Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

The long road to developing a therapy for epilepsy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Good science takes time. That’s an important guiding phrase for researchers looking to develop new therapies. But it’s also a frustrating reality for patients who are waiting for something to help them now.

That point was driven home last week when the governing board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $8 million to test a new approach to treating a drug-resistant form of epilepsy. This approach holds a lot of promise but getting to this point has not been easy or quick.

Epilepsy is one of the most common neurological disorders in the US, affecting more than three million people. More than one third of those people have a form of epilepsy that doesn’t respond to current medications, so the only options are surgery or using lasers (LITT) to remove the affected part of the brain. Not surprisingly this can cause serious, irreversible damage, such as effects on memory, mood and vision. Equally unsurprising, because of those impacts many people are reluctant to go that route.

Now a company called Neurona Therapeutics has developed a new approach called NRTX-1001. This consists of a specialized type of neuronal or brain cell that is derived from embryonic stem cells (hESCs).  These neuronal cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

Cory Nicholas, PhD, the Co-Founder and CEO of Neurona says this approach will be tested on people with drug-resistant temporal lobe epilepsy, the most common form of epilepsy.

“To our knowledge, NRTX-1001 is the first human cell therapy to enter clinical trials for epilepsy. This cell therapy has the potential to provide a less invasive, non-tissue destructive, regenerative alternative for people with chronic focal seizures.” 

“Epilepsy patient advocates and clinicians have said that such a regenerative cell therapy could represent a first option that, if successful, could obviate the need for lobectomy/LITT. And for those not eligible for lobectomy/LITT, cell therapy could provide the only option to potentially achieve seizure-freedom.”

Nicholas says this work didn’t happen overnight. “This effort to develop regenerative cell therapy for epilepsy officially began in the early 2000’s from the laboratories of John Rubenstein, MD, PhD, Arturo Alvarez-Buylla, PhD, and Arnold Kriegstein, MD, PhD, at UC San Francisco. They were among the first to understand how specialized inhibitory nerve cells, called interneurons, develop from neural stem cells in our forebrain before birth. Subsequently, they pioneered the extraction and use of these cells as a cell therapy in preclinical models.”

Over the years the group working on this approach expanded, later becoming Neurona Therapeutics, and CIRM supported that work with several awards.

“CIRM provided the necessary funds and expertise to help translate our discoveries toward the clinic using human embryonic stem cell (hESC) technology to generate a sustainable supply of interneuron cells for further evaluation. Truly, CIRM has been the essential catalyst in accelerating this important research from bench to bedside.”

Nicholas says its immensely gratifying to be part of this work, and to know that if it succeeds it will be life-altering, even life-saving, for so many people.

“It is difficult to reflect back with all the work that is happening at present on the first-in-human trial, but it is always emotional for me to think about our amazing team: Neurona employees, CIRM staff, clinicians, professors, trainees, collaborators, and investors; who have worked tirelessly in contributing to the advancement of this therapeutic mission. I am deeply humbled by the opportunity to be part of this innovative, rigorous, and compassionate effort, and by the responsibility to the brave patients participating in the study. We remain steadfast in our commitment to patient safety and cautiously optimistic that NRTX-1001 cell therapy will improve quality of life for people living with chronic focal epilepsy. Moreover, we are sincerely thankful to Californians for their commitment to CIRM’s vision, and we are proud to be a part of this groundbreaking initiative that has put our state at the forefront, dedicated to fulfilling the promise of regenerative medicine.”

CIRM-Funded Study Helping Babies Battle a Deadly Immune Disorder Gets Boost from FDA

Hataalii Begay, age 4, first child treated with UCSF gene therapy for Artemis-SCID

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

When Hataalii Begay was born in a remote part of the Navajo nation he was diagnosed with a rare, usually fatal condition. Today, thanks to a therapy developed at UCSF and funded by CIRM, he’s a normal healthy four year old boy running around in cowboy boots.

That stem cell therapy could now help save the lives of other children born with this deadly immune disorder because it has been granted fast-track review status by the US Food and Drug Administration (FDA).

