Stem Cell Agency Expands Industry Alliance Program to  Accelerate Therapies

An ever-growing array of academic and industry resources are required to rapidly translate scientific discoveries and emerging technologies toward safe and effective regenerative medicine therapies for patients. To help, the California Institute for Regenerative Medicine (CIRM) is creating a network of Industry Resource Partners (IRP) that will make its unique resources available to help accelerate the progression of CIRM-funded Discovery, Translational and Clinical stage research projects toward transformative regenerative medicine therapies for rare and prevalent diseases.

The Industry Resource Partners will offer their services, technologies and expertise to CIRM-funded projects in a cost-effective, stage-appropriate and consistent manner.

For example, Novo Nordisk is making research-grade vials of its Good Manufacturing Practice (GMP)-grade human embryonic stem cell line available for CIRM Discovery Quest stage research projects at no cost. Having access to clinically compatible pluripotent stem cell lines such as this one will help CIRM researchers accelerate the translation of their therapeutic discoveries toward clinical use. Researchers will also have future access to Novo Nordisk’s GMP seed stock as well as opportunities for partnering with Novo Nordisk.

“CIRM is a lender of first resort, supporting projects in the very early stages, long before they are able to attract outside investment,” says Shyam Patel, PhD, the Director of Business Development at CIRM. “With the launch of this program we hope to create a force-multiplier effect by bringing in industry partners who have the resources, experience and expertise to help further accelerate CIRM-funded regenerative medicine research projects.”

This new network builds on work CIRM started in 2018 with the Industry Alliance Program (IAP). The goal of the IAP was to partner researchers and industry to help accelerate the most promising stem cell, gene and regenerative medicine therapy programs to commercialization. Four of the members of the IAP are also founding members or the IRP.

In addition to Novo Nordisk, the IRP includes:

ElevateBio is providing access to high quality, well-characterized induced pluripotent stem cell (iPSC) lines to CIRM Discovery Quest stage research projects for product development in regenerative medicine. CIRM awardees will also have access to ElevateBio’s viral vector technologies, process development, analytical development, and GMP manufacturing services.

Bayer is offering to support the cell therapy process development and GMP manufacturing needs of CIRM Translational and Clinical awardees at its newly built Berkeley facilities. The partnered projects will have access to Bayer’s cell therapy manufacturing facilities, equipment, resources and expertise. Bayer is also open to partnering from fee-based-services to full business development and licensing opportunities. 

Resilience is providing access to its GMP manufacturing services for CIRM Translational and Clinical Stage projects. In addition to providing access to its cell therapy manufacturing services and partnering opportunities, Resilience will provide project consultation that could aid CIRM applicants in drafting manufacturing plans and budgets for CIRM applications.

“These partnerships are an important step forward in helping advance not only individual projects but also the field as a whole,” says Dr. Maria T. Millan, President and CEO of CIRM. “One of the biggest challenges facing regenerative medicine right now involves manufacturing. Providing researchers with access to high quality starting materials and advanced manufacturing capabilities is going to be essential in helping these projects maintain high quality standards and comply with the regulatory frameworks needed to bring these therapies to patients.”

While the IRP Network will offer its services to CIRM grantees there is no obligation or requirement that any CIRM awardee take advantage of these services.

Wit, wisdom and a glimpse into the future

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

As of this moment, there are over two million podcasts and over 48 million episodes to listen to on your favorite listening device. If you’re a true crime enthusiast like me, you’ve surely heard of Casefile or one of the other 94 podcasts on the topic. But what if you’re looking for something a little less ghastly and a little more uplifting?

Dr. Daylon James, co-host of The Stem Cell Podcast

The Stem Cell Podcast is an informative and entertaining resource for scientists and science enthusiasts (or really, anyone) interested in learning about the latest developments in stem cell research.

Dr. Arun Sharma, co-host of The Stem Cell Podcast

On their latest episode, dynamic co-hosts and research scientists Dr. Daylon James and Dr. Arun Sharma sit down with our President & CEO, Dr. Maria Millan, to discuss the impact of California’s culture of innovation on CIRM, the challenge of balancing hope vs. hype in the context of stem cell research/therapies, and the evolution of the agency over the past 15 years.

