Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

Streamlining Stem Cell Therapy Development for Impatient Patients

During this third week of the Month of CIRM, we are focusing on CIRM’s Infrastructure programs which are all focused on helping to accelerate stem cell treatments to patients with unmet medical needs.

Time is money. It’s a cliché but still very true, especially in running a business. The longer it takes to get things done, the more costs you’ll most likely face. But in the business of developing new medical therapies, time is also people’s lives.

Currently, it takes about eight years to move a promising stem cell treatment from the lab into clinical trials. For patients with fatal, incurable diseases, that is eight years too long. And even when promising therapies reach clinical trials, only about 1 out of 10 get approved, according to a comprehensive 2014 study in Nature Biotechnology. These sobering stats slow the process of getting treatments to patients with unmet medical needs.

While a lack of therapy effectiveness or safety play into the low success rate, other factors can have a significant impact on the delay or suspension of a trial. An article, “Why Do Clinical Trials Fail?” in Clinical Trials Arena from a couple years back outlined a few. Here’s a snippet from that article:

  • “Poor study design: Selecting the wrong patients, the wrong dosing and the wrong endpoint, as well as bad data and bad site management cause severe problems.”
  • “Complex protocol: Simple is better. A complex protocol, which refers to trying to answer too many questions in one single trial, can produce faulty data and contradictory results.”
  • “Poor management: A project manager who does not have enough experience in costing and conducting clinical trials will lead to weak planning, with no clear and real timelines, and to ultimate failure.”

CIRM recognized that these clinical trial planning and execution setbacks can stem from the fact that, although lab researchers are experts at transforming an idea into a candidate therapy, they may not be masters in navigating the complex regulatory requirements of the Food and Drug Administration (FDA). Many simply don’t have the experience to get those therapies off the ground by themselves.

Lab researchers are experts at transforming an idea into a candidate therapy but most are inexperienced at navigating the complex regulatory requirements of the Food and Drug Administration (FDA).

So, to help make this piece of the therapy development process more efficient and faster, the CIRM governing Board last year approved the launch of the Translating Center and Accelerating Center: two novel infrastructure programs which CIRM grantees can tap into as they carry their promising candidate therapies from lab experiments in cells to preclinical studies in animals to clinical trials in people. Both centers were awarded to QuintilesIMS which collectively dubbed them The Stem Cell Center.

The Stem Cell Center acts as a one-stop-shop, stem cell therapy development support system for current and prospective CIRM grantees, giving them advanced priority for QuintilesIMS services. So how does it work? When a scientist’s initial idea for a cell therapy gains traction and, through a lot of effort in the lab, matures into a bona fide therapy candidate to treat a particular disease, the next big step is to prepare the therapy for testing in people. But that’s easier said than done. To ensure safety, the Food and Drug Administration requires a rigorous set of tests and documentation that make up an Investigational New Drug (IND) application, which must be submitted before any testing in people take can place in the U.S.

That’s where the Translation Center comes into the picture. It carries out the necessary research activities to show, as much as is possible in animals, that the therapy is safe. The Translating Center also helps at this stage with manufacturing the cell therapy product so that it’s of a consistent quality for both the preclinical and future clinical trial studies. If all goes as planned, the grantee will have the necessary pieces to file an IND. At this stage, the Translating Center coordinates with the Accelerating Center which focuses on supporting the many facets of a clinical study including the IND filing, clinical trial design, monitoring of patient safety, and project management.

Because the work of Translating and Accelerating Centers is focused on these regulatory activities day in and day out, they have the know-how to pave a clearer path, with fewer pitfalls, for the grantee to navigate the complex maze we call cell therapy development. It’s not just helpful for the researchers seeking approval from the FDA, but it helps the FDA too. Because cell therapies are still so new, creating a standardized, uniform approach to stem cell-based clinical trial projects will help the FDA streamline their evaluation of the projects.

Ultimately, and most importantly, all of those gears running smoothly in sync will help leave a lasting legacy for California and the world: an acceleration in the development of stem cell treatment for patients with unmet medical needs.