The California Institute for Regenerative Medicine (CIRM) has invested $12 million to test this therapy in a clinical trial at UC San Francisco.

The disorder is Artemis-SCID, a form of severe combined immunodeficiency disease. Children born with this condition have no functioning immune system so even a simple infection can prove life-threatening or fatal.

Currently, the only approved treatment for Artemis-SCID is a bone-marrow transplant, but many children are unable to find a healthy matched donor for that procedure. Even when they do find a donor they often need regular injections of immunoglobulin to boost their immune system.

In this clinical trial, UCSF Doctors Mort Cowan and Jennifer Puck are using the patient’s own blood stem cells, taken from their bone marrow. In the lab, the cells are modified to correct the genetic mutation that causes Artemis-SCID and then re-infused back into the patients. The goal is that over the course of several months these cells will create a new blood supply, one that is free of Artemis-SCID, and that will in turn help repair the child’s immune system.

So far the team has treated ten newly-diagnosed infants and three older children who failed transplants. Dr. Cowan says early data from the trial is encouraging. “With gene therapy, we are seeing these babies getting older. They have normal T-cell immunity and are getting immunized and vaccinated. You wouldn’t know they had any sort of condition if you met them; it’s very heartening.”

Because of that encouraging data, the FDA is granting this approach Regenerative Medicine Advanced Therapy (RMAT) designation. RMAT is a fast-track designation that can help speed up the development, review and potential approval of treatments for serious or life-threatening diseases.

“This is great news for the team at UCSF and in particular for the children and families affected by Artemis-SCID,” says Dr. Maria T. Millan, the President and CEO of CIRM. “The RMAT designation means that innovative forms of cell and gene therapies like this one may be able to accelerate their route to full approval by the FDA and be available to all the patients who need it.”

CIRM Board gives thumbs up to training and treatment programs

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

CIRM Bridges student discusses her poster presentation

At CIRM, the bread and butter of what we do is funding research and hopefully advancing therapies to patients. But the jam, that’s our education programs. Helping train the next generation of stem cell and gene therapy scientists is really inspiring. Watching these young students – and some are just high school juniors – come in and grasp the science and quickly become fluent in talking about it and creating their own experiments shows the future is in good hands.

Right now we fund several programs, such as our SPARK and Bridges internships, but they can’t cover everything, so last week the CIRM Board approved a new training program called COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem Cell Science). The program will fill a critical need for skilled research practitioners who understand and contribute at all levels in the translation of science to medicine, from bench to bedside.

The objective of the COMPASS Training Program is to prepare a diverse group of undergraduate students for careers in regenerative medicine through the creation of novel recruitment and support mechanisms that identify and foster untapped talent within populations that are historically under-represented in the biomedical sciences. It will combine hands-on research with mentorship experiences to enhance transition of students to successful careers. A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors, and other program participants

The CIRM Board approved investing $58.22 million for up to 20 applications for a five-year duration.

“This new program highlights our growing commitment to creating a diverse workforce, one that taps into communities that have been historically under-represented in the biomedical sciences,” says Dr. Maria T. Millan, President and CEO of CIRM. “The COVID19 pandemic made it clear that the benefits of scientific discovery are not always accessible to communities that most need them. CIRM is committed to tackling these challenges by creating a diverse and dedicated workforce that can meet the technical demands of taking novel treatment ideas and making them a reality.”

The Board also approved a new $80 million concept plan to expand the CIRM Alpha Stem Cell Clinic Network. The Network clinics are all in top California medical centers that have the experience and the expertise to deliver high-quality FDA-authorized stem cell clinical trials to patients.

There are currently five Alpha Clinics – UC San Diego; UCLA/UC Irvine; City of Hope; UCSF; UC Davis – and since 2015 they have hosted more than 105 clinical trials, enrolled more than 750 patients in these trials, and generated more than $95 million in industry contracts. 

