Charting a new course for stem cell research

What are the latest advances in stem cell research targeting cancer? Can stem cells help people battling COVID-19 or even help develop a vaccine to stop the virus? What are researchers and the scientific community doing to help address the unmet medical needs of underserved communities? Those are just a few of the topics being discussed at the Annual CIRM Alpha Stem Cell Clinic Network Symposium on Thursday, October 8th from 9am to 1.30pm PDT.

Like pretty nearly everything these days the symposium is going to be a virtual event, so you can watch it from the comfort of your own home on a phone or laptop. And it’s free.

The CIRM Alpha Clinics are a network of leading medical centers here in California. They specialize in delivering stem cell and gene therapies to patients. So, while many conferences look at the promise of stem cell therapies, here we deal with the reality; what’s in the clinic, what’s working, what do we need to do to help get these therapies to patients in need?

It’s a relatively short meeting, with short presentations, but that doesn’t mean it will be short on content. Some of the best stem cell researchers in the U.S. are taking part so you’ll learn an awful lot in a short time.

We’ll hear what’s being done to find therapies for

  • Rare diseases that affect children
  • Type 1 diabetes
  • HIV/AIDS
  • Glioblastoma
  • Multiple myeloma

We’ll discuss how to create a patient navigation system that can address social and economic determinants that impact patient participation? And we’ll look at ways that the Alpha Clinic Network can partner with community care givers around California to increase patient access to the latest therapies.

It’s going to be a fascinating day. And did I mention it’s free!

All you have to do is go to this Eventbrite page to register.

And feel free to share this with your family, friends or anyone you think might be interested.

We look forward to seeing you there.

Meet the people who are changing the future

Kristin MacDonald

Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.

I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.

Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.

That’s when you know the treatment works. At least for Rosie.

There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.

It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.

Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.

And it’s free!

You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.

We hope to see you there.

CIRM & CZI & MOU for COVID-19

Too many acronyms? Not to worry. It is all perfectly clear in the news release we just sent out about this.

A new collaboration between the California Institute for Regenerative Medicine (CIRM) and the Chan Zuckerberg Initiative (CZI) will advance scientific efforts to respond to the COVID-19 pandemic by collaborating on disseminating single-cell research that scientists can use to better understand the SARS-CoV-2 virus and help develop treatments and cures.

CIRM and CZI have signed a Memorandum of Understanding (MOU) that will combine CIRM’s infrastructure and data collection and analysis tools with CZI’s technology expertise. It will enable CIRM researchers studying COVID-19 to easily share their data with the broader research community via CZI’s cellxgene tool, which allows scientists to explore and visualize measurements of how the virus impacts cell function at a single-cell level. CZI recently launched a new version of cellxgene and is supporting the single-cell biology community by sharing COVID-19 data, compiled by the global Human Cell Atlas effort and other related efforts, in an interactive and scalable way.

“We are pleased to be able to enter into this partnership with CZI,” said Dr. Maria T. Millan, CIRM’s President & CEO. “This MOU will allow us to leverage our respective investments in genomics science in the fight against COVID-19. CIRM has a long-standing commitment to generation and sharing of sequencing and genomic data from a wide variety of projects. That’s why we created the CIRM genomics award and invested in the Stem Cell Hub at the University of California, Santa Cruz, which will process the large complex datasets in this collaboration.”  

“Quickly sharing scientific data about COVID-19 is vital for researchers to build on each other’s work and accelerate progress towards understanding and treating a complex disease,” said CZI Single-Cell Biology Program Officer Jonah Cool. “We’re excited to partner with CIRM to help more researchers efficiently share and analyze single-cell data through CZI’s cellxgene platform.”

In March 2020, the CIRM Board approved $5 million in emergency funding to target COVID-19. To date, CIRM has funded 17 projects, some of which are studying how the SARS-CoV-2 virus impacts cell function at the single-cell level.

Three of CIRM’s early-stage COVID-19 research projects will plan to participate in this collaborative partnership by sharing data and analysis on cellxgene.   

