US. The products they offer have not undergone a clinical trial to show that they work; they haven’t been approved by the US Food and Drug Administration (FDA); they don’t have any evidence they are even safe. But that doesn’t stop them marketing these claims and it isn’t stopping some of them from now trying to cash in on the fears created by the coronavirus.

One company is hawking what it calls a rapid COVID-19 test, one that can determine if you have the virus in under ten minutes (many current tests take days to produce a result). All it takes is a few drops of blood and, from the comfort of your own home, you get to find out if you are positive for COVID-19. And best of all, it claims it is 99 percent accurate.

What could be the problem with that? A lot as it turns out.

If you go to the bottom of the page on the website marketing the test it basically says “this does not work and we’re not making any claims or are in any way responsible for any results it produces.” So much for 99 percent accurate.

It’s not the only example of this kind of shameless attempt to cash in on COVID-19. So it’s appropriate that this week the Alliance for Regenerative Medicine (ARM), issued a statement strongly condemning these attempts and the clinics behind them.

ARM warns about the growing number of “stem cell clinics” (that) are taking advantage of the “hype” around stem cells – and, in certain cases, the current concern about COVID-19 – and avoiding regulation by falsely marketing illegal and potentially harmful products to patients seeking cures.” 

These so called “therapies” or tests do more than just take money – in some cases tens of thousands of dollars – from individuals: “Public health is at risk when unscrupulous providers offer stem cell products that are unapproved, unproven and fail to adhere to established rules for good manufacturing practices. Many of these providers put patients at risk by falsely marketing the benefits of treatments, and often promoting the stem cells for conditions that are outside of their area of medical expertise.”

It’s sad that even in times when so many people are working hard to find treatments for the virus, and many are risking their lives caring for those who have the virus, that there are unscrupulous people trying to make money out of it. All we can do is be mindful, be careful and be suspicious of anything that sounds too good to be true.

There are no miracle cures. No miracle treatments. No rapid blood tests you can order in the mail. Be aware. And most importantly of all, be safe.

The CIRM Board recently held a meeting to approve $5 million in emergency funding for rapid research into potential treatments for COVID-19.

Ask the Stem Cell Team About Autism

On March 19th we held a special Facebook Live “Ask the Stem Cell Team About Autism” event. We were fortunate enough to have two great experts – Dr. Alysson Muotri from UC San Diego, and CIRM’s own Dr. Kelly Shepard. As always there is a lot of ground to cover in under one hour and there are inevitably questions we didn’t get a chance to respond to. So, Dr. Shepard has kindly agreed to provide answers to all the key questions we got on the day.

If you didn’t get a chance to see the event you can watch the video here. And feel free to share the link, and this blog, with anyone you think might be interested in the material.

Dr. Kelly Shepard

Can umbilical cord blood stem cells help reduce some of the symptoms?

This question was addressed by Dr. Muotri in the live presentation. To recap, a couple of clinical studies have been reported from scientists at Duke University and Sutter Health, but the results are not universally viewed as conclusive.  The Duke study, which focused on very young children, reported some improvements in behavior for some of the children after treatment, but it is important to note that this trial had no placebo control, so it is not clear that those patients would not have improved on their own. The Duke team has moved forward with larger trial and placebo control.

Does it have to be the child’s own cord blood or could donated blood work too?

In theory, a donated cord product could be used for similar purposes as a child’s own cord, but there is a caveat- the donated cord tissues must have some level of immune matching with the host in order to not be rejected or lead to other complications, which under certain circumstances, could be serious.

Some clinics claim that the use of fetal stem cells can help stimulate improved blood and oxygen flow to the brain. Could that help children with autism?

Fetal stem cells have been tested in FDA approved/sanctioned clinical trials for certain brain conditions such as stroke and Parkinson Disease, where there is clearer understanding of how and which parts of the brains are affected, which nerve cells have been lost or damaged, and where there is a compelling biological rationale for how certain properties the transplanted cells, such as their anti-inflammatory properties, could provide benefit.

Alysson Muotri in his lab and office at Sanford Consortium in La Jolla, California; Photograph by David Ahntholz http://www.twopointpictures.com http://www.davidahntholz.com

In his presentation, Dr. Muotri noted that neurons are not lost in autistic brains, so there is nothing that would be “replaced” by such a treatment. And although some forms of autism might include inflammation that could potentially be mitigated, it is unlikely that  the degree of benefit that might come from reducing inflammation would be worth the risks of the treatment, which includes intracranial injection of donated material.  Unfortunately, we still do not know enough about the specific causes and features of autism to determine if and to what extent stem cell treatments could prove helpful. But we are learning more every day, especially with some of the new technologies and discoveries that have been enabled by stem cell technology. 