Listen on as Dr. Millan highlights some of CIRM’s greatest victories and shares our mission for the future.

We’ve got cash, here’s how you can get some

When the voters of California approved Proposition 14 last November (thanks folks) they gave us $5.5 billion to continue the work we started way back in 2014. It’s a great honor, and a great responsibility.

It’s also a great opportunity to look at what we do and how we do it and try to come up with even better ways of funding groundbreaking research and helping create a new generation of researchers.

In addition to improving on what we already do, Prop 14 introduced some new elements, some new goals for us to add to the mix, and we are in the process of fleshing out how we can best do that.

Because of all these changes we decided it would be a good idea to hold a “Town Hall” meeting and let everyone know what these changes are and how they may impact applications for funding.

The Town Hall, on Tuesday June 29, was a great success with almost 200 participants. But we know that not everyone who wanted to attend could, so here’s the video of the event, and below that are the questions that were posed by people during the meeting, and the answers to those questions.

Having seen the video we would be eternally grateful if you could respond to a short online survey, to help us get a better idea of your research and education needs and to be better able to serve you and identify potential areas of opportunity for CIRM. Here’s a link to that survey: https://www.surveymonkey.com/r/VQMYPDL

We know that there may be issues or questions that are not answered here, so feel free to send those to us at info@cirm.ca.gov and we will make sure you get an answer.

Are there any DISC funding opportunities specific to early-stage investigators?

DISC funding opportunities are open to all investigators.  There aren’t any that are specific to junior investigators.

Are DISC funding opportunities available for early-mid career researchers based out of USA such as Australia?

Sorry, you have to be in California for us to fund your work.

Does tumor immunology/ cancer immunotherapy fall within the scope of the CIRM discovery grants?

Yes, they do.  Here is a link to various CIRM DISC Awards that fall within the cancer category.  https://www.cirm.ca.gov/grants?disease_focus%5B%5D=1427&program_type%5B%5D=1230

Will Disc1 (Inception awards) and/or seed funding mechanisms become available again?

CIRM is anticipating launching a program to meet this need toward the end of this year.

For DISC award is possible to contact a grant advisor for advice before applying?

Please email discovery@cirm.ca.gov to discuss Discovery stage applications before applying

Is co-funding requirement a MUST for clinical trials?

Co-funding requirements vary.  Please refer to the following link for more information: https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CLIN2_Mini_Brochure2.pdf

Hi, when will reviews for DISC 2: CIRM Quest – Discovery Stage Research Projects (deadline March 2021) be available? Thanks!

Review summaries for the March 2021 Discovery submitted applications will be available by mid-August, with final board funding decisions at the August 24th Application Review Subcommittee Meeting

Has CIRM project made it to Phase III or product launch with FDA approval? What is CIRM strategy for start-up biotech companies?

CIRM has funded several late-stage Phase III/potentially pivotal clinical trials. You can view them here: https://www.cirm.ca.gov/our-impact/funding-clinical-trials

CIRM funding supports non-profit academic grantees as well as companies of all sizes.

I am studying stem cells using mouse. Is my research eligible for the CIRM grants?

Yes it is.

Your programs more specifically into stem cell research would be willing to take patients that are not from California?

Yes, we have treated patients who are not in California. Some have come to California for treatment and others have been treated in other states in the US by companies that are based here in California.

Can you elaborate how the preview of the proposals works? Who reviews them and what are the criteria for full review?

The same GWG panel both previews and conducts the full review. The panel first looks through all the applications to identify what each reviewer believes represents the most likely to be impactful and meet the goals of the CIRM Discovery program. Those that are selected by any reviewer moves forward to the next full review step.

If you meet your milestones-How likely is it that a DISC recipient gets a TRAN award?

The milestones are geared toward preparation of the TRAN stage.  However, this is a different application and review that is not guaranteed to result in funding.