  • Dr. Evan Snyder and his team at Sanford Burnham Prebys Medical Discovery Institute are using induced pluripotent stem cells (iPSCs), a type of stem cell that can be created by reprogramming skin or blood cells, to create lung organoids. These lung organoids will then be infected with the novel coronavirus in order to test two drug candidates for treating the virus.
  • Dr. Brigitte Gomperts at UCLA is studying a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19.
  • Dr. Justin Ichida at the University of Southern California is trying to determine if a drug called a kinase inhibitor can protect stem cells in the lungs and other organs, which the novel coronavirus selectively infects and kills.

“Cumulative data into how SARS-CoV-2 affects people is so powerful to fight the COVID-19 pandemic,” said Stephen Lin, PhD, the Senior CIRM Science Officer who helped develop the MOU. “We are grateful that the researchers are committed to sharing their genomic data with other researchers to help advance the field and improve our understanding of the virus.”

CZI also supports five distinct projects studying how COVID-19 progresses in patients at the level of individual cells and tissues. This work will generate some of the first single-cell biology datasets from donors infected by SARS-CoV-2 and provide critical insights into how the virus infects humans, which cell types are involved, and how the disease progresses. All data generated by these grants will quickly be made available to the scientific community via open access datasets and portals, including CZI’s cellxgene tool.

CIRM Board Approves Clinical Trials Targeting COVID-19 and Sickle Cell Disease

Coronavirus particles, illustration.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved new clinical trials for COVID-19 and sickle cell disease (SCD) and two earlier stage projects to develop therapies for COVID-19.

Dr. Michael Mathay, of the University of California at San Francisco, was awarded $750,000 for a clinical trial testing the use of Mesenchymal Stromal Cells for respiratory failure from Acute Respiratory Distress Syndrome (ARDS). In ARDS, patients’ lungs fill up with fluid and are unable to supply their body with adequate amounts of oxygen. It is a life-threatening condition and a major cause of acute respiratory failure. This will be a double-blind, randomized, placebo-controlled trial with an emphasis on treating patients from under-served communities.

This award will allow Dr. Matthay to expand his current Phase 2 trial to additional underserved communities through the UC Davis site.

“Dr. Matthay indicated in his public comments that 12 patients with COVID-related ARDS have already been enrolled in San Francisco and this funding will allow him to enroll more patients suffering from COVID- associated severe lung injury,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM, in addition to the NIH and the Department of Defense, has supported Dr. Matthay’s work in ARDS and this additional funding will allow him to enroll more COVID-19 patients into this Phase 2 blinded randomized controlled trial and expand the trial to 120 patients.”

The Board also approved two early stage research projects targeting COVID-19.

  • Dr. Stuart Lipton at Scripps Research Institute was awarded $150,000 to develop a drug that is both anti-viral and protects the brain against coronavirus-related damage.
  • Justin Ichida at the University of Southern California was also awarded $150,00 to determine if a drug called a kinase inhibitor can protect stem cells in the lungs, which are selectively infected and killed by the novel coronavirus.

“COVID-19 attacks so many parts of the body, including the lungs and the brain, that it is important for us to develop approaches that help protect and repair these vital organs,” says Dr. Millan. “These teams are extremely experienced and highly renowned, and we are hopeful the work they do will provide answers that will help patients battling the virus.”

The Board also awarded Dr. Pierre Caudrelier from ExcellThera $2 million to conduct a clinical trial to treat sickle cell disease patients

SCD is an inherited blood disorder caused by a single gene mutation that results in the production of “sickle” shaped red blood cells. It affects an estimated 100,000 people, mostly African American, in the US and can lead to multiple organ damage as well as reduced quality of life and life expectancy.  Although blood stem cell transplantation can cure SCD fewer than 20% of patients have access to this option due to issues with donor matching and availability.

Dr. Caudrelier is using umbilical cord stem cells from healthy donors, which could help solve the issue of matching and availability. In order to generate enough blood stem cells for transplantation, Dr. Caudrelier will be using a small molecule to expand these blood stem cells. These cells would then be transplanted into twelve children and young adults with SCD and the treatment would be monitored for safety and to see if it is helping the patients.

“CIRM is committed to finding a cure for sickle cell disease, the most common inherited blood disorder in the U.S. that results in unpredictable pain crisis, end organ damage, shortened life expectancy and financial hardship for our often-underserved black community” says Dr. Millan. “That’s why we have committed tens of millions of dollars to fund scientifically sound, innovative approaches to treat sickle cell disease. We are pleased to be able to support this cell therapy program in addition to the gene therapy approaches we are supporting in partnership with the National Heart, Lung and Blood Institute of the NIH.”

