Cashing in on COVID-19

Coronavirus particles, illustration. Courtesy KTSDesign/Science Photo Library

As the coronavirus pandemic continues to spread, one of the few bright spots is how many researchers are stepping up and trying to find new ways to tackle it, to treat it and hopefully even cure it. Unfortunately, there are also those who are simply trying to cash in on it.

In the last few years the number of predatory clinics offering so-called “stem cell therapies” for everything from Alzheimer’s and multiple sclerosis to autism and arthritis has exploded in the US. The products they offer have not undergone a clinical trial to show that they work; they haven’t been approved by the US Food and Drug Administration (FDA); they don’t have any evidence they are even safe. But that doesn’t stop them marketing these claims and it isn’t stopping some of them from now trying to cash in on the fears created by the coronavirus.

One company is hawking what it calls a rapid COVID-19 test, one that can determine if you have the virus in under ten minutes (many current tests take days to produce a result). All it takes is a few drops of blood and, from the comfort of your own home, you get to find out if you are positive for COVID-19. And best of all, it claims it is 99 percent accurate.

What could be the problem with that? A lot as it turns out.

If you go to the bottom of the page on the website marketing the test it basically says “this does not work and we’re not making any claims or are in any way responsible for any results it produces.” So much for 99 percent accurate.

It’s not the only example of this kind of shameless attempt to cash in on COVID-19. So it’s appropriate that this week the Alliance for Regenerative Medicine (ARM), issued a statement strongly condemning these attempts and the clinics behind them.

ARM warns about the growing number of “stem cell clinics” (that) are taking advantage of the “hype” around stem cells – and, in certain cases, the current concern about COVID-19 – and avoiding regulation by falsely marketing illegal and potentially harmful products to patients seeking cures.” 

These so called “therapies” or tests do more than just take money – in some cases tens of thousands of dollars – from individuals: “Public health is at risk when unscrupulous providers offer stem cell products that are unapproved, unproven and fail to adhere to established rules for good manufacturing practices. Many of these providers put patients at risk by falsely marketing the benefits of treatments, and often promoting the stem cells for conditions that are outside of their area of medical expertise.”

It’s sad that even in times when so many people are working hard to find treatments for the virus, and many are risking their lives caring for those who have the virus, that there are unscrupulous people trying to make money out of it. All we can do is be mindful, be careful and be suspicious of anything that sounds too good to be true.

There are no miracle cures. No miracle treatments. No rapid blood tests you can order in the mail. Be aware. And most importantly of all, be safe.

The CIRM Board recently held a meeting to approve $5 million in emergency funding for rapid research into potential treatments for COVID-19.

Ask the Stem Cell Team About Autism

On March 19th we held a special Facebook Live “Ask the Stem Cell Team About Autism” event. We were fortunate enough to have two great experts – Dr. Alysson Muotri from UC San Diego, and CIRM’s own Dr. Kelly Shepard. As always there is a lot of ground to cover in under one hour and there are inevitably questions we didn’t get a chance to respond to. So, Dr. Shepard has kindly agreed to provide answers to all the key questions we got on the day.

If you didn’t get a chance to see the event you can watch the video here. And feel free to share the link, and this blog, with anyone you think might be interested in the material.

Dr. Kelly Shepard

Can umbilical cord blood stem cells help reduce some of the symptoms?

This question was addressed by Dr. Muotri in the live presentation. To recap, a couple of clinical studies have been reported from scientists at Duke University and Sutter Health, but the results are not universally viewed as conclusive.  The Duke study, which focused on very young children, reported some improvements in behavior for some of the children after treatment, but it is important to note that this trial had no placebo control, so it is not clear that those patients would not have improved on their own. The Duke team has moved forward with larger trial and placebo control.

Does it have to be the child’s own cord blood or could donated blood work too?

In theory, a donated cord product could be used for similar purposes as a child’s own cord, but there is a caveat- the donated cord tissues must have some level of immune matching with the host in order to not be rejected or lead to other complications, which under certain circumstances, could be serious.

Some clinics claim that the use of fetal stem cells can help stimulate improved blood and oxygen flow to the brain. Could that help children with autism?

Fetal stem cells have been tested in FDA approved/sanctioned clinical trials for certain brain conditions such as stroke and Parkinson Disease, where there is clearer understanding of how and which parts of the brains are affected, which nerve cells have been lost or damaged, and where there is a compelling biological rationale for how certain properties the transplanted cells, such as their anti-inflammatory properties, could provide benefit.