Regarding Manufacturing Public Private partnerships – What specific activities is CIRM thinking about enabling these partnerships? For example, are out of state for profit commercial entities able to conduct manufacturing at CA based manufacturing centers even though the clinical program may be primarily based out of CA? If so, what percent of the total program budget must be expended in CA? How will CIRM enable GMP manufacturing centers interact with commercial entities?

We are in the early stages of developing this concept with continued input from various stakeholders. The preliminary vision is to build a network of academic GMP manufacturing centers and industry partners to support the manufacturing needs of CIRM-funded projects in California.

We are in the process of widely distributing a summary of the manufacturing workshop. Here’s a link to it:

If a center is interested in being a sharing lab or competency hub with CIRM, how would they go about it?

CIRM will be soliciting applications for Shared Labs/Competency hubs in potential future RFAs. The survey asks several questions asking for feedback on these concepts so it would really help us if you could complete the survey.

Would preclinical development of stem cell secretome-derived protein therapies for rare neuromuscular diseases and ultimately, age-related muscle wasting be eligible for CIRM TRAN1 funding? The goal is to complete IND-enabling studies for a protein-based therapy that enhances tissue regeneration to treat a rare degenerative disease. the screening to identify the stem-cell secreted proteins to develop as therapeutics is done by in vitro screening with aged/diseased primary human progenitor cells to identify candidates that enhance their differentiation . In vivo the protein therapeutic signals to several cell types , including precursor cells to improve tissue homeostasis.

I would suggest reaching out to our Translation team to discuss the details as it will depend on several factors. You can email the team at translational@cirm.ca.gov

Here are the slides used in the presentations.

Hitting our Goals: Playing Matchmaker

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #3 was Partner.

In the musical “Fiddler on the Roof” two of the daughters sing about their hopes of finding a husband, through the services of a matchmaker:

Matchmaker, Matchmaker,
Make me a match,
Find me a find,
Catch me a catch

While CIRM isn’t in the business of finding husbands for young ladies, we have set up ourselves as matchmakers of a very different kind. Over the course of the last five years or more we have actively tried to find deep pocketed partners for some of the researchers we are funding. You could say we are changing the last line in that verse to “Catch me some cash.” And we do.

Our goal is to help these researchers have access to the kind of money they’re going to need to move their work into clinical trials and through the Food and Drug Administration (FDA) approval process, so they are available to people who need them. To do that we created what we call our Industry Alliance Program (IAP).

The goal of the IAP is simple, to be proactive in creating partnerships between industry and our grantees, helping develop direct opportunities for industry to partner with CIRM in accelerating the most promising stem cell, gene and regenerative medicine therapy programs to commercialization.

It takes a lot of money to move a promising idea out of the lab and into the arms, or other body parts, of patients; one recent estimate put that at around $1 billion. CIRM can help with providing the funding to get projects off the ground and into clinical trials, but as you get to larger clinical trials it gets a lot more expensive. The IAP brings in well-heeled investors to help cover those expense.

Back in 2015, when we were developing our Strategic Plan, we made these partnerships one of our Big 6 goals. And, as with everything we did in that plan, we set an ambitious target of “partnering 50% of unpartnered clinical projects with commercial partners.”

So, how did we go about trying to reach that goal? Our Business Development Team (Drs Shyam Patel and Sohel Talib) worked with large companies to help identify their strategic focus and then provided them with non-confidential information about projects we fund that might interest them. If they saw something they felt had promise we introduced them to the researchers behind that project. In essence, we played matchmaker.

But it wasn’t just about making introductions. We stayed involved as the two groups got to know each other, offering both scientific and legal advice, to help them overcome any reservations or obstacles they might encounter.

So how did we do? Pretty good I would have to say. By the end of 2020 we had partnered 63% of unpartnered clinical projects, 72 events altogether, generating almost $13 billion in additional investments in these projects. That money can help move these projects through the approvals process and ultimately, we hope, into the clinic.

But we’re not done. Not by a long shot. Now that we have achieved that goal we have our eyes set on even bigger things. We are now working on creating a new Strategic Plan that is considering bringing industry in to partner with projects at earlier stages or creating public-private partnerships to ensure there is enough manufacturing capacity for all the new therapies in the pipeline.

We have a lot of work to do. But thanks to the passage of Proposition 14 we now have the time and money we need to do that work. We’ve got a lot more matchmaking to do.

A Match Made in Heaven, if heaven were in Oakland!

The Matchmaker – by Gerrit van Honthorst

Throughout history, matchmakers have played an important role in bringing together couples for arranged marriages. Fast forward to today and CIRM is now playing a similar role. We’re not looking to get anyone hitched, what we are trying to do is create partnerships between people we are funding and companies looking for the next hot thing.

So far, I’d say we are doing a pretty decent job. Over the years we have leveraged our funding to bring in some $13 billion in additional investments in stem cell research. But there’s still a lot of untapped potential out there. That’s why tomorrow, March 9th, we’re joining with BIOCOM to host a Partner Day.

The idea is to highlight some of the most promising programs we are funding and see if we can find partners for them, partners who want to help advance the research and ultimately – we hope – bring those therapies to patients.

The webinar and panel discussion will feature a presentation from the CIRM Business Development team about our portfolio. That’s a pretty extensive list because it covers all stages of research from Discovery or basic, through Translational and all the way to Clinical. We’ll show how our early investment in these programs has helped de-risk them and given them the chance to get the data needed to demonstrate their promise and potential.

So, who are we interested in having join us? Pretty nearly everyone involved in the field:

  • Academic institutions
  • Research organizations
  • Entrepreneurs
  • Venture capital firms
  • Companies

And the areas of interest are equally broad:

  • Stem or progenitor cell-based therapy
  • Cell Therapy
  • Gene therapy
  • Biologic
  • Small molecule
  • Medical Device
  • Diagnostic
  • Tools/Tech
  • Other

And for those who are really interested and don’t want to waste any time, there’s an opportunity to set up one-on-one meetings right away. After all, if you have found the perfect match, why wait!

But here’s the catch. Space is limited so you need to register ahead. Here’s where you go to find out all the details and sign up for the event.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

CIRM-funded treatment for cancer granted FDA breakthrough therapy designation

Mark Chao, M.D., Ph.D., cofounder of Forty Seven, Inc. and current VP of oncology clinical research at Gilead Sciences

An antibody therapeutic, magrolimab, being tested for myelodysplastic syndrome (MDS), a group of cancers in which the bone marrow does not produce enough healthy blood cells , was granted breakthrough therapy designation with the Food and Drug Administration (FDA). 

Breakthrough therapy designations from the FDA are intended to help expedite the development of new treatments. They require preliminary clinical evidence that demonstrates that the treatment may have substantial improvement in comparison to therapy options currently available. CIRM funded a Phase 1b trial in MDS and acute myeloid leukemia (AML), another type of blood cancer, that provided the data on which the breakthrough therapy designation is based.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

Magrolimab was initially developed by a team led by Irv Weissman, M.D. at Stanford University with the support of CIRM awards. This led to the formation of Forty Seven, Inc., which was subsequently acquired by Gilead Sciences in April 2020 for $4.9 billion (learn more about other highlighted partnership events on CIRM’s Industry Alliance Program website by clicking here).

In CIRM’s 2019-2020 18-Month Report, Mark Chao, M.D., Ph.D.,  who co-founded Forty Seven, Inc. and currently serves as the VP of oncology clinical research at Gilead Sciences, credits CIRM with helping progress this treatment.

“CIRM’s support has been instrumental to our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach.”

Magrolimab is currently being studied as a combination therapy with azacitidine, a chemotherapy drug, in a Phase 3 clinical trial in previously untreated higher risk MDS. This is one of the last steps before seeking FDA approval for widespread commercial use.

Merdad Parsey, MD, PhD, Chief Medical Officer at Gilead Sciences

In a press release, Merdad Parsey, M.D., Ph.D., Chief Medical Officer at Gilead Sciences discusses the significance of the designation from the FDA and the importance of the treatment.

“The Breakthrough Therapy designation recognizes the potential for magrolimab to help address a significant unmet medical need for people with MDS and underscores the transformative potential of Gilead’s immuno-oncology therapies in development.”

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

Facebook Live: Ask the Stem Cell Team

On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.

What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state. Paul Hartman.  San Leandro, California

Dr. Kelly Shepard

Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1)  our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism.  Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer.  There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.

************************************

STROKE

What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold

Dr. Lila Collins

Dr. Lila Collins: Hi Elvis, this is an evolving story.  I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized.  As you note, some of the treated subjects had promising motor recoveries. 

SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release.  While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI).  In this trial, SanBio saw positive results on motor recovery with their product.  In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well.  SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds. 

Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke.  The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.

*****************************

I am a stroke survivor will stem cell treatment able to restore my motor skills? Ruperto

Dr. Lila Collins:

Hi Ruperto. Restoring motor loss after stroke is a very active area of research.  I’ll touch upon a few ongoing stem cell trials.  I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.

Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier.  UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic).  Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.

There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours.  After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery.  Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.

Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke).  The trial has an accelerated FDA designation, called RMAT and a special protocol assessment.  This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing.  Results from this trial should be available in about two years. 

********************************

Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?

Dr. Lila Collins:

Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.

That said, hemorrhagic strokes are not rare and tend to be more deadly.  These strokes are caused by bleeding into or around the brain which damages neurons.  They can even increase pressure in the skull causing further damage.  Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.

While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.

We are aware of a clinical trial targeting acute hemorrhagic stroke that is being run by the Mayo clinic in Jacksonville Florida.

****************************

I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell

Dr. Lila Collins:

Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision).  The results could be:

  1. Visual loss from damage to the retina
  2. You could have a normal eye with damage to the area of the brain that controls the eye’s movement
  3. You could have damage to the part of the brain that interprets vision.

You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged. 

Replacing lost neurons is an active effort that at the moment is still in the research stages.  As you can imagine, this is complex because the neurons have to make just the right connections to be useful. 

*****************************

VISION

Is there any stem cell therapy for optical nerve damage? Deanna Rice

Dr. Ingrid Caras

Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments.  However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma

****************************

I read an article about ReNeuron’s retinitis pigmentosa clinical trial update.  In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors? Leonard

Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.

****************************

My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen

Dr. Ingrid Caras: The results will be available sometime in 2020.

*****************************

I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors.  My questions are: Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving? Leonard Furber, an RP Patient

Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.

Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye.   The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.

**********************************

DIABETES

What advances have been made using stem cells for the treatment of Type 2 Diabetes? Mary Rizzo

Dr. Ross Okamura

Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells.  The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations. 

Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases.  Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients.  Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns.  However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.

To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin.  While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.

It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.

***********************************

SPINAL CORD INJURY

Is there any news on clinical trials for spinal cord injury? Le Ly

Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.

“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”

Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.

In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.

*********************************

ALS

Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson

Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed.  So we will not expect to see the results probably for another year or two.

***********************************

AUTISM

Are there treatments for autism or fragile x using stem cells? Magda Sedarous

Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail.  CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.

**********************************

PARKINSON’S DISEASE

What is happening with Parkinson’s research? Hanifa Gaphoor

Dr. Kent Fitzgerald

Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research. 

The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.  

This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc.  Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix. 

Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease. 

Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients.   As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced.  The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient. 

One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s.  This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).

Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should. 

The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.   

********************************

HUNTINGTON’S DISEASE

Any plans for Huntington’s? Nikhat Kuchiki

Dr. Lisa Kadyk

Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded.   One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells.   When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons.  Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease.   Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.   

There are other, non-cell-based therapies also being tested in clinical trials now, using  anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein.  Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure, Voyager)

******************************

TRAUMATIC BRAIN INJURY (TBI)

My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:

  • Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
  •  
  • I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
  • Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?

Dr. Kelly Shepard:  TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred  previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.

********************************

We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?

Dr. Stephen Lin

Dr. Stephen Lin:  Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors.  Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes.  At present no regulatory approved clinical therapy has been developed using this approach. 

************************************

PREDATORY STEM CELL CLINICS

What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult? Kathy Jean Schultz

Dr. Geoff Lomax

Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”

In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.

  • First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
  • We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
  • Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.

*****************************************

I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial? Cheri Hicks

Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.

I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:

 1) I wonder on where the typical injection cells are coming from?

  2) I wonder what is the actual cost of the cells?

3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?

*********************************

Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:

  • There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
  • Most of the evidence presented is case reports that individuals have benefited
  • The challenge we face is not know the exact type of injury and cell treatments used.
  • Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
  • Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
  • You are correct that there have not been reports of serious injury for knee injections
  • However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.

*************************************

Do stem cells have benefits for patients going through chemotherapy and radiation therapy? Ruperto

Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.

Dr. Ingrid Caras: That’s an interesting and valid question.  There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries.  In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.

There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”).  It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain.  In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.

*****************************************

Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia?  Don Reed.

Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease.   In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves.  This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system.  For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”.   To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes.   Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.  

A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells.  The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells. 

*****************************************

Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason

Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.

********************************

What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas

Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment.  Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach.  CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations.  Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed.  It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.

CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.

While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or  metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.

**********************************

Explain the differences between gene therapy and stem cell therapy? Renee Konkol

Dr. Stephen Lin:  Gene therapy is the direct modification of cells in a patient to treat a disease.  Most gene therapies use modified, harmless viruses to deliver the gene into the patient.  Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis. 

Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease.  Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy.  Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells.  The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).

Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients.  Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.

***********************************

Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known? James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC

Dr. Stephen Lin:  Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting.  Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial.  CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials.  The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect.   Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.

*****************************************

Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs. Sajid

Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture.  These are quite different than MSCs and offer a new path to be explored for repairing and generating bone. 

CIRM’s Industry Alliance Program: Facilitating Partnerships to Advance Stem Cell Therapies

Some things are better together. Take for instance macaroni and cheese, eggs and bacon, cookies and ice cream. Each of these things are fine on their own, but together, they become something more powerful and delicious.

The right partnerships can bring out the best in things. At CIRM, we fully embrace this concept. That’s why we’re launching the Industry Alliance Program (IAP). It’s a new partnering opportunity to bring the most promising stem cell, gene therapy, and regenerative medicine programs to market where they can help people with unmet medical needs.

CIRM is the world’s largest stem cell research funding institution dedicated to helping patients by accelerating the development of quality stem cell treatments. We’re currently funding 244 active stem cell research programs including 39 ongoing clinical trials.

The CIRM IAP is designed to give pharma, biotech and VC firms direct access to CIRM’s growing stem cell portfolio. These partners work in the stem cell and regenerative medicine field and will be connected to CIRM-funded scientists working on projects relevant to their interests.

In a news release, CIRM’s President and CEO, Dr. Maria T. Millan, explained:

Maria T. Millan

“The goal of the IAP is to secure industry partnerships and funding for CIRM’s translational and clinical-stage projects. Our Agency provides researchers the initial funding to advance promising projects towards the clinic. Now, we’re going a step further by offering a program that facilitates connections between industry partners and our grantees. These companies can offer support or additional funding needed to give these promising projects the best chance for success and the best chance of helping patients.”

The first two companies to join the IAP are BlueRock Therapeutics and Vivo Capital. BlueRock is a Cambridge, Massachusetts-based company that is pioneering cell therapies for degenerative diseases while Vivo Capital is a global venture capital firm that invests in life sciences and healthcare companies.

CIRM will continue to selectively recruit new partners to the IAP with the goal of building a collaborative network to support the development and commercialization of CIRM-funded programs.

Neil Littman, CIRM’s Director of Business Development, concluded:

Neil Littman

“The IAP is essentially a built-in concierge service for the stem cell space. Our unique vantage-point both inside and outside of California – spanning discovery, translation, and clinical trials – allows us to effectively match CIRM-funded programs with the strategic objectives of our IAP partners.  We’re excited to work with partners such as BlueRock and Vivo who have a demonstrated commitment to advance stem cell-based therapies to the market.”

For more information about CIRM’s new IAP program, visit our website.