Each award will provide up to $8 million in funding over a five-year period. The clinics will have to include:

  • A demonstrated ability to offer stem cell and gene therapies to patients as part of a clinical trial.
  • Programs to help support the career development of doctors, nurses, researchers or other medical professionals essential for regenerative medicine clinical trials.
  • A commitment to data sharing and meeting CIRM’s requirements addressing issues of diversity, equity and inclusion and meeting the needs of California’s diverse patient population.

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928  

Breaking down barriers: Expanding patient access and accelerating research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

10 years ago I was presented with an incredibly unique opportunity- to become the fifth patient with spinal cord injuries to participate in the world’s first clinical trial testing a treatment made from human embryonic stem cells. It was not only a risky and potentially life-changing decision, but also one that I had to make in less than a week. 

To make matters more complicated, I was to be poked, prodded, and extensively scanned on a daily basis for several months as part of the follow-up process. I lived nearly two hours away from the hospital and I was newly paralyzed. How would this work? I wanted my decision-making process to be solely based on the amazing science and the potential that with my participation, the field might advance. Instead, I found myself spending countless hours contemplating the extra work I was asking my family to take on in addition to nursing me back to life. 

In this instance, I was “lucky”. I had access to family and friends who were able and willing to make any kind of sacrifice to ensure my happiness. I lived quite a distance away from the hospital, but everyone around me had a car. They had the means to skip work, keep the gas tank filled, and make the tedious journey. I also had an ally, which was perhaps my biggest advantage. The California Institute for Regenerative Medicine (CIRM) was the funding agency behind the groundbreaking clinical trial and I’ll never forget the kind strangers who sat on my bedside and delighted me with stories of hope and science. 

Accelerating the research

The field of regenerative medicine has gained so much momentum since my first introduction to stem cells in a small hospital room. Throughout the decade and especially in recent years there have been benchmark FDA approvals, increased funding and regulatory support. The passage of Proposition 14 in 2020 has positioned CIRM to continue to accelerate research from discovery to clinical and to drive innovative, real-world solutions resulting in transformative treatments for patients. 

Now, thanks to Prop 14 we have some new goals, including working to try and ensure that the treatments our funding helps develop are affordable and accessible to a diverse community of patients in an equitable manner, including those often overlooked or underrepresented in the past. Unsurprisingly, one of the big goals outlined in our new 5-year Strategic Plan is to deliver real world solutions through the expansion of the CIRM Alpha Stem Cell Clinics network and the creation of a network of Community Care Centers of Excellence.

The Alpha Stem Cell Clinics and Community Care Centers of Excellence will work in collaboration to achieve a wide set of goals. These goals include enabling innovative clinical research in regenerative medicine, increasing diverse patient access to transformative therapies, and improving patient navigation of clinical trials. 

Breaking down the barriers 

The dilemma surrounding the four-hour long round-trip journey for an MRI or a vial of blood isn’t just unique to me and my experience participating in a clinical trial. It is well recognized and documented that geographic disparities in clinical trial sites as well as limited focus on community outreach and education about clinical trials impede patient participation and contribute to the well-documented low participation of under-represented patients in clinical studies.

As outlined in our Strategic Plan, the Alpha Stem Cell Clinic Network and Community Care Centers will collaboratively extend geographic access to CIRM-supported clinical trials across the state. Community Care Centers will have direct access and knowledge about the needs of their patient populations including, culturally and linguistically effective community-based education and outreach. In parallel, Alpha Stem Cell Clinics will be designed to support the anticipated outreach and education efforts of future Community Care Centers.

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year Strategic Plan

Celebrating Stem Cell Awareness Day

THIS BLOD IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

The second Wednesday in October is celebrated as Stem Cell Awareness Day. It’s an event that CIRM has been part of since then Governor Arnold Schwarzenegger launched it back in 2008 saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.”

In the past we would have helped coordinate presentations by scientists in schools and participated in public events. COVID of course has changed all that. So, this year, to help mark the occasion we asked some people who have been in the forefront of making Governor Schwarzenegger’s statement come true, to share their thoughts and feelings about the day. Here’s what they had to say.