Alysson Muotri in his lab and office at Sanford Consortium in La Jolla, California; Photograph by David Ahntholz http://www.twopointpictures.com http://www.davidahntholz.com

In his presentation, Dr. Muotri noted that neurons are not lost in autistic brains, so there is nothing that would be “replaced” by such a treatment. And although some forms of autism might include inflammation that could potentially be mitigated, it is unlikely that  the degree of benefit that might come from reducing inflammation would be worth the risks of the treatment, which includes intracranial injection of donated material.  Unfortunately, we still do not know enough about the specific causes and features of autism to determine if and to what extent stem cell treatments could prove helpful. But we are learning more every day, especially with some of the new technologies and discoveries that have been enabled by stem cell technology. 

Some therapies even use tissue from sheep claiming that a pill containing sheep pancreas can migrate to and cure a human pancreas, pills containing sheep brains can help heal human brains. What are your thoughts on those?

For some conditions, there may be a scientific rationale for how a specific drug or treatment could be delivered orally, but this really depends on the underlying biology of the condition, the means by which the drug exerts its effect, and how quickly that drug or substance will be digested, metabolized, or cleared from the body’s circulation. Many drugs that are delivered orally do not reach the brain because of the blood-brain barrier, which serves to isolate and protect the brain from potentially harmful substances in the blood circulation. For such a drug to be effective, it would have to be stable within the body for a period of time, and be something that could exert its effects on the brain either directly or indirectly.

Sheep brain or pancreas (or any other animal tissue consumed) in a pill form would be broken down into basic components immediately by digestion, i.e. amino acids, sugars, much like any other meat or food. Often complex treatments designed to be specifically targeted to the brain are delivered by intra-cranial/intrathecal injection, or by developing special strategies to evade the blood brain barrier, a challenge that is easier said than done. For autism, there is still a lot to be learned regarding how a therapeutic intervention might work to help people, so for now, I would caution against the use of dietary supplements or pills that are not prescribed or recommended by your doctor. 

What are the questions parents should ask before signing up for any stem cell therapy

There is some very good advice about this on the both the CIRM and ISSCR websites, including a handbook for patients that includes questions to ask anyone offering you a stem cell treatment, and also some fundamental facts that everyone should know about stem cells. https://www.closerlookatstemcells.org/patient-resources/

What kinds of techniques do we have now that we didn’t have in the past that can help us better understand what is happening in the brain of a child with autism.

We covered this in the online presentation. Some of the technologies discussed include:

– “disease in a dish” models from patient derived stem cells for studying causes of autism

–  new ways to make human neurons and other cell types for study

– organoid technology, to create more realistic brain tissues for studying autism

– advances in genomics and sequencing technologies to identify “signatures” of autism to help identify the underlying differences that could lead to a diagnosis

Alysson, you work with things called “brain organoids” explain what those are and could they help us in uncovering clues to the cause of autism and even possible therapies?

We blogged about this work when it was first published and you can read about it on our blog here.

Why “Ask the Stem Cell Team” Remains Important

These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.

With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.

In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.

And we have some great experts to discuss the use of stem cells in helping people with autism.

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page

Ask the Stem Cell Team About Autism

Do an online search for “autism stem cells” and you quickly come up with numerous websites offering stem cell therapies for autism. They offer encouraging phrases like “new and effective approach” and “a real, lasting treatment.” They even include dense scientific videos featuring people like Dr. Arnold Caplan, a professor at Case Western Reserve University who is known as the “father of the mesenchymal stem” (it would be interesting to know if Dr. Caplan knows he is being used as a marketing tool?)

The problem with these sites is that they are offering “therapies” that have never been proven to be safe, let alone effective. They are also very expensive and are not covered by insurance. Essentially they are preying on hope, the hope that any parent of a child with autism spectrum disorder (ASD) will do anything and everything they can to help their child.

But there is encouraging news about stem cells and autism, about their genuine potential to help children with ASD. That’s why we are holding a special Facebook Live “Ask the Stem Cell Team” about Autism on Thursday, March 19th at noon (PDT).    

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shephard.

We’ll take a look at Dr. Muotri’s work and also discuss the work of other researchers in the field, such as Dr. Joanne Kurtzberg’s work at Duke University.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you missed the “broadcast” not to worry, you can watch it here:

“Brains” in a dish that can create electrical impulses

Brain organoids in a petri dish: photo courtesy UCSD

For several years, researchers have been able to take stem cells and use them to make three dimensional structures called organoids. These are a kind of mini organ that scientists can then use to study what happens in the real thing. For example, creating kidney organoids to see how kidney disease develops in patients.