Building California’s stem cell research community, from the ground up

For week three of the Month of CIRM, our topic is infrastructure. What is infrastructure? Read on for a big picture overview and then we’ll fill in the details over the course of the week.

When CIRM was created in 2001, our goal was to grow the stem cell research field in California. But to do that, we first had to build some actual buildings. Since then, our infrastructure programs have taken on many different forms, but all have been focused on a single mission – helping accelerate stem cell research to patients with unmet medical needs.
CIRM_Infrastucture-program-iconScreen Shot 2017-10-16 at 10.58.38 AM

In the early 2000’s, stem cell scientists faced a quandary. President George W. Bush had placed limits on how federal funds could be used for embryonic stem cell research. His policy allowed funding of research involving some existing embryonic stem cell lines, but banned research that developed or conducted research on new stem lines.

Many researchers felt the existing lines were not the best quality and could only use them in a limited capacity. But because they were dependent on the government to fund their work, had no alternative but to comply. Scientists who chose to use non-approved lines were unable to use their federally funded labs for stem cell work.

The creation of CIRM changed that. In 2008, CIRM launched its Major Facilities Grant Program. The program had two major goals:

1) To accommodate the growing numbers of stem cell researchers coming in California as a result of CIRM’s grants and funding.

2) To provide new research space that didn’t have to comply with the federal restrictions on stem cell research.

Over the next few years, the program invested $271million to help build 12 new research facilities around California from Sacramento to San Diego. The institutions used CIRM’s funding to leverage and attract an additional $543 million in funds from private donors and institutions to construct and furnish the buildings.

These world-class laboratories gave scientists the research space they needed to work with any kind of stem cell they wanted and develop new potential therapies. It also enabled the institutions to bring together under one roof, all the stem cell researchers, who previously had been scattered across each campus.

One other important benefit was the work these buildings provided for thousands of construction workers at a time of record unemployment in the industry. Here’s a video about the 12 facilities we helped build:

But building physical facilities was just our first foray into developing infrastructure. We were far from finished.

In the early days of stem cell research, many scientists used cells from different sources, created using different methods. This meant it was often hard to compare results from one study to another. So, in 2013 CIRM created an iPSC Repository, a kind of high tech stem cell bank. The repository collected tissue samples from people who have different diseases, turned those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and then made those samples available to researchers around the world. This not only gave researchers a powerful resource to use in developing a deeper understanding of different diseases, but because the scientists were all using the same cell lines that meant their findings could be compared to each other.

That same year we also launched a plan to create a new, statewide network of clinics that specialize in using stem cells to treat patients. The goal of the Alpha Stem Cell Clinics Network is to support and accelerate clinical trials for programs funded by the agency, academic researchers or industry. We felt that because stem cell therapies are a completely new way of treating diseases and disorders, we needed a completely new way of delivering treatments in a safe and effective manner.

The network began with three clinics – UC San Diego, UCLA/UC Irvine, and City of Hope – but at our last Board meeting was expanded to five with the addition of UC Davis and UCSF Benioff Children’s Hospital Oakland. This network will help the clinics streamline challenging processes such as enrolling patients, managing regulatory procedures and sharing data and will speed the testing and distribution of experimental stem cell therapies. We will be posting a more detailed blog about how our Alpha Clinics are pushing innovative stem cell treatments tomorrow.

As the field advanced we knew that we had to find a new way to help researchers move their research out of the lab and into clinical trials where they could be tested in people. Many researchers were really good at the science, but had little experience in navigating the complex procedures needed to get the green light from the US Food and Drug Administration (FDA) to test their work in a clinical trial.

So, our Agency created the Translating (TC) and Accelerating Centers (AC). The idea was that the TC would help researchers do all the preclinical testing necessary to apply for permission from the FDA to start a clinical trial. Then the AC would help the researchers set up the trial and actually run it.

In the end, one company, Quintiles IMS, won both awards so we combined the two entities into one, The Stem Cell Center, a kind of one-stop-shopping home to help researchers move the most promising treatments into people.

That’s not the whole story of course – I didn’t even mention the Genomics Initiative – but it’s hard to cram 13 years of history into a short blog. And we’re not done yet. We are always looking for new ways to improve what we do and how we do it. We are a work in progress, and we are determined to make as much progress as possible in the years to come.

CIRM Alpha Clinics Network charts a new course for delivering stem cell treatments

Sometimes it feels like finding a cure is the easy part; getting it past all the hurdles it must overcome to be able to reach patients is just as big a challenge. Fortunately, a lot of rather brilliant minds are hard at work to find the most effective ways of doing just that.

Last week, at the grandly titled Second Annual Symposium of the CIRM Alpha Stem Cell Clinics Network, some of those minds gathered to talk about the issues around bringing stem cell therapies to the people who need them, the patients.

The goal of the Alpha Clinics Network is to accelerate the development and delivery of stem cell treatments to patients. In doing that one of the big issues that has to be addressed is cost; how much do you charge for a treatment that can change someone’s life, even save their life? For example, medications that can cure Hepatitis C cost more than $80,000. So how much would a treatment cost that can cure a disease like Severe Combined Immunodeficiency (SCID)? CIRM-funded researchers have come up with a cure for SCID, but this is a rare disease that affects between 40 – 100 newborns every year, so the huge cost of developing this would fall on a small number of patients.

The same approach that is curing SCID could also lead to a cure for sickle cell disease, something that affects around 100,000 people in the US, most of them African Americans. Because we are adding more people to the pool that can be treated by a therapy does that mean the cost of the treatment should go down, or will it stay the same to increase profits?

Jennifer Malin, United Healthcare

Jennifer Malin from United Healthcare did a terrific job of walking us through the questions that have to be answered when trying to decide how much to charge for a drug. She also explored the thorny issue of who should pay; patients, insurance companies, the state? As she pointed out, it’s no use having a cure if it’s priced so high that no one can afford it.

Joseph Alvarnas, the Director of Value-based Analytics at City of Hope – where the conference was held – said that in every decision we make about stem cell therapies we “must be mindful of economic reality and inequality” to ensure that these treatments are available to all, and not just the rich.

“Remember, the decisions we make now will influence not just the lives of those with us today but also the lives of all those to come.”

Of course long before you even have to face the question of who will pay for it, you must have a treatment to pay for. Getting a therapy through the regulatory process is challenging at the best of times. Add to that the fact that many researchers have little experience navigating those tricky waters and you can understand why it takes more than eight years on average for a cell therapy to go from a good idea to a clinical trial (in contrast it takes just 3.2 years for a more traditional medication to get into a clinical trial).

Sunil Kadim, QuintilesIMS

Sunil Kadam from QuintilesIMS talked about the skills and expertise needed to navigate the regulatory pathway. QuintilesIMS partners with CIRM to run the Stem Cell Center, which helps researchers apply for and then run a clinical trial, providing the guidance that is essential to keeping even the most promising research on track.

But, as always, at the heart of every conference, are the patients and patient advocates. They provided the inspiration and a powerful reminder of why we all do what we do; to help find treatments and cures for patients in need.

The Alpha Clinic Network is only a few years old but is already running 35 different clinical trials involving hundreds of patients. The goal of the conference was to discuss lessons learned and share best practices so that number of trials and patients can continue to increase.

The CIRM Board is also doing its part to pick up the pace, approving funding for up to two more Alpha Clinic sites.  The deadline to apply to be one of our new Alpha Clinics sites is May 15th, and you can learn more about how to apply on our funding page.

Since joining CIRM I have been to many conferences but this was, in my opinion, the best one I have ever intended. It brought together people from every part of the field to give the most complete vision for where we are, and where we are headed. The talks were engaging, and inspiring.

Kristin Macdonald was left legally blind by retinitis pigmentosa, a rare vision-destroying disease. A few years ago she became the first person to be treated with a CIRM-funded therapy aimed to restoring some vision. She says it is helping, that for years she lived in a world of darkness and, while she still can’t see clearly, now she can see light. She says coming out of the darkness and into the light has changed her world.

Kristin Macdonald

In the years to come the Alpha Clinics Network hopes to be able to do the same, and much more, for many more people in need.

To read more about the Alpha Clinics Meeting, check out our Twitter Moments.