What do you think is the biggest achievement so far in stem cell research?

Dr. Jan Nolta

Jan Nolta, PhD., Director of the Stem Cell Program at UC Davis School of Medicine, and directs the new Institute for Regenerative Cures. “The work of Don Kohn and his UCLA colleagues and team members throughout the years- developing stem cell gene therapy cures for over 50 children with Bubble baby disease. I was very fortunate to work with Don for the first 15 years of my career and know that development of these cures was guided by his passion to help his patients.

Dr. Clive Svendsen

Clive Svendsen, PhD. Director, Board of Governors Regenerative Medicine Institute at Cedars-Sinai: “Without a doubt the discovery of how to make human iPSCs by Shinya Yamanaka and Jamie Thomson.”

When people ask you what kind of impact CIRM and stem cell research has had on your life what do you say?

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)

Pawash Priyank and Upasana Thakur, parents of Ronnie, who was born with a life-threatening immune disorder but is thriving today thanks to a CIRM-funded clinical trial at UC San Francisco. “This is beyond just a few words and sentences but we will give it a shot. We are living happily today seeing Ronnie explore the world day by day, and this is only because of what CIRM does every day and what Stem cell research has done to humanity. Researchers and scientists come up with innovative ideas almost every day around the globe but unless those ideas are funded or brought to implementation in any manner, they are just in the minds of those researchers and would never be useful for humanity in any manner. CIRM has been that source to bring those ideas to the table, provide facilities and mechanisms to get those actually implemented which eventually makes babies like Ronnie survive and see the world. That’s the impact CIRM has. We have witnessed and heard several good arguments back in India in several forums which could make difference in the world in different sectors of lives but those ideas never come to light because of the lack of organizations like CIRM, lack of interest from people running the government. An organization like CIRM and the interest of the government to fund them with an interest in science and technology actually changes the lives of people when some of those ideas come to see the light of real implementation. 

What are your biggest hopes for the future at UC Davis?

Jan Nolta, PhD: “The future of stem cell and gene therapy research is very bright at UC Davis, thanks to CIRM and our outstanding leadership. We currently have 48 clinical trials ongoing in this field, with over 20 in the pipeline, and are developing a new education and technology complex, Aggie Square, next to the Institute for Regenerative Cures, where our program is housed. We are committed to our very diverse patient population throughout the Sacramento region and Northern California, and to expanding and increasing the number of novel therapies that can be brought to all patients who need them.”

What are your biggest hopes for the future at Cedars-Sinai?

Clive Svendsen, PhD: “That young investigators will get CIRM or NIH funding and be leaders in the regenerative medicine field.”

What do you hope is the future for stem cell research?

Pawash Priyank and Upasana Thakur: “We always have felt good about stem cell therapy. For us, a stem cell has transformed our lives completely. The correction of sequencing in the DNA taken out of Ronnie and injecting back in him has given him life. It has given him the immune system to fight infections. Seeing him grow without fear of doing anything, or going anywhere gives us so much happiness every hour. That’s the impact of stem cell research. With right minds continuing to research further in stem cell therapy bounded by certain good processes & laws around (so that misuse of the therapy couldn’t be done) will certainly change the way treatments are done for certain incurable diseases. I certainly see a bright future for stem cell research.”

On a personal note what is the moment that touched you the most in this journey.

Jan Nolta, PhD: “Each day a new patient or their story touches my heart. They are our inspiration for working hard to bring new options to their care through cell and gene therapy.”

Clive Svendsen, PhD: “When I realized we would get the funding to try and treat ALS with stem cells”

How important is it to raise awareness about stem cell research and to educate the next generation about it?

Pawash Priyank and Upasana Thakur: “Implementing stem cell therapy as a curriculum in the educational systems right from the beginning of middle school and higher could prevent false propaganda of it through social media. Awareness among people with accurate articles right from the beginning of their education is really important. This will also encourage the new generation to choose this as a subject in their higher studies and contribute towards more research to bring more solutions for a variety of diseases popping up every day.”

Creating a diverse group of future scientists

Students in CIRM’s Bridges program showing posters of their work

If you have read the headlines lately, you’ll know that the COVID-19 pandemic is having a huge impact on the shipping industry. Container vessels are forced to sit out at anchor for a week or more because there just aren’t enough dock workers to unload the boats. It’s a simple rule of economics, you can have all the demand you want but if you don’t have the people to help deliver on the supply side, you are in trouble.

The same is true in regenerative medicine. The field is expanding rapidly and that’s creating a rising demand for skilled workers to help keep up. That doesn’t just mean scientists, but also technicians and other skilled individuals who can ensure that our ability to manufacture and deliver these new therapies is not slowed down.

That’s one of the reasons why CIRM has been a big supporter of training programs ever since we were created by the voters of California when they approved Proposition 71. And now we are kick-starting those programs again to ensure the field has all the talented workers it needs.

Last week the CIRM Board approved 18 programs, investing more than $86 million, as part of the Agency’s Research Training Grants program. The goal of the program is to create a diverse group of scientists with the knowledge and skill to lead effective stem cell research programs.

The awards provide up to $5 million per institution, for a maximum of 20 institutions, over five years, to support the training of predoctoral graduate students, postdoctoral trainees, and/or clinical trainees.

This is a revival of an earlier Research Training program that ran from 2006-2016 and trained 940 “CIRM Scholars” including:

• 321 PhD students
• 453 Postdocs
• 166 MDs

These grants went to academic institutions from UC Davis in Sacramento to UC San Diego down south and everywhere in-between. A 2013 survey of the students found that most went on to careers in the industry.

  • 56% continued to further training
  • 14% advanced to an academic research faculty position
  • 10.5% advanced to a biotech/industry position
  • 12% advanced to a non-research position such as teaching, medical practice, or foundation/government work

The Research Training Grants go to:

AWARDINSTITUTIONTITLEAMOUNT
EDUC4-12751Cedars-SinaiCIRM Training Program in Translational Regenerative Medicine    $4,999,333
EDUC4-12752UC RiversideTRANSCEND – Training Program to Advance Interdisciplinary Stem Cell Research, Education, and Workforce Diversity    $4,993,115
EDUC4-12753UC Los AngelesUCLA Training Program in Stem Cell Biology    $5 million
EDUC4-12756University of Southern CaliforniaTraining Program Bridging Stem Cell Research with Clinical Applications in Regenerative Medicine    $5 million
EDUC4-12759UC Santa CruzCIRM Training Program in Systems Biology of Stem Cells    $4,913,271
EDUC4-12766Gladstone Inst.CIRM Regenerative Medicine Research Training Program    $5 million
EDUC4-12772City of HopeResearch Training Program in Stem Cell Biology and Regenerative Medicine    $4,860,989
EDUC4-12782StanfordCIRM Scholar Training Program    $4,974,073
EDUC4-12790UC BerkeleyTraining the Next Generation of Biologists and Engineers for Regenerative Medicine    $4,954,238
EDUC4-12792UC DavisCIRM Cell and Gene Therapy Training Program 2.0    $4,966,300
EDUC4-12802Children’s Hospital of Los AngelesCIRM Training Program for Stem Cell and Regenerative Medicine Research    $4,999,500
EDUC4-12804UC San DiegoInterdisciplinary Stem Cell Training Grant at UCSD III    $4,992,446
EDUC4-12811ScrippsTraining Scholars in Regenerative Medicine and Stem Cell Research    $4,931,353
EDUC4-12812UC San FranciscoScholars Research Training Program in Regenerative Medicine, Gene Therapy, and Stem Cell Research    $5 million
EDUC4-12813Sanford BurnhamA Multidisciplinary Stem Cell Training Program at Sanford Burnham Prebys Institute, A Critical Component of the La Jolla Mesa Educational Network    $4,915,671  
EDUC4-12821UC Santa BarbaraCIRM Training Program in Stem Cell Biology and Engineering    $1,924,497
EDUC4-12822UC IrvineCIRM Scholars Comprehensive Research Training Program  $5 million
EDUC4-12837Lundquist Institute for Biomedical InnovationStem Cell Training Program at the Lundquist Institute    $4,999,999

These are not the only awards we make to support training the next generation of scientists. We also have our SPARK and Bridges to Stem Cell Research programs. The SPARK awards are for high school students, and the Bridges program for graduate or Master’s level students.

National Academy of Medicine honors CIRM Grantees

YOU CAN ALSO LISTEN TO THIS BLOG AS AN AUDIO PODCAST ON SPOTIFY 

As someone who is not always as diligent as he would like to be about sending birthday cards on time, I’m used to sending belated greetings to people. So, I have no shame in sending belated greetings to four CIRM grantees who were inducted into the National Academy of Medicine in 2020.

I say four, but it’s really three and a half. I’ll explain that later.

Being elected to the National Academy of Medicine is, in the NAM’s own modest opinion, “considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.”

To be fair, NAM is right. The people elected are among the best and brightest in their field and membership is by election from the other members of NAM, so they are not going to allow any old schmuck into the Academy (which could explain why I am still waiting for my membership).

The CIRM grantees elected last year are:

Dr. Antoni Ribas: Photo courtesy UCLA

Antoni Ribas, MD, PhD, professor of medicine, surgery, and molecular and medical pharmacology, U. C. Los Angeles.

Dr. Ribas is a pioneer in cancer immunology and has devoted his career to developing new treatments for malignant melanoma. When Dr. Ribas first started malignant melanoma was an almost always fatal skin cancer. Today it is one that can be cured.

In a news release Dr. Ribas said it was a privilege to be honored by the Academy: “It speaks to the impact immunotherapy has played in cancer research. When I started treating cases of melanoma that had metastasized to other organs, maybe 1 in 20 responded to treatment. Nobody in their right mind wanted to be a specialist in this field. It was the worst of the worst cancers.”

Looks like he chose his career path wisely.

Dr. Jeffrey Goldberg: Photo courtesy Stanford

Jeffrey Louis Goldberg, MD, PhD, professor and chair of ophthalmology, Stanford University, Palo Alto, Calif.

Dr. Goldberg was honored for his contribution to the understanding of vision loss and ways to reverse it. His lab has developed artificial retinas that transmit images down the optic nerve to the brain through tiny silicon chips implanted in the eye. He has also helped use imaging technology to better improve our ability to detect damage in photoreceptor cells (these are cells in the retina that are responsible for converting light into signals that are sent to the brain and that give us our color vision and night vision)

In a news release he expressed his gratitude saying: “I look forward to serving the goals of the National Academies, and to continuing my collaborative research efforts with my colleagues at the Byers Eye Institute at Stanford and around the world as we further our efforts to combat needless blindness.”

Dr. Mark Anderson; photo courtesy UCSF

Mark S. Anderson, MD, PhD, professor in Diabetes Research, Diabetes Center, U. C. San Francisco.

Dr. Anderson was honored for being a leader in the study of autoimmune diseases such as type 1 diabetes. This focus extends into the lab, where his research examines the genetic control of autoimmune diseases to better understand the mechanisms by which immune tolerance is broken.

Understanding what is happening with the immune system, figuring out why it essentially turns on the body, could one day lead to treatments that can stop that, or even reverse it by boosting immune activity.

Dr. John Dick: Photo courtesy University Health Network, Toronto

Remember at the beginning I said that three and a half CIRM grantees were elected to the Academy, well, Canadian researcher, Dr. John Dick is the half. Why? Well, because the award we funded actually went to UC San Diego’s Dennis Carson but it was part of a Collaborative Funding Partnership Program with Dr. Dick at the University of Toronto. So, we are going to claim him as one of our own.