A clear vision for the future

Dr. Henry Klassen and Dr. Jing Yang, founders of jCyte

When you have worked with a group of people over many years the relationship becomes more than just a business venture, it becomes personal. That’s certainly the case with jCyte, a company founded by Drs. Henry Klassen and Jing Yang, aimed at finding a cure for a rare form of vision loss called retinitis pigmentosa. CIRM has been supporting this work since it’s early days and so on Friday, the news that jCyte has entered into a partnership with global ophthalmology company Santen was definitely a cause for celebration.

The partnership could be worth up to $252 million and includes an immediate payment of $62 million. The agreement also connects jCyte to Santen’s global business and medical network, something that could prove invaluable in bringing their jCell therapy to patients outside the US.

Here in the US, jCyte is getting ready to start a Phase 2 clinical trial – which CIRM is funding – that could prove pivotal in helping it get approval from the US Food and Drug Administration.

As Dr. Maria Millan, CIRM’s President and CEO says, we have been fortunate to watch this company steadily progress from having a promising idea to developing a life-changing therapy.

“This is exciting news for everyone at jCyte. They have worked so hard over many years to develop their therapy and this partnership is a reflection of just how much they have achieved. For us at CIRM it’s particularly encouraging. We have supported this work from its early stages through clinical trials. The people who have benefited from the therapy, people like Rosie Barrero, are not just patients to us, they have become friends. The people who run the company, Dr. Henry Klassen, Dr. Jing Yang and CEO Paul Bresge, are so committed and so passionate about their work that they have overcome many obstacles to bring them here, an RMAT designation from the Food and Drug Administration, and a deal that will help them advance their work even further and faster. That is what CIRM is about, following the science and the mission.”

Paul Bresge, jCyte’s CEO says they couldn’t have done it without CIRM’s early and continued investment.

Paul Bresge, jCyte CEO

“jCyte is extremely grateful to CIRM, which was established to support innovative regenerative medicine programs and research such as ours.  CIRM supported our early preclinical data all the way through our late stage clinical trials.  This critical funding gave us the unique ability and flexibility to put patients first in each and every decision that we made along the way. In addition to the funding, the guidance that we have received from the CIRM team has been invaluable. jCell would not be possible without the early support from CIRM, our team at jCyte, and patients with degenerative retinal diseases are extremely appreciative for your support.”

Here is Rosie Barrero talking about the impact jCell has had on her life and the life of her family.

CIRM Board invests $5 million in emergency funding for coronavirus

Coronavirus

In response to the crisis caused by the COVID-19 virus in California and around the world the governing Board of the California Institute for Regenerative Medicine (CIRM) today held an emergency meeting to approve $5 million in rapid research funds targeting the virus.

“These are clearly extraordinary times and they require an extraordinary response from all of us,” says Dr. Maria T. Millan, President and CEO of CIRM. “Our mission is to accelerate stem cell treatments to patients with unmet medical needs. California researchers have made us aware that they are pursuing potential stem cell based approaches to the COVID-19 crisis and we felt it was our responsibility to respond by doing all we can to support this research and doing so as quickly as we possibly can.”

The Board’s decision enables CIRM to allocate $5 million in funding for peer-reviewed regenerative medicine and stem cell research that could quickly advance treatments for COVID-19. The funding will be awarded as part of an expedited approval process.

To qualify applicants would go through a full review by CIRM’s independent Grants Working Group.

  • Approved projects will be immediately forwarded to the CIRM Board for a vote
  • Projects approved by the Board would go through an accelerated contract process to ensure funds are distributed as quickly as possible

“Our hope is that we can go from application to funding within 30 to 40 days,” says Jonathan Thomas, PhD, JD, Chair of the CIRM Board. “This is a really tight timeframe, but we can’t afford to waste a moment. There is too much at stake. The coronavirus is creating an unprecedented threat to all of us and, as one of the leading players in regenerative medicine, we are committed to doing all we can to develop the tools and promote the research that will help us respond to that threat.”