Some therapies even use tissue from sheep claiming that a pill containing sheep pancreas can migrate to and cure a human pancreas, pills containing sheep brains can help heal human brains. What are your thoughts on those?

For some conditions, there may be a scientific rationale for how a specific drug or treatment could be delivered orally, but this really depends on the underlying biology of the condition, the means by which the drug exerts its effect, and how quickly that drug or substance will be digested, metabolized, or cleared from the body’s circulation. Many drugs that are delivered orally do not reach the brain because of the blood-brain barrier, which serves to isolate and protect the brain from potentially harmful substances in the blood circulation. For such a drug to be effective, it would have to be stable within the body for a period of time, and be something that could exert its effects on the brain either directly or indirectly.

Sheep brain or pancreas (or any other animal tissue consumed) in a pill form would be broken down into basic components immediately by digestion, i.e. amino acids, sugars, much like any other meat or food. Often complex treatments designed to be specifically targeted to the brain are delivered by intra-cranial/intrathecal injection, or by developing special strategies to evade the blood brain barrier, a challenge that is easier said than done. For autism, there is still a lot to be learned regarding how a therapeutic intervention might work to help people, so for now, I would caution against the use of dietary supplements or pills that are not prescribed or recommended by your doctor. 

What are the questions parents should ask before signing up for any stem cell therapy

There is some very good advice about this on the both the CIRM and ISSCR websites, including a handbook for patients that includes questions to ask anyone offering you a stem cell treatment, and also some fundamental facts that everyone should know about stem cells. https://www.closerlookatstemcells.org/patient-resources/

What kinds of techniques do we have now that we didn’t have in the past that can help us better understand what is happening in the brain of a child with autism.

We covered this in the online presentation. Some of the technologies discussed include:

– “disease in a dish” models from patient derived stem cells for studying causes of autism

–  new ways to make human neurons and other cell types for study

– organoid technology, to create more realistic brain tissues for studying autism

– advances in genomics and sequencing technologies to identify “signatures” of autism to help identify the underlying differences that could lead to a diagnosis

Alysson, you work with things called “brain organoids” explain what those are and could they help us in uncovering clues to the cause of autism and even possible therapies?

We blogged about this work when it was first published and you can read about it on our blog here.

Why “Ask the Stem Cell Team” Remains Important

These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.

With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.

In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.

And we have some great experts to discuss the use of stem cells in helping people with autism.

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page

Ask the Stem Cell Team About Autism

Do an online search for “autism stem cells” and you quickly come up with numerous websites offering stem cell therapies for autism. They offer encouraging phrases like “new and effective approach” and “a real, lasting treatment.” They even include dense scientific videos featuring people like Dr. Arnold Caplan, a professor at Case Western Reserve University who is known as the “father of the mesenchymal stem” (it would be interesting to know if Dr. Caplan knows he is being used as a marketing tool?)

The problem with these sites is that they are offering “therapies” that have never been proven to be safe, let alone effective. They are also very expensive and are not covered by insurance. Essentially they are preying on hope, the hope that any parent of a child with autism spectrum disorder (ASD) will do anything and everything they can to help their child.

But there is encouraging news about stem cells and autism, about their genuine potential to help children with ASD. That’s why we are holding a special Facebook Live “Ask the Stem Cell Team” about Autism on Thursday, March 19th at noon (PDT).    

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shephard.

We’ll take a look at Dr. Muotri’s work and also discuss the work of other researchers in the field, such as Dr. Joanne Kurtzberg’s work at Duke University.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you missed the “broadcast” not to worry, you can watch it here:

“Brains” in a dish that can create electrical impulses

Brain organoids in a petri dish: photo courtesy UCSD

For several years, researchers have been able to take stem cells and use them to make three dimensional structures called organoids. These are a kind of mini organ that scientists can then use to study what happens in the real thing. For example, creating kidney organoids to see how kidney disease develops in patients.

Scientists can do the same with brain cells, creating clumps of cells that become a kind of miniature version of parts of the brain. These organoids can’t do any of the complex things our brains do – such as thinking – but they do serve as useful physical models for us to use in trying to develop a deeper understanding of the brain.

Now Alysson Muotri and his team at UC San Diego – in a study supported by two grants from CIRM – have taken the science one step further, developing brain organoids that allow us to measure the level of electrical activity they generate, and then compare it to the electrical activity seen in the developing brain of a fetus. That last sentence might cause some people to say “What?”, but this is actually really cool science that could help us gain a deeper understanding of how brains develop and come up with new ways to treat problems in the brain caused by faulty circuitry, such as autism or schizophrenia.

The team developed new, more effective methods of growing clusters of the different kinds of cells found in the brain. They then placed them on a multi-electrode array, a kind of muffin tray that could measure electrical impulses. As they fed the cells and increased the number of cells in the trays they were able to measure changes in the electrical impulses they gave off. The cells went from producing 3,000 spikes a minute to 300,000 spikes a minute. This is the first time this level of activity has been achieved in a cell-based laboratory model. But that’s not all.

When they further analyzed the activity of the organoids, they found there were some similarities to the activity seen in the brains of premature babies. For instance, both produced short bursts of activity, followed by a period of inactivity.

Alysson Muotri

In a news release Muotri says they were surprised by the finding:

“We couldn’t believe it at first — we thought our electrodes were malfunctioning. Because the data were so striking, I think many people were kind of skeptical about it, and understandably so.”

Muotri knows that this research – published in the journal Cell Stem Cell – raises ethical issues and he is quick to say that these organoids are nothing like a baby’s brain, that they differ in several critical ways. The organoids are tiny, not just in size but also in the numbers of cells involved. They also don’t have blood vessels to keep them alive or help them grow and they don’t have any ability to think.

“They are far from being functionally equivalent to a full cortex, even in a baby. In fact, we don’t yet have a way to even measure consciousness or sentience.”

What these organoids do have is the ability to help us look at the structure and activity of the brain in ways we never could before. In the past researchers depended on mice or other animals to test new ideas or therapies for human diseases or disorders. Because our brains are so different than animal brains those approaches have had limited results. Just think about how many treatments for Alzheimer’s looked promising in animal models but failed completely in people.

These new organoids allow us to explore how new therapies might work in the human brain, and hopefully increase our ability to develop more effective treatments for conditions as varied as epilepsy and autism.

A future scientist’s journey

All this week we have been highlighting blogs from our SPARK (Summer Program to Accelerate Regenerative medicine Knowledge) students. SPARK gives high school students a chance to spend their summer working in a world class stem cell research facility here in California. In return they write about their experiences and what they learned.

The standard for blogs this year was higher than ever, so choosing a winner was particularly tough. In the end we chose Abigail Mora, who interned at UC San Francisco. We felt the obstacles she overcame in getting to this point made her story all the more remarkable and engaging.

Abigail Mora

When I was 15, my mother got sick and went to several doctors. Eventually, she found out that she was pregnant with a 3-month-old baby. A month after, my mom fell from the stairs, which were not high but still dangerous. Luckily, everything seemed to be okay with the baby. In the last week of her six-month pregnancy, she went in the clinic for a regular check-up but she ended up giving birth to my brother, who was born prematurely. She stayed in the clinic for a month and my brother also had to stay so that his lungs could develop properly.

When he came home, I was so happy. I spent a lot of time with him and was like his second mom. After an initial period of hard time, he grew into a healthy kid. Then I moved to San Francisco with my aunt, leaving my parents and siblings in Mexico so that I could become a better English speaker and learn more about science. My experience with my brother motivated me to learn more about the condition of premature babies, since there are many premature babies who are not as fortunate. I want to study neurodevelopment in premature kids, and how it may go wrong.

I was so happy when I got into the SEP High School Program, which my chemistry teacher introduced me to, and I found the research of Eric Huang’s lab at UCSF about premature babies and stem cell development in the brain super interesting. I met Lakisha and Jean, and they introduced me to the lab and helped me walk through the training process.

My internship experience was outstanding: I enjoyed doing research and how my mentor Jiapei helped me learn new things about the brain. I learned that there are many different cell types in the brain, like microglia, progenitor cells, and intermediate progenitors.

As all things in life can be challenging, I was able to persevere with my mentor’s help. For example, when I first learned how to cut mouse brains using a cryostat, I found it hard to pick up the tissue onto slides. After practicing many times, I became more familiar with the technique and my slices got better. Another time, I was doing immunostaining and all the slices fell from the slide because we didn’t bake the slides long enough. I was sad, but we learned from our mistakes and there are a lot of trials and errors in science.

I’ve also learned that in science, since we are studying the unknown, there is not a right or wrong answer. We use our best judgement to draw conclusions from what we observe, and we repeat the experiment if it’s not working.

The most challenging part of this internship was learning and understanding all the new words in neuroscience. Sometimes, I got confused with the abbreviations of these words. I hope in the future I can explain as well as my mentor Jiapei explained to me.

My parents are away from me but they support me, and they think that this internship will open doors to better opportunities and help me grow as a person.

I want to become a researcher because I want to help lowering the risk of neurodevelopmental disorders in premature babies. Many of these disorders, such as autism or schizophrenia, don’t have cures. These are some of the hardest diseases to cure because people aren’t informed about them and not enough research has been done. Hopefully, one day I can work on developing a cure for these disorders.

CIRM’s Stephen Lin, PhD, who heads the SPARK program and Abigail after her blog won first prize