Scientists can do the same with brain cells, creating clumps of cells that become a kind of miniature version of parts of the brain. These organoids can’t do any of the complex things our brains do – such as thinking – but they do serve as useful physical models for us to use in trying to develop a deeper understanding of the brain.

Now Alysson Muotri and his team at UC San Diego – in a study supported by two grants from CIRM – have taken the science one step further, developing brain organoids that allow us to measure the level of electrical activity they generate, and then compare it to the electrical activity seen in the developing brain of a fetus. That last sentence might cause some people to say “What?”, but this is actually really cool science that could help us gain a deeper understanding of how brains develop and come up with new ways to treat problems in the brain caused by faulty circuitry, such as autism or schizophrenia.

The team developed new, more effective methods of growing clusters of the different kinds of cells found in the brain. They then placed them on a multi-electrode array, a kind of muffin tray that could measure electrical impulses. As they fed the cells and increased the number of cells in the trays they were able to measure changes in the electrical impulses they gave off. The cells went from producing 3,000 spikes a minute to 300,000 spikes a minute. This is the first time this level of activity has been achieved in a cell-based laboratory model. But that’s not all.

When they further analyzed the activity of the organoids, they found there were some similarities to the activity seen in the brains of premature babies. For instance, both produced short bursts of activity, followed by a period of inactivity.

Alysson Muotri

In a news release Muotri says they were surprised by the finding:

“We couldn’t believe it at first — we thought our electrodes were malfunctioning. Because the data were so striking, I think many people were kind of skeptical about it, and understandably so.”

Muotri knows that this research – published in the journal Cell Stem Cell – raises ethical issues and he is quick to say that these organoids are nothing like a baby’s brain, that they differ in several critical ways. The organoids are tiny, not just in size but also in the numbers of cells involved. They also don’t have blood vessels to keep them alive or help them grow and they don’t have any ability to think.

“They are far from being functionally equivalent to a full cortex, even in a baby. In fact, we don’t yet have a way to even measure consciousness or sentience.”

What these organoids do have is the ability to help us look at the structure and activity of the brain in ways we never could before. In the past researchers depended on mice or other animals to test new ideas or therapies for human diseases or disorders. Because our brains are so different than animal brains those approaches have had limited results. Just think about how many treatments for Alzheimer’s looked promising in animal models but failed completely in people.

These new organoids allow us to explore how new therapies might work in the human brain, and hopefully increase our ability to develop more effective treatments for conditions as varied as epilepsy and autism.

A future scientist’s journey

All this week we have been highlighting blogs from our SPARK (Summer Program to Accelerate Regenerative medicine Knowledge) students. SPARK gives high school students a chance to spend their summer working in a world class stem cell research facility here in California. In return they write about their experiences and what they learned.

The standard for blogs this year was higher than ever, so choosing a winner was particularly tough. In the end we chose Abigail Mora, who interned at UC San Francisco. We felt the obstacles she overcame in getting to this point made her story all the more remarkable and engaging.

Abigail Mora

When I was 15, my mother got sick and went to several doctors. Eventually, she found out that she was pregnant with a 3-month-old baby. A month after, my mom fell from the stairs, which were not high but still dangerous. Luckily, everything seemed to be okay with the baby. In the last week of her six-month pregnancy, she went in the clinic for a regular check-up but she ended up giving birth to my brother, who was born prematurely. She stayed in the clinic for a month and my brother also had to stay so that his lungs could develop properly.

When he came home, I was so happy. I spent a lot of time with him and was like his second mom. After an initial period of hard time, he grew into a healthy kid. Then I moved to San Francisco with my aunt, leaving my parents and siblings in Mexico so that I could become a better English speaker and learn more about science. My experience with my brother motivated me to learn more about the condition of premature babies, since there are many premature babies who are not as fortunate. I want to study neurodevelopment in premature kids, and how it may go wrong.

I was so happy when I got into the SEP High School Program, which my chemistry teacher introduced me to, and I found the research of Eric Huang’s lab at UCSF about premature babies and stem cell development in the brain super interesting. I met Lakisha and Jean, and they introduced me to the lab and helped me walk through the training process.

