Video: Behind the scenes of a life-saving gene therapy stem cell treatment

“We were so desperate. When we heard about this treatment were willing to do anything to come here.”

In the above quote from Zahraa El Kerdi, “here” refers to UCLA, a world away from her hometown in Lebanon. In September 2015, Zahree gave birth to a son, Hussein, who appeared perfectly healthy. But by six months, he was barely clinging to life due to an inherited blood disorder, ADA-SCID, also called Bubble Baby disease. The disorder left Hussein without a functioning immune system so even a common cold could prove deadly. In fact, SCID babies rarely survive past one year of age. Up until now, no treatment options existed for the disease.

But Zahraa and her husband Ali heard about a CIRM-funded clinical trial, led by Donald Kohn, M.D. at UCLA, that could modify Hussein’s blood stem cells to fix the gene problem that’s causing his disease. The El Kerdi’s 7500-mile journey to save Hussein’s life is captured in a wonderful, five-minute video produced by UCLA’s Broad Stem Cell Research Center.

With before and after scenes of Hussein’s treatment as well as animation describing how the therapy works, the short documentary is equal parts heart wrenching, uplifting and educational. Basically, what I’m trying to say is, it’s a must-see and available to view above.

Stem cell roundup: summer scientists, fat-blocking cells & recent human evolution

Stem cell photo of the week: high schooler becoming a stem cell pro this summer

InstagramAnnaJSPARK

High school student Anna Guzman learning important lab skills at UC Davis

This summer’s CIRM SPARK Programs, stem cell research internships for high school students, are in full swing. Along with research assignments in top-notch stem cell labs, we’ve asked the students to chronicle their internship experiences through Instagram. And today’s stem cell photo of the week is one of those student-submitted posts. The smiling intern in this photo set is Anna Guzman, a rising junior from Sheldon High School who is in the UC Davis SPARK Program. In her post, she describes the lab procedure she is doing:

“The last step in our process to harvest stem cells from a sample of umbilical cord blood! We used a magnet to isolate the CD34 marked stem cells [blood stem cells] from the rest of the solution.”

Only a few days in and Anna already looks like a pro! It’s important lab skills like this one that could land Anna a future job in the stem cell field. Check out #cirmsparklab on Instagram to view the ever-growing number of posts.

Swiss team identifies a cell type that block formation of fat cells

Jun21_2018_EPFL_TwoDifferentAspectsOfFat1871459512

(Left) Mature human fat cells grown in a Petri dish (green, lipid droplets). (Right) A section of mouse fat tissue showing, in the middle, a blood vessel (red circle) surrounded by fat cell blocking cells called Aregs (arrows). [Bart Deplancke/EPFL]

Liposuction surgery helps slim and reshape areas of a person’s body through the removal of excess fat tissue. While the patient is certainly happy to get rid of those extra pounds, that waste product is sought after by researchers because it’s a rich source of regenerative cells including fat stem cells.

The exact populations of cells in this liposuction tissue has been unclear, so a collaboration of Swiss researchers – at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) – used a cutting-edge technique allowing them to examine the gene activity within single cells.

The analysis was successful in identifying several newly defined subpopulations of cells in the fat tissue. To their surprise, one of those cell types did not specialize into fat cells but instead did the opposite: they inhibited other fat stem cells from giving rise to fat cells. The initial experiments were carried out in mice, but the team went on to show similar fat-blocking cells in human tissue. Further experiments will explore the tantalizing prospect of applying these cells to control obesity and the many diseases, like diabetes, that result from it.

The study was published June 20st in Nature.

Connection identified between recent human evolution & risk for premature birth
Evidence of recent evolution in a human gene that’s critical for maintaining pregnancy may help explain why some populations have a higher risk for giving birth prematurely than others. That’s according to a recent report by researchers at the University of Stanford School of Medicine.

The study, funded in part by CIRM’s Genomics Initiative, compared DNA from people with East Asian, European and African ancestry. They specifically examined the gene encoding the progesterone hormone receptor which helps keep a pregnant woman from going into labor too soon. The gene is also associated with preterm births, the leading cause of infant death in the U.S.

The team was very surprise to find that people with East Asian ancestry had an evolutionarily new version of the gene while the European and African populations had mixtures of new and ancient versions. These differences may explain why the risk for premature birth among East Asian populations is lower than among pregnant women of European and African descent, though environment clearly plays a role as well.

Pediatrics professor Gary Shaw, PhD, one of the team leaders, put the results in perspective:

“Preterm birth has probably been with us since the origin of the human species,” said Shaw in a press release, “and being able to track its evolutionary history in a way that sheds new light on current discoveries about prematurity is really exciting.”

The study was published June 21st in The American Journal of Human Genetics.

World Sickle Cell Day: Managing the disease today for tomorrow’s stem cell cures

Today is World Sickle Cell Day, a day to promote awareness about sickle cell disease (SCD), an inherited, chronic blood disorder which can cause severe pain, stroke, organ failure, and other complications, including death. Sadly, it’s estimated that this year 300,000 babies around the world will be born with SCD.

To recognize World Sickle Cell Day, we’re sharing a one-minute clip from a video interview we filmed last week with Adrienne Shapiro, a tireless advocate for sickle cell patients and the development of stem cell-based cures.

Shapiro, the fifth generation of mothers in her family to have a child born with SCD, is co-founder of Axis Advocacy, a Southern California organization whose mission is to improve the lives of patients and caregivers who are dealing with this chronic illness.

In the video, Shapiro says that just the promise of stem cell-based therapies for SCD, “relieves that pain and suffering and guilt of having passed this (inherited disorder) along as well as knowing that I can really be the last mother, the last generation to fight for my child’s life.”

Speaking of stem cell therapies, CIRM is currently funding two clinical trials related to SCD. A UCLA team is testing a stem cell and gene therapy product from the patient’s own blood to correct the mutation that causes the production of abnormal, sickle-like shaped red blood cells. And City of Hope scientists are testing a novel blood stem cell transplant procedure that uses a milder, less toxic chemotherapy treatment that allows donor stem cells to engraft and create a healthy supply of non-diseased blood cells without causing an immune reaction in the patient.

While Shapiro’s Axis Advocacy and CIRM provide critical support here in California, other organizations like the American Society of Hematology and the Sickle Cell Disease Coalition have their efforts set on the developing world, particularly in sub-Saharan Africa, where an estimated 50–90 percent of infants born with SCD will die before their fifth birthday.

To do something about this heartbreaking statistic, these organization are debuting a public service announcement and short documentary – watch the video playlist below – to help improve newborn screening and early care for children in Africa living with sickle cell disease.

As Shapiro explained to us during her interview, it’s important to provide the support and education needed to manage the disease so that when the cure comes, the patients will be alive to receive it.

Fish umbrellas and human bone: protecting blood stem cells from the sun’s UV rays

Blood stem cells.jpg

Most people probably do not question the fact that human blood stem cells – those that give rise to all the cells in our blood – live inside the marrow of our bones, called a stem cell “niche”. But it is pretty odd when you stop to think about it. I mean, it makes sense that the hard, calcium-rich structure of bones provide our bodies with a skeleton but why is it also responsible for making our blood?

This week, researchers at Harvard report in Nature that the answer may come down to protecting these precious cells from the DNA-damaging effects of UV radiation from the sun. They arrived at those insights by examining zebrafish which harbor blood stem cells, not in their bones, but in their kidneys. Fredrich Kapp, MD, the first author of the report, was trying to analyze blood stem cells in zebrafish under the microscope but noticed a layer of other cells on top of the kidney was obscuring his view.

fishumbrella

In a zebrafish larva (illustration above), a dark umbrella formed by pigmented cells (white arrows point to these black spots in box, left) in the kidney protects vulnerable stem cells from damaging UV light. Right image is a closeup of the box. Scale bars equal 100 micrometers (left) and 50 micrometers (right). Credit: F. Kapp et al./Nature 2018
Read more at: https://phys.org/news/2018-06-blood-cells-bones.html#jCp

That layer of cells turned out to be melanocytes which produce melanin a pigment that gives our skin color. Melanin also protects our skin cells from the sun’s UV radiation which damages our DNA and can cause genetic mutations. In a press release, Kapp recalled his moment of insight:

“The shape of the melanocytes above the kidney reminded me of a parasol, so I thought, do they provide UV protection to blood stem cells?”

To answer his question, he and his colleagues compared the effects of UV radiation on normal zebrafish versus mutant zebrafish lacking the layer of melanocytes. Confirming Kapp’s hypothesis, the fish missing the melanocyte layer had fewer blood stem cells. Simply turning the normal fish upside down and exposing them to the UV rays also depleted the blood stem cells.

And here’s where the story gets really cool. In studying frogs – animals closer to us on the evolutionary tree – they found that as the tadpole begins to grow legs, their blood stem cells migrate from the melanocyte-covered kidney cells to inside the bone marrow, an even better form of UV protection. Senior author Leonard Zon explained the importance of this finding:

“We now have evidence that sunlight is an evolutionary driver of the blood stem cell niche. As a hematologist and oncologist, I treat patients with blood diseases and cancers. Once we understand the niche better, we can make blood stem cell transplants much safer.”

 

 

School’s Out! Stem cells are in! High school students start CIRM-funded summer research internships.

Robotic engineering, coding, video game design, filmmaking, soccer and swimming: these are just a few of the many activities that are vying for the attention of high school students once school lets out for the summer.

But a group of about 50 high schoolers in California have chosen a different path: they will be diving into the world of stem cell biology. Each student earned a spot in one of seven CIRM-funded SPARK Programs across California. That’s short for Summer Program to Accelerate Regenerative Medicine Knowledge (yes, technically it should be SPARMK but we like SPARK better).

The SPARK students will gain hands-on training in stem cell research at some of the leading research institutes in California by conducting a six-week research internship in a stem cell lab. Maybe I’m bias, as the Program Director at CIRM who oversees the SPARK programs, but I think they’ve made a great decision. Stem cell research is one of, if not the most exciting and cutting-edge fields of research science out there today.

The pace of progress is so rapid in the field that a large workforce over the next century is critical to sustain CIRM’s mission to accelerate stem cell treatments to patients with unmet medical needs. That’s why the Agency has invested over $4 million to support over 400 SPARK interns since 2012.

Yesterday, I had the pleasure to be in Sacramento to welcome the UC Davis SPARK interns on their first day of their program which is led by Gerhard Bauer, director of the Good Manufacturing Practice (GMP) laboratory at the UC Davis Institute for Regenerative Cures. The other programs, like the one at Cedars-Sinai in Los Angeles (see photo below), are also starting this week or next.

CedarSinaiSPARK2018

Because everything we do at CIRM is focused on the patient, the SPARK programs are required to include patient engagement as part of the students’ internships. Here are some Instagram posts from last year that highlight those patient-centered activities.

CedarSinaiSPARK2017Patients

And speaking of Instagram, we have also included a social media component to the program. We believe it’s critical for scientists to connect with the public about the important work they do. During the UC Davis orientation, Jan Nolta, PhD, the director of the Stem Cell Program at UC Davis School of Medicine, pointed out to the students that making the science accessible and understandable to the public, makes stem cell research less scary and, as a result, it’s more likely to gain public support.

So, as part of their curriculum, the interns will share a few Instagrams per week that capture their summer in the lab. You can follow their posts at #CIRMSPARKLab. In addition to communicating through photos, the students will describe their internship experiences by writing a blog. We’ll post the most outstanding blogs later this summer. In the meantime, you can read last summer’s winning blogs.

At the end of their program, the students get to show off their hard work by presenting their research at the SPARK annual conference which will be held this year at UC Davis. It’s going to be an exciting summer!

Friday Stem Cell Roundup: Making Nerves from Blood; New Clues to Treating Parkinson’s

Stanford lab develops method to make nerve cells from blood.

wernig_ineurons_blood

Induced neuronal (iN) cells derived from adult human blood cells. Credit: Marius Wernig, Stanford University.

Back in 2010, Stanford Professor Marius Wernig and his team devised a method to directly convert skin cells into neurons, a nerve cell. This so-called transdifferentiation technique leapfrogs over the need to first reprogram the skin cells into induced pluripotent stem cells. This breakthrough provided a more efficient path to studying how genetics plays a role in various mental disorders, like autism or schizophrenia, using patient-derived cells. But these types of genetic analyses require data from many patients and obtaining patient skin samples hampered progress because it’s not only an invasive, somewhat painful procedure but it also takes time and money to prepare the tissue sample for the transdifferentiation method.

This week, the Wernig lab reported on a solution to this bottleneck in the journal, PNAS. The study, funded in part by CIRM, describes a variation on their transdifferentiation method which converts T cells from the immune system, instead of skin cells, into neurons. The huge advantage with T cells is that they can be isolated from readily available blood samples, both fresh or frozen. In a press release, Wernig explains this unexpected but very welcomed result:

“It’s kind of shocking how simple it is to convert T cells into functional neurons in just a few days. T cells are very specialized immune cells with a simple round shape, so the rapid transformation is somewhat mind-boggling. We now have a way to directly study the neuronal function of, in principle, hundreds of people with schizophrenia and autism. For decades we’ve had very few clues about the origins of these disorders or how to treat them. Now we can start to answer so many questions.”

Two studies targeting Parkinson’s offer new clues to treating the disease (Kevin McCormack)
Despite decades of study, Parkinson’s disease remains something of a mystery. We know many of the symptoms – trembling hands and legs, stiff muscles – are triggered by the loss of dopamine producing cells in the brain, but we are not sure what causes those cells to die. Despite that lack of certainty researchers in Germany may have found a way to treat the disease.

Mitochondria

Simple diagram of a mitochondria.

They took skin cells from people with Parkinson’s and turned them into the kinds of nerve cell destroyed by the disease. They found the cells had defective mitochondria, which help produce energy for the cells. Then they added a form of vitamin B3, called nicotinamide, which helped create new, healthy mitochondria.

In an article in Science & Technology Research News Dr. Michela Deleidi, the lead researcher on the team, said this could offer new pathways to treat Parkinson’s:

“This substance stimulates the faulty energy metabolism in the affected nerve cells and protects them from dying off. Our results suggest that the loss of mitochondria does indeed play a significant role in the genesis of Parkinson’s disease. Administering nicotinamide riboside may be a new starting-point for treatment.”

The study is published in the journal Cell Reports.

While movement disorders are a well-recognized feature of Parkinson’s another problem people with the condition suffer is sleep disturbances. Many people with Parkinson’s have trouble falling asleep or remaining asleep resulting in insomnia and daytime sleepiness. Now researchers in Belgium may have uncovered the cause.

Working with fruit flies that had been genetically modified to have Parkinson’s symptoms, the researchers discovered problems with neuropeptidergic neurons, the type of brain cell that helps regulate sleep patterns. Those cells seemed to lack a lipid, a fat-like substance, called phosphatidylserine.

In a news release Jorge Valadas, one of the lead researchers, said replacing the missing lipid produced promising results:

“When we model Parkinson’s disease in fruit flies, we find that they have fragmented sleep patterns and difficulties in knowing when to go to sleep or when to wake up. But when we feed them phosphatidylserine–the lipid that is depleted in the neuropeptidergic neurons–we see an improvement in a matter of days.”

Next, the team wants to see if the same lipids are low in people with Parkinson’s and if they are, look into phosphatidylserine – which is already approved in supplement form – as a means to help ease sleep problems.

A Cowboys Fan’s Take on The Catch and Dwight Clark’s Passing Due to ALS

I grew up in Dallas in the 80’s. Needless to say, I was a diehard fan of the Dallas Cowboys National Football League (NFL) team and January 10, 1982 will forever be seared into my memory. Late in the fourth quarter, the Cowboys were leading the San Francisco 49ers 27-21 in the conference championship with the winner moving on to the Super Bowl. But then, with less than a minute remaining, The Catch happened. Dwight Clark of the 49ers sailed over the Cowboys’ Everson Walls to catch Joe Montana’s game-winning pass in the end zone. I was crushed and had a dark cloud over my head for many days afterward.

thecatch.gif

Dwight Clark sails over Everson Walls for The Catch

Though I’ve lived in the Bay Area for the past twenty years and become a 49ers fan, it’s still hard for me to watch video clips of The Catch which is arguably this region’s greatest moment in the history of professional sports. Over the years of listening to sports talk radio, I heard interviews with and about Dwight Clark and have come to realize what a terrific person he was. So, I may hate that play, but I certainly can’t hate the man. That’s why I was as heartbroken as everyone else around here with yesterday’s news that Clark had succumbed, at only 61 years of age, to his battle with amyotrophic lateral sclerosis (ALS) also known as Lou Gehrig’s disease, an incurable neurodegenerative disorder that is usually fatal within 2 to 5 years after diagnosis.

Not surprisingly, the ALS Association’s Golden West Chapter, which covers the entire West Coast, was contacted by every Bay Area TV station about Clark’s death. In her KTVU news segment, TV reporter Deborah Villalon explained what Clark meant to ALS patient advocates who often feel invisible:

“To the ALS community he is a hero for raising awareness in the very public way he faced the disease. Clark faced the terminal illness head-on, speaking publicly of his challenges, even appearing on the big screen at Levi’s Stadium last fall, to thank fans for their support.”

At CIRM, we are funding two clinical trials run by Cedars-Sinai and BrainStorm Cell Therapeutics testing stem cell-based treatments for ALS. In Clark’s memory and for everyone in the ALS community, we hope these trials one day lead to new treatment options for the 5,000 thousand newly diagnosed cases each year in the U.S.

Friday Stem Cell Round: Ask the Expert Facebook Live, Old Brain Cells Reveal Insights and Synthetic Development

Stem Cell Photo of the Week: We’re Live on Facebook Live!

Our stem cell photo of the week is a screenshot from yesterday’s Facebook Live event: “Ask the Expert: Stem Cells and Stroke”. It was our first foray into Facebook Live and, dare I say, it was a success with over 150 comments and 4,500 views during the live broadcast.

FacebookLive_AskExperts_Stroke_IMG_1656

Screen shot of yesterday’s Facebook Live event. Panelists included (from top left going clockwise): Sonia Coontz, Kevin McCormack, Gary Steinberg, MD, PhD and Lila Collins, PhD.

Our panel included Dr. Gary Steinberg, MD, PhD, the Chair of Neurosurgery at Stanford University, who talked about promising clinical trial results testing a stem cell-based treatment for stroke. Lila Collins, PhD, a Senior Science Officer here at CIRM, provided a big picture overview of the latest progress in stem cell therapies for stroke. Sonia Coontz, a patient of Dr. Steinberg’s, also joined the live broadcast. She suffered a devastating stroke several years ago and made a remarkable recovery after getting a stem cell therapy. She had an amazing story to tell. And Kevin McCormack, CIRM’s Senior Director of Public Communications, moderated the discussion.

Did you miss the Facebook Live event? Not to worry. You can watch it on-demand on our Facebook Page.

What other disease areas would you like us to discuss? We plan to have these Ask the Expert shows on a regular basis so let us know by commenting here or emailing us at info@cirm.ca.gov!

Brain cells’ energy “factories” may be to blame for age-related disease

Salk Institute researchers published results this week that shed new light on why the brains of older individuals may be more prone to neurodegenerative diseases like Parkinson’s and Alzheimer’s. To make this discovery, the team applied a technique they devised back in 2015 which directly converts skin cells into brain cells, aka neurons. The method skips the typical intermediate step of reprogramming the skin cells into induced pluripotent stem cells (iPSCs).

They collected skin samples from people ranging in age from 0 to 89 and generated neurons from each. With these cells in hand, the researchers then examined how increased age affects the neurons’ mitochondria, the structures responsible for producing a cell’s energy needs. Previous studies have shown a connection between faulty mitochondria and age-related disease.

While the age of the skin cells had no bearing on the health of the mitochondria, it was a different story once they were converted into neurons. The mitochondria in neurons derived from older individuals clearly showed signs of deterioration and produced less energy.

Aged-mitochondria-green-in-old-neurons-gray-appear-mostly-as-small-punctate-dots-rather-than-a-large-interconnected-network-300x301

Aged mitochondria (green) in old neurons (gray) appear mostly as small punctate dots rather than a large interconnected network. Credit: Salk Institute.

The researchers think this stark difference in the impact of age on skin cells vs. neurons may occur because neurons have higher energy needs. So, the effects of old age on mitochondria only become apparent in the neurons. In a press release, Salk scientist Jerome Mertens explained the result using a great analogy:

“If you have an old car with a bad engine that sits in your garage every day, it doesn’t matter. But if you’re commuting with that car, the engine becomes a big problem.”

The team is now eager to use this method to examine mitochondrial function in neurons derived from Alzheimer’s and Parkinson’s patient skin samples and compared them with skin-derived neurons from similarly-aged, healthy individuals.

The study, funded in part by CIRM, was published in Cell Reports.

“Synthetically” Programming embryo development

One of the most intriguing, most fundamental questions in biology is how an embryo, basically a non-descript ball of cells, turns into a complex animal with eyes, a brain, a heart, etc. A deep understanding of this process will help researchers who aim to rebuild damaged or diseased organs for patients in need.

3-layer_1.16.9

Researchers programmed cells to self-assemble into complex structures such as this one with three differently colored layers. Credit: Wendell Lim/UCSF

A fascinating report published this week describes a system that allows researchers to program cells to self-organize into three-dimensional structures that mimic those seen during early development. The study applied a customizable, synthetic signaling molecule called synNotch developed in the Wendell Lim’s UCSF lab by co-author Kole Roybal, PhD, now an assistant professor of microbiology and immunology at UCSF, and Leonardo Morsut, PhD, now an assistant professor of stem cell biology and regenerative medicine at the University of Southern California.

A UCSF press release by Nick Weiler describes how synNotch was used:

“The researchers engineered cells to respond to specific signals from neighboring cells by producing Velcro-like adhesion molecules called cadherins as well as fluorescent marker proteins. Remarkably, just a few simple forms of collective cell communication were sufficient to cause ensembles of cells to change color and self-organize into multi-layered structures akin to simple organisms or developing tissues.”

Senior author Wendell Lim also explained how this system could overcome the challenges facing those aiming to build organs via 3D bioprinting technologies:

“People talk about 3D-printing organs, but that is really quite different from how biology builds tissues. Imagine if you had to build a human by meticulously placing every cell just where it needs to be and gluing it in place. It’s equally hard to imagine how you would print a complete organ, then make sure it was hooked up properly to the bloodstream and the rest of the body. The beauty of self-organizing systems is that they are autonomous and compactly encoded. You put in one or a few cells, and they grow and organize, taking care of the microscopic details themselves.”

Study was published in Science.

CCSF’s CIRM Bridges scholars: the future of stem cell research is in good hands

In need of an extra dose of inspiration? You might read a great book or listen to that podcast your friend recommended. You might even take a stroll along the beach. But I can do you one better: go to a conference poster session where young stem cell scientists describe their research.

That’s what I did last week at the City College of San Francisco’s (CCSF) Bioscience Symposium held at UC San Francisco’s Genentech Hall. It’s a day-long conference that showcases the work of CCSF Bioscience interns and gives them a chance to present the results of their research projects, network with their peers and researchers, hear panelists talk about careers in biotechnology and participate in practice job interviews.

Bridges_CCSF_2018b

CCSF’s CIRM Bridges Scholars (clockwise from top left): Vanessa Lynn Herrara, Viktoriia Volobuieva, Christopher Nosworthy and Sofiana E. Hamama.

Bridges_CCSF_2018

CCSF’s CIRM Bridges Scholars (clockwise from top left): Seema Niddapu, Mark Koontz, Karolina Kaminska and Iris Avellano

Eight of the dozens of students in attendance at the Symposium are part of the CIRM-funded Bridges Stem Cell Internship program at CCSF. It’s one of 14 CIRM Bridges programs throughout the state that provides paid stem cell research internships to students at universities and colleges that don’t have major stem cell research programs. Each Bridges internship includes thorough hands-on training and education in stem cell research, and direct patient engagement and outreach activities that engage California’s diverse communities.

In the CCSF Bridges Program, directed by Dr. Carin Zimmerman, the students do a 9-month paid internship in top notch labs at UCSF, the Gladstone Institutes and Blood System Research Institute. As I walked from poster to poster and chatted with each Bridges scholar, their excitement and enthusiasm for carrying out stem cell research was plain to see. It left me with the feeling that the future of stem cell research is in good hands and, as I walked into the CIRM office the next day, I felt re-energized to tackle the Agency’s mission to accelerate stem cell treatment for patients with unmet medical needs. But don’t take my word for it, listen to the enthusiastic perspectives of Bridges scholars Mark Koontz and Iris Avellano in this short video.

The Mother of Modern Medicine: Henrietta Lacks’ Portrait Unveiled at National Portrait Gallery

Back during my research scientist days, using HeLa cells for my experiments was as commonplace as a carpenter reaching for his hammer at a construction site. What makes these cells so handy is their robustness: they are easy to maintain in the lab where they divide indefinitely in petri dishes.

HeLaV_M

Scanning electron micrograph of just-divided HeLa cells.
Credit: National Center for Microscopy and Imaging Research

Henrietta Lacks and the Story of HeLa Cells
The reason they grow so readily is because they originally came from a patient’s tumor. For the longest time I had been under the impression that “HeLa” stood for Helen Lang, supposedly the patient’s name. It wasn’t until Rebecca Skloot’s award-winning book, “The Immortal Life of Henrietta Lacks”, was published in 2010, that I learned their true identity.

Only 31 years old, Henrietta Lacks died of cervical cancer in 1951. Before she died, cells from her cancer were collected without her permission or knowledge. Noticed for their remarkable ability to continually divide in cell culture, these cells, labelled as “HeLa”, became the first human cell line. Though Henrietta Lacks is long gone, her cells still live on in research labs all over the world and have been instrumental to many important discoveries and over 10,000 patents.

The Mother of Modern Medicine: The Portrait

lacks1

Henrietta Lacks (HeLa): The Mother of Modern Medicine by Kadir Nelson (see full portrait here)

The story of Lacks’ contribution to science can now be appreciated not only in the form of words on a page but also paint on canvas. Last week, the Smithsonian’s National Portrait Gallery, in collaboration with the National Museum of African American History and Culture, installed Kadir Nelson’s 2017 portrait of Lacks on the museum’s first-floor presentation wall.

In a Smithsonian.com article, painting and sculpture curator, Dorothy Moss, explained that Lacks’ portrait will be installed next to portraits of more recognizable Americans like Barack Obama and Susan B. Anthony where she hopes it acts as a, “signal to the kinds of history we want to tell. We want to make sure that people who have not been written into traditional narratives of history are visible immediately when our visitors enter. It will spark a conversation about people who have made a significant impact on science yet have been left out of history.”

When you look at the painting, be sure to notice some subtle details that help tell Lacks’ story, like the two missing buttons in her dress that symbolize her cells that were taken without her permission and the “Flower of Life” wall paper pattern meant to represent immortality.

CIRM’s Commitment to the Patient
It’s the learning from the unethical treatment of patients like Henrietta Lacks that in recent years has driven more focus on protecting patients and given them a voice when it comes to their care and their participation in medical research.

This commitment to patients is at the forefront of everything we do at CIRM. For instance, our 29-member Governing Board is composed of ten patient advocates, our CIRM-funded clinical trials are supported by Clinical Advisory Panels (CAPs) that include a patient advocate at the table and our mission itself is wholly focused on accelerating stem cell treatments to patients with unmet medical needs.

I think it’s very appropriate that Henrietta Lack’s portrait is titled, “The Mother of Modern Medicine” because of her legacy of empowering patients to advocate for the development of life-saving therapies.