Only projects that target the development or testing of a treatment for COVID-19 are eligible. They must also meet other requirements including being ready to start work within 30 days of approval and propose achieving a clear deliverable within six months. The proposed therapy must also involve a stem cell or a drug or antibody targeting stem cells.

The award amounts and duration of the award are as follows:

Award Amount and Duration Limits

Project StageSpecific ProgramAward Amount*Award Duration
Clinical trialCLIN2$750,00024 months
Late stage preclinicalCLIN1$400,00012 months
TranslationalTRAN1$350,00012 months
DiscoveryDISC2$150,00012 months

CIRM Board members were unanimous in their support for the program. Al Rowlett, the patient advocate for mental health, said: “Given the complexity of this situation and the fact that many of the individuals I represent aren’t able to advocate for themselves, I wholeheartedly support this.”

Dr. Os Steward, from UC Irvine agreed: “I think that this is a very important thing for CIRM to do for a huge number of reasons. The concept is great and CIRM is perfectly positioned to do this.”

“All hands are on deck world-wide in this fight against COVID-19.” says Dr. Millan. “CIRM will deploy its accelerated funding model to arm our stem cell researchers in this multi-pronged and global attack on the virus.”

You can learn more about the program, including how to apply, on our website.

Big time validation for early support

It’s not every day that a company and a concept that you helped support from the very beginning gets snapped up for $4.9 billion. But that’s what is happening with Forty Seven Inc. and their anti-cancer therapies. Gilead, another California company by the way, has announced it is buying Forty Seven Inc. for almost $5 billion.

The deal gives Gilead access to Forty Seven’s lead antibody therapy, magrolimab, which switches off CD47, a kind of “do not eat me” signal that cancer cells use to evade the immune system.

CIRM has supported this program from its very earliest stages, back in 2013, when it was a promising idea in need of funding. Last year we blogged about the progress it has made from a hopeful concept to an exciting therapy.

When Forty Seven Inc. went public in 2018, Dr. Irv Weissman, one of the founders of the company, attributed a lot of their success to CIRM’s support.

Dr. Irv Weissman

“The story of the funding of this work all of the way to its commercialization and the clinical trials reported in the New England Journal of Medicine is simply this: CIRM funding of a competitive grant took a mouse discovery of the CD47 ‘don’t eat me’ signal through all preclinical work to and through a phase 1 IND with the FDA. Our National Institutes of Health (NIH) did not fund any part of the clinical trial or preclinical run up to the trial, so it is fortunate for those patients and those that will follow, if the treatment continues its success in larger trials, that California voters took the state’s right action to fund research not funded by the federal government.”

Dr. Maria Millan, CIRM’s President & CEO, says the deal is a perfect example of CIRM’s value to the field of regenerative medicine and our ability to work with our grantees to make them as successful as possible.

“To say this is incredible would be an understatement! Words cannot describe how excited we are that this novel approach to battling currently untreatable malignancies has the prospect of making it to patients in need and this is a major step. Speaking on behalf of CIRM, we are very honored to have been a partner with Forty Seven Inc. from the very beginning.

CIRM Senior Science Officer, Dr. Ingrid Caras, was part of the team that helped a group of academic scientists take their work out of the lab and into the real world.

“I had the pleasure of working with and helping the Stanford team since CIRM provided the initial funding to translate the idea of developing CD47 blockade as a therapeutic approach. This was a team of superb scientists who we were fortunate to work closely with them to navigate the Regulatory environment and develop a therapeutic product. We were able to provide guidance as well as funding and assist in the ultimate success of this project.”

Forty Seven Inc. is far from the only example of this kind of support and collaboration. We have always seen ourselves as far more than just a funding agency. Money is important, absolutely. But so too is bringing the experience and expertise of our team to help academic scientists take a promising idea and turn it into a successful therapy.

After all that’s what our mission is, doing all we can to accelerate stem cell therapies to patients with unmet medical needs. And after a deal like this, Forty Seven Inc. is definitely accelerating its work.

New Report Says CIRM Produces Big Economic Boost for California

An independent Economic Impact Report says the California Institute for Regenerative Medicine (CIRM) has had a major impact on California’s economy, creating tens of thousands of new jobs, generating hundreds of millions of dollars in new taxes, and producing billions of dollars in additional revenue for the state.