My internship experience was outstanding: I enjoyed doing research and how my mentor Jiapei helped me learn new things about the brain. I learned that there are many different cell types in the brain, like microglia, progenitor cells, and intermediate progenitors.

As all things in life can be challenging, I was able to persevere with my mentor’s help. For example, when I first learned how to cut mouse brains using a cryostat, I found it hard to pick up the tissue onto slides. After practicing many times, I became more familiar with the technique and my slices got better. Another time, I was doing immunostaining and all the slices fell from the slide because we didn’t bake the slides long enough. I was sad, but we learned from our mistakes and there are a lot of trials and errors in science.

I’ve also learned that in science, since we are studying the unknown, there is not a right or wrong answer. We use our best judgement to draw conclusions from what we observe, and we repeat the experiment if it’s not working.

The most challenging part of this internship was learning and understanding all the new words in neuroscience. Sometimes, I got confused with the abbreviations of these words. I hope in the future I can explain as well as my mentor Jiapei explained to me.

My parents are away from me but they support me, and they think that this internship will open doors to better opportunities and help me grow as a person.

I want to become a researcher because I want to help lowering the risk of neurodevelopmental disorders in premature babies. Many of these disorders, such as autism or schizophrenia, don’t have cures. These are some of the hardest diseases to cure because people aren’t informed about them and not enough research has been done. Hopefully, one day I can work on developing a cure for these disorders.

CIRM’s Stephen Lin, PhD, who heads the SPARK program and Abigail after her blog won first prize

Genetic defect leads to slower production of brain cells linked to one form of autism

Child with Fragile X syndrome

Fragile X syndrome (FXS) is a genetic disorder that is the most common form of inherited intellectual disability in children, and has also been linked to a form of autism. Uncovering the cause of FXS could help lead to a deeper understanding of autism, what causes it and ultimately, it’s hoped, to treating or even preventing it.

Researchers at Children’s Hospital in Chicago looked at FXS at the stem cell level and found how a genetic defect has an impact on the development of neurons (nerve cells in the brain) and how that in turn has an impact on the developing brain in the fetus.

In a news release on Eurekalert, Dr. Yongchao Ma, the senior author of the study, says this identified a problem at a critical point in the development of the brain:

“During embryonic brain development, the right neurons have to be produced at the right time and in the right numbers. We focused on what happens in the stem cells that leads to slower production of neurons that are responsible for brain functions including learning and memory. Our discoveries shed light on the earliest stages of disease development and offer novel targets for potential treatments.”

The team looked at neural stem cells and found that a lack of one protein, called FMRP, created a kind of cascade that impacted the ability of the cells to turn into neurons. Fewer neurons meant impaired brain development. 

The findings, published in the journal Cell Reports, help explain how genetic information flows in cells in developing babies and, according to Dr. Ma, could lead to new ideas on how to treat problems.

“Currently we are exploring how to stimulate FMRP protein activity in the stem cell, in order to correct the timing of neuron production and ensure that the correct amount and types of neurons are available to the developing brain. There may be potential for gene therapy for fragile X syndrome.”

Seeing is believing: A new tool to help us learn about stem cells.

Cave paintings from Libya: evidence humans communicated through visual images long before they created text

There’s a large body of research that shows that many people learn better through visuals. Studies show that much of the sensory cortex in our brain is devoted to vision so our brains use images rather than text to make sense of things.

That’s why we think it just makes sense to use visuals, as much as we can, when trying to help people understand advances in stem cell research. That’s precisely what our colleagues at U.C. San Diego are doing with a new show called “Stem Cell Science with Alysson Muotri”.

Alysson is a CIRM grantee who is doing some exciting work in developing a deeper understanding of autism. He’s also a really good communicator who can distill complex ideas down into easy to understand language.

The show features Alysson, plus other scientists at UCSD who are working hard to move the most promising research out of the lab and into clinical trials in people. Appropriately the first show in the series follows that path, exploring how discoveries made using tiny Zebrafish could hopefully lead to stem cell therapies targeting blood diseases like leukemia. This first show also highlights the important role that CIRM’s Alpha Stem Cell Clinic Network will play in bringing those therapies to patients.

You can find a sneak preview of the show on YouTube. The series proper will be broadcast on California local cable via the UCTV channel at 8:00 pm on Thursdays starting July 8, 2019. 

And if you really have a lot of time on your hands you can check out the more than 300 videos CIRM has produced on every aspect of stem cell research from cures for fatal diseases to questions to ask before taking part in a clinical trial.