And he’s a pretty impressive individual to partner with. Dr. Dick is best known for developing a test that led to the discovery of leukemia stem cells. These are cells that can evade surgery, chemotherapy and radiation and which can lead to patients relapsing after treatment. His work helped shape our understanding of cancer and revealed a new strategy for curing it.

Creating a better way to treat type 1 diabetes

LISTEN TO THIS BLOG AS AN AUDIOCAST ON SPOTIFY

The cell encapsulation device (right) that is being developed by Encellin, a San Francisco–based biotechnology company. Photo courtesy of Encellin

Type 1 diabetes (t1d) affects every aspect of a person’s life, from what they eat and when they eat, to when they exercise and how they feel physically and emotionally. Because the peak age for being diagnosed with t1d is around 13 or 14 years of age it often hits at a time when a child is already trying to cope with big physical and emotional changes. Add in t1d and you have a difficult time made a lot more challenging.

There are ways to control the disease. Regular blood sugar monitoring and insulin injections can help people manage their condition but those come with their own challenges. Now researchers are taking a variety of different approaches to developing new, innovative ways of helping people with t1d.

One of those companies is Encellin. They are developing a pouch-like device that can be loaded with stem cells and then implanted in the body. The pouch acts like a mini factory, releasing therapies when they are needed.

This work began at UC San Francisco in the lab of Dr. Tejal Desai – with help from CIRM funding – that led to the creation of Encellin. We recently sat down – virtually of course – with Dr. Grace Wei, the co-founder of the company to chat about their work, and their hopes for the future.

Dr. Grace Wei

She said the decision to target t1d was an easy one:

Type 1 diabetes is an area of great need. It’s very difficult to manage at any age but particularly in children. It affects what they can eat, what they can do, it’s a big burden on the family and can become challenging to manage when people get older.

“It’s an autoimmune disease so everyone’s disease progression is a bit different. People think it’s just a matter of you having too much blood sugar and not enough insulin, but the problem with medicines like insulin is that they are not dynamic, they don’t respond to the needs of your body as they occur. That means people can over-regulate and give themselves too much insulin for what their body needs and if it happens at night, it can be deadly.

Dr. Wei says stem cell research opens up the possibility of developing dynamic therapies, living medicines that are delivered to you by cells that respond to your dynamic needs. That’s where their pouch, called a cell encapsulation device (CED) comes in.

The pouch is tiny, only about the size of a quarter, and it can be placed just under the skin. Encellin is filling the pouch with glucose-sensitive, insulin producing islet cells, the kind of cells destroyed by t1d. The idea is that the cells can monitor blood flow and, when blood sugar is low, secrete insulin to restore it to a healthy level. 

Another advantage of the pouch is that it may eliminate the need for the patient to take immunosuppressive medications.

“The pouch is really a means to protect both the patient receiving the cells and the cells themselves. Your body tends to not like foreign objects shoved into it and the pouch in one respect protects the cells you are trying to put into the person. But you also want to be able to protect the person, and that means knowing where the cells are and having a means to remove them if you need to. That’s why it’s good to have a pouch that you can put in the body, take it out if you need, and replace if needed.”

Dr. Wei says it’s a little like making tea with a tea bag. When the need arises the pouch can secrete insulin but it does so in a carefully controlled manner.

“These are living cells and they are responsive, it’s not medicine where you can overdose, these cells are by nature self-regulating.”

They have already tested their approach with a variety of different kinds of islets, in a variety of different kinds of model.

“We’ve tested for insulin production, glucose stimulation and insulin response. We have tested them in a number of animal models and those studies are supporting our submission for a first-in-human safety clinical trial.”

Dr. Wei says if this approach works it could be used for other metabolic conditions such as parathyroid disorders. And she says a lot of this might not be possible without the early funding and support from CIRM.

“CIRM had the foresight to invest in groups that are looking ahead and said it would be great to have renewable cells to transplant into the body  (that function properly. We are grateful that groundwork that has been laid and are looking forward to advancing this work.”

And we are looking forward to working with them to help advance that work too.