The report, done by Dan Wei and Adam Rose at the Price School of Public Policy at the University of Southern California, looked at the impacts of CIRM funding on both the state and national economy from the start of the Stem Cell Agency in 2004 to the end of 2018.

The total impacts on the California economy are estimated to be:

  • $10.7 billion of additional gross output (sales revenue)
  • $641.3 million of additional state/local tax revenues
  • $726.6 million of additional federal tax revenues
  • 56,549 additional full-time equivalent (FTE) jobs, half of which offer salaries considerably higher than the state average

Maria Millan, M.D., CIRM’s President and CEO, says the report reflects the Agency’s role in building an ecosystem to accelerate the translation of important stem cell science to solutions for patients with unmet medical needs. “CIRM’s mission on behalf of patients has been the priority from day one, but this report shows that CIRM funding brings additional benefits to the state. This report reflects how CIRM is promoting economic growth in California by attracting scientific talent and additional capital, and by creating an environment that supports the development of businesses and commercial enterprises in the state”

In addition to the benefits to California, the impacts outside of California on the US economy are estimated to be:

  • $4.7 billion of additional gross output (sales revenue)
  • $198.7 million of additional state (non-Californian) & local tax revenue
  • $208.6 million of additional federal tax revenues
  • 25,816 additional full-time equivalent (FTE) jobs

The researchers summarize their findings, saying: “In terms of economic impacts, the state’s investment in CIRM has paid handsome dividends in terms of output, employment, and tax revenues for California.”

The estimates in the report are based on the economic stimulus created by CIRM funding and by the co-funding that researchers and companies were required to provide for clinical and late-stage preclinical projects. The estimates also include:

  • Investments in CIRM-supported projects from private funders such as equity investments, public offerings and mergers and acquisitions,
  • Follow-on funding from the National Institutes of Health and other organizations due to data generated in CIRM-funded projects
  • Funding generated by clinical trials held at CIRM’s Alpha Stem Cell Clinics network

The researchers state “Nearly half of these impacts emanate from the $2.67 billion CIRM grants themselves.”

“The economic impact of California’s investment in stem and regenerative cell research is reflective of significant progress in this field that was just being born at the time of CIRM’s creation,” says Dr. Millan. “We fund the most promising projects based on rigorous science from basic research into clinical trials. We partnered with researchers and companies to increase the likelihood of success and created specialized infrastructure such as the Alpha Clinics Network to support the highest quality of clinical care and research standards for these novel approaches.  The ecosystem created by CIRM has attracted scientists, companies and capital from outside the state to California. By supporting promising science projects early on, long before most investors were ready to come aboard, we enabled our scientists to make progress that positioned them to attract significant commercial investments into their programs and into California.”

These partnerships have helped move promising therapies out of the lab and into clinical trials for companies like Orchard Therapeutics’ successful treatment for Severe Combined Immunodeficiency and Forty Seven Inc.’s innovative approach to treating cancer.

Dr. Don Kohn: Photo courtesy UCLA Jonsson Comprehensive Cancer Center

“I think one of the greatest strengths of CIRM has been their focus on development of new stem cell therapies that can become real medicines,” says UCLA and Orchard Therapeutics’ Don Kohn, M.D. “This has meant guiding academic investigators to do the things that may be second nature in industry/pharmaceutical companies but are not standard for basic or clinical research.  The support from CIRM to perform the studies and regulatory activities needed to navigate therapies through the FDA and to form alliances with biotech and pharma companies has allowed the stem cell gene therapy we developed to treat SCID babies to be advanced and licensed to Orchard Therapeutics who can make it available to patients across the country.”

Dr. Mark Chao: Photo courtesy Forty Seven Inc.

“CIRM’s support has been instrumental to our early successes and our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach with magrolimab,” says Mark Chao, M.D., Ph.D., Founder and Vice President of Clinical Development at Forty Seven Inc. “ CIRM was an early collaborator in our clinical programs, and will continue to be a valued partner as we move forward with our MDS/AML clinical trials.”

The researchers say the money generated by partnerships and investments, what is called “deal-flow funding”, is still growing and that the economic benefits created by them are likely to continue for some time: “Deal-flow funding usually involves several waves or rounds of capital infusion over many years, and thus is it expected that CIRM’s past and current funding will attract increasing amounts of industry investment and lead to additional spending injections into the California economy in the years to come.”

They conclude their report by saying: “CIRM has led to California stem cell research and development activities becoming a leader among the states.”

CIRM public events highlight uncertain future of stem cell research

When governments cut funding for scientific research the consequences can be swift, and painful. In Canada last week for example, the government of Ontario cut $5 million in annual funding for stem cell research, effectively ending a project developing a therapy to heal the damaged lungs of premature babies.

Here in the US the federal government is already placing restrictions on support for fetal tissue research and there is speculation embryonic stem cell research could be next. That’s why agencies like CIRM are so important. We don’t rely on a government giving us money every year. Instead, thanks to the voters of California, we have had a steady supply of funds to enable us to plan long-term and support multi-year projects.

But those funds are due to run out soon. We anticipate funding our last new awards this year and while we have enough money to continue supporting all the projects our Board has already approved, we won’t be able to take on any new projects. That’s bad news for the scientists and, ultimately, really bad for the patients who are in need of new treatments for currently incurable diseases.

We are going to talk about that in two upcoming events.

UC San Diego Sanford Stem Cell Clinical Center

The first is a patient advocate event at UC San Diego on Tuesday, May 28th from 12.30pm to 1.30pm. It’s free, there is parking and snacks and refreshments will be available.

This will feature UC San Diego’s Dr. Catriona Jamieson, CIRM’s President and CEO Dr. Maria Millan and CIRM Board member and Patient Advocate for Parkinson’s Disease, David Higgins PhD. The three will talk about the exciting progress being made at UC San Diego and other programs around California, but also the uncertain future and the impact that could have for the field as a whole.

Here’s a link to an Eventbrite page that has more information about the event and also a link to allow you to RSVP ahead of time.

For all of you who don’t live in the San Diego Area – or who do but can’t make it to the event – we are holding a similar discussion online on a special Facebook Live: Ask the Stem Cell Team About the Future of Stem Cell Research event on Thursday, May 30th from noon till 1pm PDT.

This also features Dr. Millan and Dr. Higgins, but it also features UC Davis stem cell scientist, CIRM-grantee and renowned blogger Paul Knoepfler PhD.

Each brings their own experience, expertise and perspective on the field and will discuss the impact that a reduction in funding for stem cell research would have, not just in the short term but in the long run.

Because we all have a stake in what happens, both events – whether it’s in person or online – include time for questions from you, the audience.

You can find our Facebook Live: Ask the Stem Cell Team About the Future of Stem Cell Research on our Facebook page at noon on May 30th PDT

Stories that caught our eye: FDA grants orphan drug status to CIRM-funded therapy; stunning discovery upends ideas of cell formation; and how tadpoles grow new tails

Gut busting discovery

Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine

It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.

In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.

In the “sensational” news release lead author, Kim Jensen, says this finding could help in the development of new therapies.

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction’.

The study is published in the journal Nature.                             

A tale of a tail

African clawed frog tadpole: Photo courtesy Gary Nafis

It’s long been known that some lizards and other mammals can regrow severed limbs, but it hasn’t been clear how. Now scientists at the University of Cambridge in the UK have figured out what’s going on.

Using single-cell genomics the scientists were able to track which genes are turned on and off at particular times, allowing them to watch what happens inside the tail of the African clawed frog tadpole as it regenerates the damaged limb.

They found that the response was orchestrated by a group of skin cells they called Regeneration-Organizing Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the journal Science, says seeing how ROCs work could lead to new ideas on how to stimulate similar regeneration in other mammals.

“It’s an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.”

Orphan Drug Designation for CIRM-funded therapy

Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.

Orphan drug designation is given to therapies targeting rare diseases or disorders that affect fewer than 200,000 people in the U.S. It means the company may be eligible for grant funding toward clinical trial costs, tax advantages, FDA user-fee benefits and seven years of market exclusivity in the United States following marketing approval by the FDA.

CIRM’s President and CEO, Dr. Maria Millan, says the company is using a gene-modified cell therapy approach to help people who are not responding to traditional approaches.

“Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

Poseida’s CEO, Eric Ostertag, said the designation is an important milestone for the company therapy which “has demonstrated outstanding potency, with strikingly low rates of toxicity in our phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing in our Phase 2 trial starting in the second quarter of 2019.”