Stanford Scientist Sergiu Pasca Receives Prestigious Vilcek Prize for Stem Cell Research on Neuropsychiatric Disorders

Sergiu Pasca, Stanford University

Last month, we blogged about Stanford neuroscientist Sergiu Pasca and his interesting research using stem cells to model the human brain in 3D. This month we bring you an exciting update about Dr. Pasca and his work.

On February 1st, Pasca was awarded one of the 2018 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation is a non-profit organization dedicated to raising awareness of the important contributions made by immigrants to American arts and sciences.

Pasca was born in Romania and got his medical degree there before moving to the US to pursue research at Stanford University in 2009. He is now an assistant professor of psychiatry and behavioral sciences at Stanford and has dedicated his lab’s research to understanding human brain development and neuropsychiatric disorders using 3D brain organoid cultures derived from pluripotent stem cells.

The Vilcek Foundation produced a fascinating video (below) featuring Pasca’s life journey and his current CIRM-funded research on Timothy Syndrome – a rare form of autism. In the video, Pasca describes how his lab’s insights into this rare psychiatric disorder will hopefully shed light on other neurological diseases. He shares his hope that his research will yield something that translates to the clinic.

The Vilcek Prize for Creative Promise in Biomedical Science comes with a $50,000 cash award. Pasca along with the other prize winners will be honored at a gala event in New York City in April 2018.

You can read more about Pasca’s prize winning research on the Vilcek website and in past CIRM blogs below.


Related Links:

One scientist’s quest to understand autism using stem cells

April is National Autism Awareness Month and people and organizations around the world are raising awareness about a disorder that affects more than 20 million people globally. Autism affects early brain development and causes a wide spectrum of social, mental, physical and emotional symptoms that appear during childhood. Because the symptoms and their severity can vary extremely between people, scientists now use the classification of autism spectrum disorder (ASM).

Alysson Muotri UC San Diego

In celebration of Autism Awareness Month, we’re featuring an interview with a CIRM-funded scientist who is on the forefront of autism and ASD research. Dr. Alysson Muotri is a professor at UC San Diego and his lab is interested in unlocking the secrets to brain development by using molecular tools and stem cell models.

One of his main research projects is on autism. Scientists in his lab are using induced pluripotent stem cells (iPSCs) derived from individuals with ASD to model the disease in a dish. From these stem cell models, his team is identifying genes that are associated with ASD and potential drugs that could be used to treat this disorder. Ultimately, Dr. Muotri’s goal is to pave a path for the development of personalized therapies for people with ASD.

I reached out to Dr. Muotri to ask for an update on his Autism research. His responses are below.

Q: Can you briefly summarize your lab’s work on Autism Spectrum Disorders?

AM: As a neuroscientist studying autism, I was frustrated with the lack of a good experimental model to understand autism. All the previous models (animal, postmortem brain tissues, etc.) have serious experimental limitations. The inaccessibility of the human brain has blocked the progress of research on ASD for a long time. Cellular reprogramming allows us to transform easy-access cell types (such as skin, blood, dental pulp, etc.) into brain cells or even “mini-brains” in the lab. Because we can capture the entire genome of the person, we can recapitulate early stages of neurodevelopment of that same individual. This is crucial to study neurodevelopment disorders, such as ASD, because of the strong genetic factor underlying the pathology [the cause of a disease]. By comparing “mini-brains” between an ASD and neurotypical [non-ASD] groups, we can find anatomical and functional differences that might explain the clinical symptoms.

Q: What types of tools and models are you using to study ASD?

AM: Most of my lab takes advantage of reprogramming stem cells and genome editing techniques to generate 3D organoid models of ASD. We use the stem cells to create brain organoids, also called “mini-brains” in the lab. These mini-brains will develop from single cells and grow and mature in the same way as the fetal brain. Thus, we can learn about their structure and connectivity over time.

A cross section of a cerebral organoid or mini-brain courtesy of Alysson Muotri.

This new model brings something novel to the table: the ability to experimentally test specific hypotheses in a human background.  For example, we can ask if a specific genetic variant is causal for an autistic individual. Thus, we can edit the genome of that autistic individual, fixing target mutations in these mini-brains and check if now the fixed mini-brains will develop any abnormalities seen in ASD.

