The Mother of Modern Medicine: Henrietta Lacks’ Portrait Unveiled at National Portrait Gallery

Back during my research scientist days, using HeLa cells for my experiments was as commonplace as a carpenter reaching for his hammer at a construction site. What makes these cells so handy is their robustness: they are easy to maintain in the lab where they divide indefinitely in petri dishes.

HeLaV_M

Scanning electron micrograph of just-divided HeLa cells.
Credit: National Center for Microscopy and Imaging Research

Henrietta Lacks and the Story of HeLa Cells
The reason they grow so readily is because they originally came from a patient’s tumor. For the longest time I had been under the impression that “HeLa” stood for Helen Lang, supposedly the patient’s name. It wasn’t until Rebecca Skloot’s award-winning book, “The Immortal Life of Henrietta Lacks”, was published in 2010, that I learned their true identity.

Only 31 years old, Henrietta Lacks died of cervical cancer in 1951. Before she died, cells from her cancer were collected without her permission or knowledge. Noticed for their remarkable ability to continually divide in cell culture, these cells, labelled as “HeLa”, became the first human cell line. Though Henrietta Lacks is long gone, her cells still live on in research labs all over the world and have been instrumental to many important discoveries and over 10,000 patents.

The Mother of Modern Medicine: The Portrait

lacks1

Henrietta Lacks (HeLa): The Mother of Modern Medicine by Kadir Nelson (see full portrait here)

The story of Lacks’ contribution to science can now be appreciated not only in the form of words on a page but also paint on canvas. Last week, the Smithsonian’s National Portrait Gallery, in collaboration with the National Museum of African American History and Culture, installed Kadir Nelson’s 2017 portrait of Lacks on the museum’s first-floor presentation wall.

In a Smithsonian.com article, painting and sculpture curator, Dorothy Moss, explained that Lacks’ portrait will be installed next to portraits of more recognizable Americans like Barack Obama and Susan B. Anthony where she hopes it acts as a, “signal to the kinds of history we want to tell. We want to make sure that people who have not been written into traditional narratives of history are visible immediately when our visitors enter. It will spark a conversation about people who have made a significant impact on science yet have been left out of history.”

When you look at the painting, be sure to notice some subtle details that help tell Lacks’ story, like the two missing buttons in her dress that symbolize her cells that were taken without her permission and the “Flower of Life” wall paper pattern meant to represent immortality.

CIRM’s Commitment to the Patient
It’s the learning from the unethical treatment of patients like Henrietta Lacks that in recent years has driven more focus on protecting patients and given them a voice when it comes to their care and their participation in medical research.

This commitment to patients is at the forefront of everything we do at CIRM. For instance, our 29-member Governing Board is composed of ten patient advocates, our CIRM-funded clinical trials are supported by Clinical Advisory Panels (CAPs) that include a patient advocate at the table and our mission itself is wholly focused on accelerating stem cell treatments to patients with unmet medical needs.

I think it’s very appropriate that Henrietta Lack’s portrait is titled, “The Mother of Modern Medicine” because of her legacy of empowering patients to advocate for the development of life-saving therapies.

A scalable, clinic-friendly recipe for converting skin cells to muscle cells

Way back in 1987, about two decades before Shinya Yamanaka would go on to identify four proteins that can reprogram skin cells into induced pluripotent stem cells (iPSCs), Harold Weintraub’s lab identified the first “master control” protein, MyoD, which can directly convert a skin cell into a muscle cell. Though MyoD opened up new approaches for teasing out the molecular mechanisms of a cell’s identity, it did not produce therapeutic paths for replacing muscle damaged by disease and injury.

That’s because MyoD-generated muscle cells are not amenable to a clinical setting. For a cell therapy to be viable, you need to manufacture large amounts of your product to treat many people. But these MyoD cells do not grow well enough to be effective to serve as a cell replacement therapy. Generating iPSC-derived muscle cells provides the potential of overcoming this limitation but the capacity of the embryonic stem cell-like iPSC for unlimited growth carries a risk of forming tumors after the transplanting iPSC-derived cell therapies into the muscle.

169572_web

This image shows iMPCs stained for markers of muscle stem, progenitor and differentiated cells. iMPCs recapitulate muscle differentiation in a dish. Credit: Ori Bar-Nur and Mattia Gerli

A recent study in Stem Cell Reports, by Konrad Hochedlinger’s lab at Massachusetts General Hospital and the Harvard Stem Cell Institute, may provide a work around. The team came up with a recipe that calls for the temporary activation of MyoD in mouse skin cells, along with the addition of three molecules that boost cell reprogramming. The result? Cells they dubbed induced myogenic progenitor cells, or iMPCs, that can make self-sustaining copies of themselves and can be scaled up for manufacturing purposes. On top of that, they show that these iMPCs carry the hallmarks of muscle stem cells and generate muscle fibers when transplanted into mice with leg injuries without signs of tumor formation.

A lot of work still remains to be done, like confirming that these iMPCs truly have the same characteristics as muscle stem cells. But if everything pans out, the potential applications for people suffering from various muscle disorders and injuries is very exciting, as co-first author Mattia FM Gerli, PhD points out in a press release:

in7czFjH_400x400

Mattia FM Gerli, PhD

“Patient-specific iMPCs could be used for personalized medicine by treating patients with their own genetically matched cells. If disease-causing mutations are known, as is the case in many muscular dystrophies, one could in principle repair the mutation in iMPCs prior to transplantation of the corrected cells back into the patient.”

Stem Cell Roundup: better model of schizophrenia, fasting boosts stem cells, and why does our hair gray.

Stem cell photo of the week:
Recreating brain cell interactions for studying schizophrenia

169585_web

Salk researchers used stem cells to derive CA3 pyramidal neurons (green), including a rare subtype of the cells (red). Image: Salk Institute

Our pick for the stem cell image of the week is from the laboratory of Rusty Gage at the Salk Institute. The team generated multiple types of nerve cells from stem cells to more closely represent the interactions that occur in the brain. They’re using this system to show how the communication between these nerve cells becomes faulty in people with schizophrenia. A Salk Institute press release provides more details about their study which was published in Cell Stem Cell.

Regenerative power of intestinal stem cells maintained via fasting
For many decades, researchers have known that restricting food intake in mice can extend life span. Why it happens hasn’t been well understood. This week, a team at MIT uncovered a possible explanation: fasting increases the regenerative power of stem cells.

May3_2018_MIT_StemCellDiet2247912117

Intestinal stem cells from mice that fasted for 24 hours, at right, produced much more substantial intestinal organoids than stem cells from mice that did not fast, at left.
Image: Maria Mihaylova and Chia-Wei Cheng, MIT

The report, published in Cell Stem Cell, focused on the well-studied intestinal stem cell, which renews the intestinal lining every five days. As we age, the intestinal stem cell’s regenerative abilities wane and damage to the intestinal lining takes longer to repair.

Mice were fasted for 24 hours and then their intestinal stem cells were retrieved and grown into mini-intestine organoids in petri dishes. According to Maria Mihaylova, PhD, one of the lead authors, the results of the experiment were very clear:

“It was very obvious that fasting had this really immense effect on the ability of intestinal crypts to form more organoids, which is stem-cell-driven,” Mihaylova said in a press release. “This was something that we saw in both the young mice and the aged mice, and we really wanted to understand the molecular mechanisms driving this.”

Mihaylova and the team went on to show that fasting caused the stem cells to burn fat instead of carbohydrates for their energy needs. Inhibiting the gene pathways that flip this metabolic switch also blocks the regenerative capacity of fasting. On the other hand, molecules that boost the gene pathways mimic the effects of fasting without changing food intake. This intriguing finding could potentially have clinical applications for cancer patients who suffer intestinal injury from the toxic effects of chemotherapy drugs but who certainly aren’t in a condition to fast.

Premature graying, our immune system and stem cells: a surprising link. (Kevin McCormack)
As someone whose hair went gray at a relatively young age – well, it seemed young to me! – this next story naturally caught my eye. It highlights how our immune systems may play a key role in determining our hair color and, in particular, when that hair turns gray.

Our bodies are constantly shedding hairs and replacing them with new ones. Normally stem cells called melanocytes help ensure the new hairs have your original color, be it black, blonde, brunette or red.

Researchers at the National Institutes of Health and the University of Alabama, Birmingham, found that when the body is attacked by a virus, our immune system kicks in and respond by producing interferon to fight off the infection. However, when a protein called MITF, that is involved in regulating how cells use interferon, fails to work properly it can also affect melanocytes causing them to lose their pigmentation. Without that pigmentation the new hairs are gray.

The study, which appears in the journal PLOS Biology, is too late to help me and my gray hair – particularly as it was done in mice – but it could pave the way for further research that identifies how genes that control pigment in our hair and skin also control our immune system.

Livers skip stem cells, build missing structures from scratch via direct cell identity conversion

Stem cells…eh, who needs them anyway?!

That’s what you might be thinking after today, at least for some forms of liver disease. That’s because a team of researchers from UCSF and Cincinnati Children’s Hospital Medical Center just published results in Nature showing liver cells can directly change identity, or transdifferentiate, in order to build, from scratch, structures missing due to disease.

nci-vol-10440-72

The liver contains a network of tubes called bile ducts that carry fat-digesting bile to the small intestine via the gallbladder.
Image: National Cancer Inst.

The extraordinary regenerative power of the liver in animals is well-documented. A human liver, for instance, can fully regrow from just 25% of its original mass. That’s thanks to the hepatocyte, the main type of liver cell, that has the ability to replenish pre-existing tissue lost due to disease or injury. What hasn’t been as clear cut, is whether the hepatocyte has the capacity to change identity and build functional liver structures from scratch that never developed in the first place due to genetic disorders.

To examine that possibility, the study – funded in part by CIRM – focused on an inherited liver disease called Alagille syndrome which is caused by abnormal bile ducts. Produced by the liver, bile helps digest fats in our diet. It travels from the liver via bile ducts – tree branch-like tube structures in the liver – to the gallbladder, where it’s stored before moving on to the small intestine. In Alagille syndrome, the bile ducts are fewer in number, narrower in size or altogether missing. As a result, the bile builds up in the liver causing scarring and severe damage. Nearly half of all those with Alagille syndrome, require a liver transplant, usually in childhood.

The research team mimicked the symptoms of Alagille syndrome in mice by genetically engineering the animals to lack cholangiocytes, the cells that form bile ducts. Sure enough, liver damage from bile buildup was observed in these mice at birth due to the missing bile duct structures, also called the biliary tree. However, 90% of the mice survived and eventually formed a functional biliary tree. The team went on to show, for the first time, that the hepatocytes had converted en masse into cholangiocytes and created the wholly new bile ducts.

liver cell switching

Mice that mimic Alagille syndrome are born without the branches of the biliary tree, an important “plumbing system” in the liver (A), but show a near-normal biliary system as adults (B). To build the missing branches, liver cells switch identity and form tubes, shown in green, that connect to the trunk of the biliary tree, shown in blue (C). Image: Cincinnati Children’s

The underlying molecular mechanisms of this process were further examined. The researchers showed that the lack of a particular gene activity pathway due to the absence of cholangiocytes during development causes a replacement pathway, stimulated by a protein called TGF-beta, to kick into gear. As a result, the hepatocytes convert into cholangiocytes and form bile ducts. To make a direct connection with the human form of the disease, the researchers found evidence that TGF-beta is active in the liver samples of some patients but not in the livers from healthy individuals.

With this Alagille syndrome mouse model in hand, the researchers want to identify which transcription factors – proteins that bind DNA and regulate gene activity – are involved in changing the liver cells into bile duct cells. Holger Willenbring, MD, PhD, a senior author and CIRM grantee, explained the rationale behind this approach in a press release:

willenbring photo

Holger Willenbring

“Using transcription factors to make bile ducts from hepatocytes has potential as a safe and effective therapy. With our finding that an entire biliary system can be ‘retrofitted’ in the mouse liver, I am encouraged that this eventually will work in patients.”

So rather than developing a stem cell-based therapy in the lab which is then transplanted into a patient, this approach would rely on stimulating the regenerative capacity of liver cells that are already inside the body. And if it eventually works in patients with Alagille syndrome, which only affects 1 in 30,000, it’s possible it could be applied to other liver diseases as well.

Stem Cell Roundup: The brain & obesity; iPSCs & sex chromosomes; modeling mental illness

Stem Cell Image of the Week:
Obesity-in-a-dish reveals mutations and abnormal function in nerve cells

cedars-sinai dayglo

Image shows two types of hypothalamic neurons (in magenta and cyan) that were derived from human induced pluripotent stem cells.
Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute

Our stem cell image of the week looks like the work of a pre-historic cave dweller who got their hands on some DayGlo paint. But, in fact, it’s a fluorescence microscopy image of stem cell-derived brain cells from the lab of Dhruv Sareen, PhD, at Cedars-Sinai Medical Center. Sareen’s team is investigating the role of the brain in obesity. Since the brain is a not readily accessible organ, the team reprogrammed skin and blood cell samples from severely obese and normal weight individuals into induced pluripotent stem cells (iPSCs). These iPSCs were then matured into nerve cells found in the hypothalamus, an area of the brain that regulates hunger and other functions.

A comparative analysis showed that the nerve cells derived from the obese individuals had several genetic mutations and had an abnormal response to hormones that play a role in telling our brains that we are hungry or full. The Cedars-Sinai team is excited to use this obesity-in-a-dish system to further explore the underlying cellular changes that lead to excessive weight gain. Ultimately, these studies may reveal ways to combat the ever-growing obesity epidemic, as Dr. Sareen states in a press release:

“We are paving the way for personalized medicine, in which drugs could be customized for obese patients with different genetic backgrounds and disease statuses.”

The study was published in Cell Stem Cell

Differences found in stem cells derived from male vs female.

168023_web

Microscope picture of a colony of iPS cells. Credit: Vincent Pasque

Scientists at UCLA and KU Leuven University in Belgium carried out a study to better understand the molecular mechanisms that control the process of reprogramming adult cells back into the embryonic stem cell-like state of induced pluripotent stem cells (iPSCs). Previous studies have shown that female vs male embryonic stem cells have different patterns of gene regulation. So, in the current study, male and female cells were analyzed side-by-side during the reprogramming process.  First author Victor Pasquale explained in a press release that the underlying differences stemmed from the sex chromosomes:

In a normal situation, one of the two X chromosomes in female cells is inactive. But when these cells are reprogrammed into iPS cells, the inactive X becomes active. So, the female iPS cells now have two active X chromosomes, while males have only one. Our results show that studying male and female cells separately is key to a better understanding of how iPS cells are made. And we really need to understand the process if we want to create better disease models and to help the millions of patients waiting for more effective treatments.”

The CIRM-funded study was published in Stem Cell Reports.

Using mini-brains and CRISPR to study genetic linkage of schizophrenia, depression and bipolar disorder.

If you haven’t already picked up on a common thread in this week’s stories, this last entry should make it apparent: iPSC cells are the go-to method to gain insight in the underlying mechanisms of a wide range of biology topics. In this case, researchers at Brigham and Women’s Hospital at Harvard Medical School were interested in understanding how mutations in a gene called DISC1 were linked to several mental illnesses including schizophrenia, bipolar disorder and severe depression. While much has been gleaned from animal models, there’s limited knowledge of how DISC1 affects the development of the human brain.

The team used human iPSCs to grow cerebral organoids, also called mini-brains, which are three-dimensional balls of cells that mimic particular parts of the brain’s anatomy. Using CRISPR-Cas9 gene-editing technology – another very popular research tool – the team introduced DISC1 mutations found in families suffering from these mental disorders.

Compared to cells with normal copies of the DISC1 gene, the mutant organoids showed abnormal structure and excessive cell signaling. When an inhibitor of that cell signaling was added to the growing mutant organoids, the irregular structures did not develop.

These studies using human cells provide an important system for gaining a better understanding of, and potentially treating, mental illnesses that victimize generations of families.

The study was published in Translation Psychiatry and picked up by Eureka Alert.

Straight to brain: A better approach to ALS cell therapies?

Getting the go ahead to begin a clinical trial by no means marks an end to a research team’s laboratory studies. A clinical trial is merely one experiment and is designed to answer a specific set of questions about a specific course of treatment. There will inevitably be more questions to pursue back in the lab in parallel with an ongoing clinical trial to potentially enhance the treatment.

That’s the scenario for Cedar-Sinai’s current CIRM-funded clinical trial testing a cell therapy for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. Animal studies published this week in Stem Cells suggests that an additional route of therapy delivery may have potential and should also be considered.

Print

Microscopy image showing transplanted neural progenitor cells (green), the protein GDNF (red) and motor neurons (blue) together in brain tissue. Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute

ALS is an incurable disease that destroys motor neurons responsible for communicating muscle movement between the brain and the rest of the body via the spinal cord. ALS sufferers lose the use of their limbs and eventually the muscles that control breathing. They rarely live more than 3 to 5 years after diagnosis.

The CIRM-funded trial uses neural progenitor cells – which are similar to stem cells but can only specialize into different types of brain cells – that are genetically engineered to release a protein called GDNF that helps protect the motor neurons from destruction. These cells are being transplanted into the spinal cords of the clinical trial participants.

While earlier animal studies showed that the GDNF-producing progenitor cells can protect motor neurons in the spinal cord, the researchers also recognized that motor neurons within the brain are also involved in ALS. So, for the current study, the team tested the effects of implanting the GDNF-producing cells into the brains of rats with symptoms mimicking an inherited form of ALS.

The team first confirmed that the cells survived, specialized into the right type of brain cells and released GDNF into the brain. More importantly, they went on to show that the transplanted cells not only protected the motor neurons in the brain but also delayed the onset of the disease and extended the survival of the ALS rats.

These results suggest that future clinical trials should test transplantation of the cells into the brain in addition to the spinal cord. The team will first need to carry out more animal studies to determine the cell doses that would be most safe and effective. As first author Gretchen Thomsen, PhD, mentions in a press release, the eventual benefit to patients could be enormous:

Gretchen-Miller-photo

Gretchen Thomsen

“If we are able in the future to reproduce our research results in humans, we could improve both the quality and length of life for patients diagnosed with this devastating disease.”

 

 

Gladstone researchers tame toxic protein that carries increased Alzheimer’s risk

With a clinical trial failure rate of 99% over the past 15 years or so, the path to a cure for Alzheimer’s disease is riddled with disappointment. In many cases, candidate therapies looked very promising in pre-clinical animal studies, only to flop when tested in people. Now, a CIRM-funded Nature Medicine study by researchers at the Gladstone Institutes sheds some light on a source of this discrepancy. And more importantly, the study points to a potential treatment strategy that can remove the hallmarks of Alzheimer’s in human brain cells.

Alzheimers_plaguestangles

Build up of tau protein (blue) and amyloid-beta (yellow) in and around neurons are hallmarks of the damage caused by Alzheimer’s disease. 
Image courtesy of the National Institute on Aging/National Institutes of Health.

For several decades, researchers have known the ApoE gene can influence the risk for an Alzheimer’s diagnosis in individuals 65 years and older. The gene comes in a few flavors with ApoE3 and ApoE4 differing in only one spot in their DNA sequences. Though nearly identical, the resulting ApoE3 and E4 proteins have very different shapes with differing function. In fact, people who inherit two copies of the ApoE4 gene have a twelve times higher risk for Alzheimer’s compared to those with the more common ApoE3.

Gladstone2018_HuangYadong

Yadong Huang

To better understand what’s happening at the cellular level, Yadong Huang, PhD and his team at the Gladstone Institutes obtained skin samples from Alzheimer’s donors carrying two copies of the ApoE4 gene and healthy donors with two copies of ApoE3. The skin cells were reprogrammed into induced pluripotent stem cells (iPSCs) and then matured into nerve cells, or neurons.

Compared to ApoE3 cells, the researchers observed that the ApoE4 neurons accumulated higher levels of proteins called p-tau and amyloid beta, which are hallmarks of Alzheimer’s disease. Repeating this same experiment in iPSC-derived mouse neurons showed no difference in the production of amyloid beta levels between the ApoE3 and E4 neurons. This result points to the importance of studying human disease in human cells, as first author Chengzhong Wang, PhD, points out in a press release:

“There’s an important species difference in the effect of apoE4 on amyloid beta. Increased amyloid beta production is not seen in mouse neurons and could potentially explain some of the discrepancies between mice and humans regarding drug efficacy. This will be very important information for future drug development.”

Further experiments aimed to answer a long sought-after question: is it the absence of ApoE3 or the presence of ApoE4 that causes the damaging effects on neurons? Using gene-editing techniques, the team removed both ApoE forms from the donor-derived neurons. The resulting cells appeared healthy but when ApoE4 was added back in, Alzheimer’s-associated problems emerged. This finding points to the toxicity of ApoE4 to neurons.

With this new insight in hand, the team examined what would happen if they converted the ApoE4 form into the ApoE3 form. The team had previously designed molecules, they dubbed “structure correctors”, that physically interact with the ApoE4 protein and cause it to take on the shape of the ApoE3 form found in healthy individuals. When these correctors were added to the ApoE4 neurons, it brought back normal function to the cells.

Given that the structure corrector is a chemical compound that works in human brain cells, it’s tantalizing to think about its possible use as a novel Alzheimer’s drug. And you can bet Dr. Huang and his group are eagerly embarking on that new path.

UC Davis researchers make stem cell-derived mini-brains that contain blood vessels

Growing neurons on a flat petri dish is a great way to study the inner workings of nerve signals in the brain. But I think it’s safe to argue that a two-dimensional lawn of cells doesn’t capture all the complexity of our intricate, cauliflower-shaped brains. Then again, cracking open the skulls of living patients is also not a viable path for fully understanding the molecular basis of brain disorders.

two-spheroids-in-a-dish

Brain organoids (two white balls) growing in petri dish.
Image: Pasca Lab, Stanford University.

The recent emergence of stem cell-derived mini-brains, or brain organoids, as a research tool is bridging this impasse. With induced pluripotent stem cells (iPSCs) derived from a readily-accessible skin sample from patients, it’s possible to generate three-dimensional balls of cells that mimic particular parts of the brain’s anatomy. These mini-brains have the expected type of neurons, as well as other cells that support neuron function. We’ve written many blogs, most recently in January, on the applications of this cutting-edge tool.

With any new technology, there is always room for improvement. One thing that most mini-brains lack is their own system of blood vessels, or vasculature. That’s where Dr. Ben Waldau, a vascular neurosurgeon at UC Davis Medical Center, and his lab come into the picture. Last week, their published work in NeuroReport showed that incorporating blood vessels into a brain organoid is possible.

UCDavisorganoid

A stained cross-section of a brain organoid showing that blood vessels (in red) have penetrated both the outer, more organized layers and the inner core. Image: UC Davis Institute for Regenerative Cures

Using iPSCs from one patient, the Waldau team separately generated brain organoids and blood vessels cells, also called endothelial cells. After growing each for about a month, the organoids were embedded in a gelatin containing the endothelial cells. In an excellent Wired article, writer Megan Molteni explains what happened next:

“After incubating for three weeks, they took a single organoid and transplanted it into a tiny cavity carefully carved into a mouse’s brain. Two weeks later the organoid was alive, well—and, critically, had grown capillaries that penetrated all the way to its inner layers.”

Every tissue relies on nutrients and oxygen from the blood. As Molteni suggests, being able to incorporate blood vessels and brain organoids from the same patient’s cells may make it possible to grow and study even more complex brain structures without the need of a mouse using fluidic pumps.

As Waldau explains in the Wired article, this vascularized brain organoid system also adds promise to the ultimate goal of repairing damaged brain tissue:

waldau

Ben Waldau

“The whole idea with these organoids is to one day be able to develop a brain structure the patient has lost made with the patient’s own cells. We see the injuries still there on the CT scans, but there’s nothing we can do. So many of them are left behind with permanent neural deficits—paralysis, numbness, weakness—even after surgery and physical therapy.”

 

 

East Coast Company to Sell Research Products Derived from CIRM’s Stem Cell Bank

With patient-derived induced pluripotent stem cells (iPSCs) in hand, any lab scientist can follow recipes that convert these embryonic-like stem cells into specific cell types for studying human disease in a petri dish. iPSCs derived from a small skin sample from a Alzheimer’s patient, for instance, can be specialized into neurons – the kind of cell affected by the disease – to examine what goes wrong in an Alzheimer’s patient’s brain or screen drugs that may alleviate the problems.

exilirneurons

Neurons created from Alzheimer’s disease patient-derived iPSCs.
Image courtesy Elixirgen Scientific

But not every researcher has easy access to a bank of patient-derived iPSCs and it’s not trivial to coax iPSCs to become a particular cell type. The process is also a time sink and many scientists would rather spend that time doing what they’re good at: uncovering new insights into their disease of interest.

Since the discovery of iPSC technology over a decade ago, countless labs have worked out increasingly efficient variations on the original method. In fact, companies that deliver iPSC-derived products have emerged as an attractive option for the time-strapped stem cell researcher.

One of those companies is Elixirgen Scientific of Baltimore, Maryland. Pardon the pun but Elixirgen has turned the process of making various cell types from iPSCs into a science. Here’s how CEO Bumpei Noda described the company’s value to me:

Bumpei-Noda-200

Bumpei Noda

“Our technology directly changes stem cells into the cells that make up most of your body, such as muscle cells or neural cells, in about one week. Considering that existing technology takes multiple weeks or even months to do the same thing, imagine how much more research can get done than before.”

quick-tissue-explanation--768x768

With Elixirgen’s technology, different “cocktails” of ingredients can quickly and efficiently turn iPSCs into many different human cell types. Image courtesy Elixirgen Scientific

Their technology is set to become an even greater resource for researchers based on their announcement yesterday that they’ve signed a licensing agreement to sell human disease cells that were generated from CIRM’s iPSC Repository.

stephen

Stephen Lin

“The CIRM Repository holds the largest publicly accessible collection of human iPSCs in the world and is the result of years of coordinated efforts of many groups to create a leading resource for disease modeling and drug discovery using stem cells,” said Stephen Lin, a CIRM Senior Science Officer who oversees the cell bank.

 

The repository currently contains a collection of 1,600 cell lines derived from patients with diseases that are a source of active research, including autism, epilepsy, cerebral palsy, Alzheimer’s disease, heart disease, lung disease, hepatitis C, fatty liver disease, and more (visit our iPSC Repository web page for the complete list).

While this wide variety of patient cells lines certainly played a major role in Elixirgen’s efforts to sign the agreement, Noda also noted that the CIRM Repository “has rich clinical and demographic data and age-matched control cell lines” which is key information to have when interpreting the results of experiments and drug screening.

Lin also points out another advantage to the CIRM cells:

“It’s one of the few collections with a streamlined route to commercialization (i.e. pre-negotiated licenses) that make activities like Elixirgen’s possible. iPSC technology is still under patent and technically cannot be used for drug discovery without those legal safeguards. That’s important because if you do discover a drug using iPSCs without taking care of these licensing agreements, your discovery could be owned by that original intellectual property holder.”

At CIRM, we’re laser-focused on accelerating stem cell treatments to patients with unmet medical needs. That’s why we’re excited that Elixirgen Scientific has licensed access to the our iPSC repository. We’re confident their service will help researchers work more efficiently and, in turn, accelerate the pace of new discoveries.

Stem Cell Roundup: hESCs turn 20, tracking cancer stem cells, new ALS gene ID’d

Stem Cell Image of the Week

Picture1This week’s stunning stem cell image is brought to you by researchers in the Brivanlou Lab at Rockefeller University. What looks like the center of a sunflower is actual a ball of neural rosettes derived from human embryonic stem cells (ESCs). Neural rosettes are structures that contain neural stem and progenitor cells that can further specialize into mature brain cells like the stringy, blue-colored neurons in this photo.

This photo was part of a Nature News Feature highlighting how 20 years ago, human ESCs sparked a revolution in research that’s led to the development of ESC-based therapies that are now entering the clinic. It’s a great read, especially for those of you who aren’t familiar with the history of ESC research.

Increase in cancer stem cells tracked during one patient’s treatment
Cancer stem cells are nasty little things. They have the ability to evade surgery, chemotherapy and radiation and cause a cancer to return and spread through the body. Now a new study says they are also clever little things, learning how to mutate and evolve to be even better at evading treatment.

Researchers at the Colorado Cancer Center did three biopsies of tumors taken from a patient who underwent three surgeries for salivary gland cancer. They found that the number of cancer stem cells increased with each surgery. For example, in the first surgery the tumor contained 0.2 percent cancer stem cells. By the third surgery the number of cancer stem cells had risen to 4.5 percent.

Even scarier, the tumor in the third surgery had 50 percent more cancer-driving mutations meaning it was better able to resist attempts to kill it.

In a news release, Dr. Daniel Bowles, the lead investigator, said the tumor seemed to learn and become ever more aggressive:

Bowles headshot

Daniel Bowles

“People talk about molecular evolution of cancer and we were able to show it in this patient. With these three samples, we could see across time how the tumor developed resistance to treatment.”

 

The study is published in the journal Clinical Cancer Research.

New gene associated with ALS identified.
This week, researchers at UMass Medical School and the National Institute on Aging reported the identification of a new gene implicated in the development of amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, ALS is a horrific neurodegenerative disorder that degrades the connection between nerve signals and the muscles. Sufferers are robbed of their ability to move and, ultimately, even to breathe. Life expectancy is just 3 to 5 years after diagnosis.

To identify the gene, called KIF5A, the team carried out the largest genetics effort in ALS research with support from the ALS Association, creators of the Ice Bucket Challenge that raised a $115 million for research. The study compared the genomes between a group of nearly 22,000 people with ALS versus a group of over 80,000 healthy controls. Two independent genetic analyses identified differences in the expression of the KIF5A gene between the two groups.

165927_web

Cartoon representing the role that KIF5A plays in neurons. (Image: UMass Medical School)

KIF5A is active in neurons where it plays a key role in transporting cell components across the cell’s axon, the long, narrow portion of the cell that allows neurons to send long-range signals to other cells. It carries out this transport by tethering cell components on the axon’s cytoskeleton, a structural protein matrix within the cells. Several mutations in KIF5A were found in the ALS group which corroborates previous studies showing that mutations in other cytoskeleton genes are associated with ALS.

One next step for the researchers is to further examine the KIF5A mutations using patient-derived induced pluripotent stem cells.

The study was published in Neuron and picked up by Eureka Alert!