The ability to combine all these recent technologies to create a human experimental model of ASD in the lab is quite new and very exciting. As with any other model, there are limitations. For example, the mini-brains don’t have all the complexity and cell types seen in the developing human embryo/fetus. We also don’t know exactly if we are giving them the right and necessary environment (nutrients, growth factors, etc.) to mature. Nonetheless, the progress in this field is taking off quickly and it is all very promising.

Two mini-brains grown in a culture dish send out cellular extensions to connect with each other. Neurons are in green and astrocytes are in pink. Image courtesy of Dr. Muotri.

Q: We’ve previously written about your lab’s work on the Tooth Fairy Project and how you identified the TRPC6 gene. Can you share updates on this project and any new insights?

AM: The Tooth Fairy Project was designed to collect dental pulp cells from ASD and control individuals in a non-invasive fashion (no need for skin biopsy or to draw blood). We used social media to connect with families and engage them in our research. It was so successful we have now hundreds of cells in the lab. We use this material to reprogram into stem cells and to sequence their DNA.

One of the first ASD participants had a mutation in one copy of the TRPC6 gene, a novel ASD gene candidate. Everybody has two copies of this gene in the genome, but because of the mutation, this autistic kid has only one functional copy. Using stem cells, we re-created cortical neurons from that individual and confirmed that this mutation inhibits the formation of excitatory synapses (connections required to propagate information).

Interestingly, while studying TRPC6, we realized that a molecule found in Saint John’s Wort, hyperforin, could stimulate the functional TRPC6. Since the individual still has one functional TRPC6 gene copy, it seemed reasonable to test if hyperforin treatment could compensate the mutation on the other copy. It did. A treatment with hyperforin for only two weeks could revert the deficits on the neurons derived from that autistic boy. More exciting is the fact that the family agreed to incorporate St. John’s Wort on his diet. We have anecdotal evidence that this actually improved his social and emotional skills.

To me, this is the first example of personalized treatment for ASD, starting with genome sequencing, detecting potential causative genetic mutations, performing cellular modeling in the lab, and moving into clinic. I believe that there are many other autistic cases where this approach could be used to find better treatments, even with off the counter medications. To me, that is the greatest insight.

Watch Dr. Muotri’s Spotlight presentation about the Tooth Fairy Project and his work on autism.

Q: Is any of the research you are currently doing in autism moving towards clinical trials?

AM: IGF-1, or insulin growth factor-1, a drug we found promising for Rett syndrome and a subgroup of idiopathic [meaning its causes are spontaneous or unknown] ASD is now in clinical trials. Moreover, we just concluded a CIRM award on a large drug screening for ASD. The data is very promising, with several candidates. We have 14 drugs in the pipeline, some are repurposed drugs (initially designed for cancer, but might work for ASD). It will require additional pre-clinical studies before we start clinical trials.

Q: What do you think the future of diagnosis and treatment will be for patients with ASD?

AM: I am a big enthusiastic fan of personalized treatments for ASD. While we continue to search for a treatment that could help a large fraction of ASD people, we also recognized that some cases might be easier than others depending on their genetic profile. The idea of using stem cells to create “brain avatars” of ASD individuals in the lab is very exciting. We are also studying the possibility of using this approach as a future diagnostic tool for ASD. I can imagine every baby having their “brain avatar” analyses done in the lab, eventually pointing out “red flags” on the ones that failed to achieve neurodevelopment milestones. If we could capture these cases, way before the autism symptoms onset, we could initiate early treatments and therapies, increasing the chances for a better prognostic and clinical trajectory. None of these would be possible without stem cell research.

Q: What other types of research is your lab doing?

Mini-brains grown in a dish in Dr. Muotri’s lab.

AM: My lab is also using these human mini-brains to test the impact of environmental factors in neurodevelopment. By exposing the mini-brains to certain agents, such as pollution particles, household chemicals, cosmetics or agrotoxic products [pesticides], we can measure the concentration that is likely to induce brain abnormalities (defects in neuronal migration, synaptogenesis, etc.). This toxicological test can complement or substitute for other commonly used analyses, such as animal models, that are not very humane or predictive of human biology. A nice example from my lab was when we used this approach to confirm the detrimental effect of the Zika virus on brain development. Not only did we show causation between the circulating Brazilian Zika virus and microcephaly [a birth defect that causes an abnormally small head], but our data also pointed towards a potential mechanism (we showed that the virus kills neural progenitor cells, reducing the thickness of the cortical layers in the brain).

You can learn more about Dr. Muotri’s research on his lab’s website.


Related Links: