Friday Stem Cell Round: Ask the Expert Facebook Live, Old Brain Cells Reveal Insights and Synthetic Development

Stem Cell Photo of the Week: We’re Live on Facebook Live!

Our stem cell photo of the week is a screenshot from yesterday’s Facebook Live event: “Ask the Expert: Stem Cells and Stroke”. It was our first foray into Facebook Live and, dare I say, it was a success with over 150 comments and 4,500 views during the live broadcast.

FacebookLive_AskExperts_Stroke_IMG_1656

Screen shot of yesterday’s Facebook Live event. Panelists included (from top left going clockwise): Sonia Coontz, Kevin McCormack, Gary Steinberg, MD, PhD and Lila Collins, PhD.

Our panel included Dr. Gary Steinberg, MD, PhD, the Chair of Neurosurgery at Stanford University, who talked about promising clinical trial results testing a stem cell-based treatment for stroke. Lila Collins, PhD, a Senior Science Officer here at CIRM, provided a big picture overview of the latest progress in stem cell therapies for stroke. Sonia Coontz, a patient of Dr. Steinberg’s, also joined the live broadcast. She suffered a devastating stroke several years ago and made a remarkable recovery after getting a stem cell therapy. She had an amazing story to tell. And Kevin McCormack, CIRM’s Senior Director of Public Communications, moderated the discussion.

Did you miss the Facebook Live event? Not to worry. You can watch it on-demand on our Facebook Page.

What other disease areas would you like us to discuss? We plan to have these Ask the Expert shows on a regular basis so let us know by commenting here or emailing us at info@cirm.ca.gov!

Brain cells’ energy “factories” may be to blame for age-related disease

Salk Institute researchers published results this week that shed new light on why the brains of older individuals may be more prone to neurodegenerative diseases like Parkinson’s and Alzheimer’s. To make this discovery, the team applied a technique they devised back in 2015 which directly converts skin cells into brain cells, aka neurons. The method skips the typical intermediate step of reprogramming the skin cells into induced pluripotent stem cells (iPSCs).

They collected skin samples from people ranging in age from 0 to 89 and generated neurons from each. With these cells in hand, the researchers then examined how increased age affects the neurons’ mitochondria, the structures responsible for producing a cell’s energy needs. Previous studies have shown a connection between faulty mitochondria and age-related disease.

While the age of the skin cells had no bearing on the health of the mitochondria, it was a different story once they were converted into neurons. The mitochondria in neurons derived from older individuals clearly showed signs of deterioration and produced less energy.

Aged-mitochondria-green-in-old-neurons-gray-appear-mostly-as-small-punctate-dots-rather-than-a-large-interconnected-network-300x301

Aged mitochondria (green) in old neurons (gray) appear mostly as small punctate dots rather than a large interconnected network. Credit: Salk Institute.

The researchers think this stark difference in the impact of age on skin cells vs. neurons may occur because neurons have higher energy needs. So, the effects of old age on mitochondria only become apparent in the neurons. In a press release, Salk scientist Jerome Mertens explained the result using a great analogy:

“If you have an old car with a bad engine that sits in your garage every day, it doesn’t matter. But if you’re commuting with that car, the engine becomes a big problem.”

The team is now eager to use this method to examine mitochondrial function in neurons derived from Alzheimer’s and Parkinson’s patient skin samples and compared them with skin-derived neurons from similarly-aged, healthy individuals.

The study, funded in part by CIRM, was published in Cell Reports.

“Synthetically” Programming embryo development

One of the most intriguing, most fundamental questions in biology is how an embryo, basically a non-descript ball of cells, turns into a complex animal with eyes, a brain, a heart, etc. A deep understanding of this process will help researchers who aim to rebuild damaged or diseased organs for patients in need.

3-layer_1.16.9

Researchers programmed cells to self-assemble into complex structures such as this one with three differently colored layers. Credit: Wendell Lim/UCSF

A fascinating report published this week describes a system that allows researchers to program cells to self-organize into three-dimensional structures that mimic those seen during early development. The study applied a customizable, synthetic signaling molecule called synNotch developed in the Wendell Lim’s UCSF lab by co-author Kole Roybal, PhD, now an assistant professor of microbiology and immunology at UCSF, and Leonardo Morsut, PhD, now an assistant professor of stem cell biology and regenerative medicine at the University of Southern California.

A UCSF press release by Nick Weiler describes how synNotch was used:

“The researchers engineered cells to respond to specific signals from neighboring cells by producing Velcro-like adhesion molecules called cadherins as well as fluorescent marker proteins. Remarkably, just a few simple forms of collective cell communication were sufficient to cause ensembles of cells to change color and self-organize into multi-layered structures akin to simple organisms or developing tissues.”

Senior author Wendell Lim also explained how this system could overcome the challenges facing those aiming to build organs via 3D bioprinting technologies:

“People talk about 3D-printing organs, but that is really quite different from how biology builds tissues. Imagine if you had to build a human by meticulously placing every cell just where it needs to be and gluing it in place. It’s equally hard to imagine how you would print a complete organ, then make sure it was hooked up properly to the bloodstream and the rest of the body. The beauty of self-organizing systems is that they are autonomous and compactly encoded. You put in one or a few cells, and they grow and organize, taking care of the microscopic details themselves.”

Study was published in Science.

Stem Cell Roundup: better model of schizophrenia, fasting boosts stem cells, and why does our hair gray.

Stem cell photo of the week:
Recreating brain cell interactions for studying schizophrenia

169585_web

Salk researchers used stem cells to derive CA3 pyramidal neurons (green), including a rare subtype of the cells (red). Image: Salk Institute

Our pick for the stem cell image of the week is from the laboratory of Rusty Gage at the Salk Institute. The team generated multiple types of nerve cells from stem cells to more closely represent the interactions that occur in the brain. They’re using this system to show how the communication between these nerve cells becomes faulty in people with schizophrenia. A Salk Institute press release provides more details about their study which was published in Cell Stem Cell.

Regenerative power of intestinal stem cells maintained via fasting
For many decades, researchers have known that restricting food intake in mice can extend life span. Why it happens hasn’t been well understood. This week, a team at MIT uncovered a possible explanation: fasting increases the regenerative power of stem cells.

May3_2018_MIT_StemCellDiet2247912117

Intestinal stem cells from mice that fasted for 24 hours, at right, produced much more substantial intestinal organoids than stem cells from mice that did not fast, at left.
Image: Maria Mihaylova and Chia-Wei Cheng, MIT

The report, published in Cell Stem Cell, focused on the well-studied intestinal stem cell, which renews the intestinal lining every five days. As we age, the intestinal stem cell’s regenerative abilities wane and damage to the intestinal lining takes longer to repair.

Mice were fasted for 24 hours and then their intestinal stem cells were retrieved and grown into mini-intestine organoids in petri dishes. According to Maria Mihaylova, PhD, one of the lead authors, the results of the experiment were very clear:

“It was very obvious that fasting had this really immense effect on the ability of intestinal crypts to form more organoids, which is stem-cell-driven,” Mihaylova said in a press release. “This was something that we saw in both the young mice and the aged mice, and we really wanted to understand the molecular mechanisms driving this.”

Mihaylova and the team went on to show that fasting caused the stem cells to burn fat instead of carbohydrates for their energy needs. Inhibiting the gene pathways that flip this metabolic switch also blocks the regenerative capacity of fasting. On the other hand, molecules that boost the gene pathways mimic the effects of fasting without changing food intake. This intriguing finding could potentially have clinical applications for cancer patients who suffer intestinal injury from the toxic effects of chemotherapy drugs but who certainly aren’t in a condition to fast.

Premature graying, our immune system and stem cells: a surprising link. (Kevin McCormack)
As someone whose hair went gray at a relatively young age – well, it seemed young to me! – this next story naturally caught my eye. It highlights how our immune systems may play a key role in determining our hair color and, in particular, when that hair turns gray.

Our bodies are constantly shedding hairs and replacing them with new ones. Normally stem cells called melanocytes help ensure the new hairs have your original color, be it black, blonde, brunette or red.

Researchers at the National Institutes of Health and the University of Alabama, Birmingham, found that when the body is attacked by a virus, our immune system kicks in and respond by producing interferon to fight off the infection. However, when a protein called MITF, that is involved in regulating how cells use interferon, fails to work properly it can also affect melanocytes causing them to lose their pigmentation. Without that pigmentation the new hairs are gray.

The study, which appears in the journal PLOS Biology, is too late to help me and my gray hair – particularly as it was done in mice – but it could pave the way for further research that identifies how genes that control pigment in our hair and skin also control our immune system.

Building a better brain organoid

One of the reasons why it’s so hard to develop treatments for problems in the brain – things like Alzheimer’s, autism and schizophrenia – is that you can’t do an autopsy of a living brain to see what’s going wrong. People tend to object. To get around that, scientists have used stem cells to create models of what’s happening inside the brain. They’re good, but they have their limitations. Now a team at the Salk Institute for Biological Studies has found a way to create a better brain model, and hopefully a faster route to developing new treatments.

For a few years now, scientists have been able to take skin cells from patients with neurodegenerative disorders and turn them into neurons, the kind of brain cell affected by these different diseases. They grow these cells in the lab and turn them into clusters of cells, so-called brain “organoids”, to help us better understand what’s happening inside the brain and even allow us to test medications on them to see if those treatments can help ease some symptoms.

Human-organoid-tissue-green-grafted-into-mouse-tissue.-Neurons-are-labeled-with-red-dye.

Human organoid tissue (green) grafted into mouse tissue. Neurons are labeled with red. Credit: Salk Institute

But those models don’t really capture the complexity of our brains – how could they – and so only offer a glimpse into what’s happening inside our skulls.

Now the team at Salk have developed a way of transplanting these organoids into mouse brains, giving them access to oxygen and nutrients that can help them not only survive longer but also display more of the characteristics found in the human brain.

In a news release, CIRM Grantee and professor at Salk’s Laboratory of Genetics, Rusty Gage said this new approach gives researchers a powerful new tool:

“This work brings us one step closer to a more faithful, functional representation of the human brain and could help us design better therapies for neurological and psychiatric diseases.”

The transplanted human brain organoids showed plenty of signs that they were becoming engrafted in the mouse brain:

  • They had blood vessels form in them and blood flowing through them
  • They formed neurons
  • They formed other brain support cells called astrocytes

They also used a series of imaging techniques to confirm that the neurons in the organoid were not just connecting but also sending signals, in essence, communicating with each other.

Abed AlFattah Mansour, a Salk research associate and the paper’s first author, says this is a big accomplishment.

“We saw infiltration of blood vessels into the organoid and supplying it with blood, which was exciting because it’s perhaps the ticket for organoids’ long-term survival. This indicates that the increased blood supply not only helped the organoid to stay healthy longer, but also enabled it to achieve a level of neurological complexity that will help us better understand brain disease.”

A better understanding of what’s going wrong is a key step in being able to develop new treatments to fix the problem.

The study is published in the journal Nature Biotechnology.

CIRM has a double reason to celebrate this work. Not only is the team leader, Rusty Gage, a CIRM grantee but one of the Salk team, Sarah Fernandes, is a former intern in the CIRM Bridges to Stem Cell Research program.

Gage-Natbiotech-press-release

From left: Sarah Fernandes, Daphne Quang, Stephen Johnston, Sarah Parylak, Rusty Gage, Abed AlFattah Mansour, Hao Li Credit: Salk Institute

UC Davis researchers make stem cell-derived mini-brains that contain blood vessels

Growing neurons on a flat petri dish is a great way to study the inner workings of nerve signals in the brain. But I think it’s safe to argue that a two-dimensional lawn of cells doesn’t capture all the complexity of our intricate, cauliflower-shaped brains. Then again, cracking open the skulls of living patients is also not a viable path for fully understanding the molecular basis of brain disorders.

two-spheroids-in-a-dish

Brain organoids (two white balls) growing in petri dish.
Image: Pasca Lab, Stanford University.

The recent emergence of stem cell-derived mini-brains, or brain organoids, as a research tool is bridging this impasse. With induced pluripotent stem cells (iPSCs) derived from a readily-accessible skin sample from patients, it’s possible to generate three-dimensional balls of cells that mimic particular parts of the brain’s anatomy. These mini-brains have the expected type of neurons, as well as other cells that support neuron function. We’ve written many blogs, most recently in January, on the applications of this cutting-edge tool.

With any new technology, there is always room for improvement. One thing that most mini-brains lack is their own system of blood vessels, or vasculature. That’s where Dr. Ben Waldau, a vascular neurosurgeon at UC Davis Medical Center, and his lab come into the picture. Last week, their published work in NeuroReport showed that incorporating blood vessels into a brain organoid is possible.

UCDavisorganoid

A stained cross-section of a brain organoid showing that blood vessels (in red) have penetrated both the outer, more organized layers and the inner core. Image: UC Davis Institute for Regenerative Cures

Using iPSCs from one patient, the Waldau team separately generated brain organoids and blood vessels cells, also called endothelial cells. After growing each for about a month, the organoids were embedded in a gelatin containing the endothelial cells. In an excellent Wired article, writer Megan Molteni explains what happened next:

“After incubating for three weeks, they took a single organoid and transplanted it into a tiny cavity carefully carved into a mouse’s brain. Two weeks later the organoid was alive, well—and, critically, had grown capillaries that penetrated all the way to its inner layers.”

Every tissue relies on nutrients and oxygen from the blood. As Molteni suggests, being able to incorporate blood vessels and brain organoids from the same patient’s cells may make it possible to grow and study even more complex brain structures without the need of a mouse using fluidic pumps.

As Waldau explains in the Wired article, this vascularized brain organoid system also adds promise to the ultimate goal of repairing damaged brain tissue:

waldau

Ben Waldau

“The whole idea with these organoids is to one day be able to develop a brain structure the patient has lost made with the patient’s own cells. We see the injuries still there on the CT scans, but there’s nothing we can do. So many of them are left behind with permanent neural deficits—paralysis, numbness, weakness—even after surgery and physical therapy.”

 

 

Stem Cell Round: Improving memory, building up “good” fat, nanomedicine

Stem Cell Photo of the Week

roundup03618In honor of brain awareness week, our featured stem cell photo is of the brain! Scientists at the Massachusetts General Hospital and Harvard Stem Cell Institute identified a genetic switch that could potentially improve memory during aging and symptoms of PTSD. Shown in this picture are dentate gyrus cells (DGC) (green) and CA3 interneurons (red) located in the memory-forming area of the brain known as the hippocampus. By reducing the levels of a protein called abLIM3 in the DGCs of older mice, the researchers were able to boost the connections between DGCs and CA3 cells, which resulted in an improvement in the memories of the mice. The team believes that targeting this protein in aging adults could be a potential strategy for improving memory and treating patients with post-traumatic stress disorder (PTSD). You can read more about this study in The Harvard Gazette.

New target for obesity.
Fat cells typically get a bad rap, but there’s actually a type of fat cell that is considered “healthier” than others. Unlike white fat cells that store calories in the form of energy, brown fat cells are packed with mitochondria that burn energy and produce heat. Babies have brown fat, so they can regulate their body temperature to stay warm. Adults also have some brown fat, but as we get older, our stores are slowly depleted.

In the fight against obesity, scientists are looking for ways to increase the amount of brown fat and decrease the amount of white fat in the body. This week, CIRM-funded researchers from the Salk Institute identified a molecule called ERRg that gives brown fat its ability to burn energy. Their findings, published in Cell Reports, offer a new target for obesity and obesity-related diseases like diabetes and fatty liver disease.

The team discovered that brown fat cells produce the ERRg molecule while white fat cells do not. Additionally, mice that couldn’t make the ERRg weren’t able to regulate their body temperature in cold environments. The team concluded in a news release that ERRg is “involved in protection against the cold and underpins brown fat identity.” In future studies, the researchers plan to activate ERRg in white fat cells to see if this will shift their identity to be more similar to brown fat cells.

brownfat_mice

Mice that lack ERR aren’t able to regulate their body temperature and are much colder (right) than normal mice (left). (Image credit Salk Institute)

Tale of two nanomedicine stories: making gene therapies more efficient with a bit of caution (Todd Dubnicoff).
This week, the worlds of gene therapy, stem cells and nanomedicine converged for not one, but two published reports in the journal American Chemistry Society NANO.

The first paper described the development of so-called nanospears – tiny splinter-like magnetized structures with a diameter 5000 times smaller than a strand of human hair – that could make gene therapy more efficient and less costly. Gene therapy is an exciting treatment strategy because it tackles genetic diseases at their source by repairing or replacing faulty DNA sequences in cells. In fact, several CIRM-funded clinical trials apply this method in stem cells to treat immune disorders, like severe combined immunodeficiency and sickle cell anemia.

This technique requires getting DNA into diseased cells to make the genetic fix. Current methods have low efficiency and can be very damaging to the cells. The UCLA research team behind the study tested the nanospear-delivery of DNA encoding a gene that causes cells to glow green. They showed that 80 percent of treated cells did indeed glow green, a much higher efficiency than standard methods. And probably due to their miniscule size, the nanospears were gentle with 90 percent of the green glowing cells surviving the procedure.

As Steve Jonas, one of the team leads on the project mentions in a press release, this new method could bode well for future recipients of gene therapies:

“The biggest barrier right now to getting either a gene therapy or an immunotherapy to patients is the processing time. New methods to generate these therapies more quickly, effectively and safely are going to accelerate innovation in this research area and bring these therapies to patients sooner, and that’s the goal we all have.”

While the study above describes an innovative nanomedicine technology, the next paper inserts a note of caution about how experiments in this field should be set up and analyzed. A collaborative team from Brigham and Women’s Hospital, Stanford University, UC Berkeley and McGill University wanted to get to the bottom of why the many advances in nanomedicine had not ultimately led to many new clinical trials. They set out looking for elements within experiments that could affect the uptake of nanoparticles into cells, something that would muck up the interpretation of results.

164931_web

imaging of female human amniotic stem cells incubated with nanoparticles demonstrated a significant increase in uptake compared to male cells. (Green dots: nanoparticles; red: cell staining; blue: nuclei) Credit: Morteza Mahmoudi, Brigham and Women’s Hospital.

In this study, they report that the sex of cells has a surprising, noticeable impact on nanoparticle uptake. Nanoparticles were incubated with human amniotic stem cells derived from either males or females. The team showed that the female cells took up the nanoparticles much more readily than the male cells.  Morteza Mahmoudi, PhD, one of the authors on the paper, explained the implications of these results in a press release:

“These differences could have a critical impact on the administration of nanoparticles. If nanoparticles are carrying a drug to deliver [including gene therapies], different uptake could mean different therapeutic efficacy and other important differences, such as safety, in clinical data.”

 

Stanford Scientist Sergiu Pasca Receives Prestigious Vilcek Prize for Stem Cell Research on Neuropsychiatric Disorders

Sergiu Pasca, Stanford University

Last month, we blogged about Stanford neuroscientist Sergiu Pasca and his interesting research using stem cells to model the human brain in 3D. This month we bring you an exciting update about Dr. Pasca and his work.

On February 1st, Pasca was awarded one of the 2018 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation is a non-profit organization dedicated to raising awareness of the important contributions made by immigrants to American arts and sciences.

Pasca was born in Romania and got his medical degree there before moving to the US to pursue research at Stanford University in 2009. He is now an assistant professor of psychiatry and behavioral sciences at Stanford and has dedicated his lab’s research to understanding human brain development and neuropsychiatric disorders using 3D brain organoid cultures derived from pluripotent stem cells.

The Vilcek Foundation produced a fascinating video (below) featuring Pasca’s life journey and his current CIRM-funded research on Timothy Syndrome – a rare form of autism. In the video, Pasca describes how his lab’s insights into this rare psychiatric disorder will hopefully shed light on other neurological diseases. He shares his hope that his research will yield something that translates to the clinic.

The Vilcek Prize for Creative Promise in Biomedical Science comes with a $50,000 cash award. Pasca along with the other prize winners will be honored at a gala event in New York City in April 2018.

You can read more about Pasca’s prize winning research on the Vilcek website and in past CIRM blogs below.


Related Links:

Stem Cell Roundup: Rainbow Sherbet Fruit Fly Brains, a CRISPR/iPSC Mash-up and more

This week’s Round Up is all about the brain with some CRISPR and iPSCs sprinkled in:

Our Cool Stem Cell Image of the Week comes from Columbia University’s Zuckerman Institute:

Mann-SC-Hero-01-19-18

(Credit: Jon Enriquez/Mann Lab/Columbia’s Zuckerman Institute).

This rainbow sherbet-colored scientific art is a microscopy image of a fruit fly nervous system in which brain cells were randomly labeled with different colors. It was a figure in a Neuron study published this week showing how cells derived from the same stem cells can go down very different developmental paths but then later are “reunited” to carry out key functions, such as in this case, the nervous system control of leg movements.


A new therapeutic avenue for Parkinson’s diseaseBuck Institute

Many animal models of Parkinson’s disease are created by mutating specific genes to cause symptoms that mimic this incurable, neurodegenerative disorder. But, by far, most cases of Parkinson’s are idiopathic, a fancy term for spontaneous with no known genetic cause. So, researchers at the Buck Institute took another approach: they generated a mouse model of Parkinson’s disease using the pesticide, paraquat, exposure to which is known to increase the risk of the idiopathic form of Parkinson’s.

Their CIRM-funded study in Cell Reports showed that exposure to paraquat leads to cell senescence – in which cells shut down and stop dividing – particularly in astrocytes, brain cells that support the function of nerve cells. Ridding the mice of these astrocytes relieved some of the Parkinson’s like symptoms. What makes these results so intriguing is the team’s analysis of post-mortem brains from Parkinson’s patients also showed the hallmarks of increased senescence in astrocytes. Perhaps, therapeutic approaches that can remove senescent cells may yield novel Parkinson’s treatments.


Discovery may advance neural stem cell treatments for brain disordersSanford-Burnham Prebys Medical Discovery Institute (via Eureka Alert)

Another CIRM-funded study published this week in Nature Neuroscience may also help pave the way to new treatment strategies for neurologic disorders like Parkinson’s disease. A team at Sanford Burnham Prebys Medical Discovery Institute (SBP) discovered a novel gene regulation system that brain stem cells use to maintain their ability to self-renew.

The study centers around messenger RNA, a molecular courier that transcribes a gene’s DNA code and carries it off to be translated into a protein. The team found that the removal of a chemical tag on mRNA inside mouse brain stem cells caused them to lose their stem cell properties. Instead, too many cells specialized into mature brain cells leading to abnormal brain development in animal studies. Team lead Jing Crystal Zhao, explained how this finding is important for future therapeutic development:

CrystalZhao_headshot

Crystal Zhao

“As NSCs are increasingly explored as a cell replacement therapy for neurological disorders, understanding the basic biology of NSCs–including how they self-renew–is essential to harnessing control of their in vivo functions in the brain.”


Researchers Create First Stem Cells Using CRISPR Genome ActivationThe Gladstone Institutes

Our regular readers are most likely familiar with both CRISPR gene editing and induced pluripotent stem cell (iPSC) technologies. But, in case you missed it late last week, a Cell Stem Cell study out of Sheng Ding’s lab at the Gladstone Institutes, for the first time, combined the two by using CRISPR to make iPSCs. The study got a lot of attention including a review by Paul Knoepfler in his blog The Niche. Check it out for more details!

 

Modeling the Human Brain in 3D

(Image from Pasca Lab, Stanford University)

Can you guess what the tiny white balls are in this photo? I’ll give you a hint, they represent the organ that you’re using right now to answer my question.

These are 3D brain organoids generated from human pluripotent stem cells growing in a culture dish. You can think of them as miniature models of the human brain, containing many of the brain’s various cell types, structures, and regions.

Scientists are using brain organoids to study the development of the human nervous system and also to model neurological diseases and psychiatric disorders. These structures allow scientists to dissect the inner workings of the brain – something they can’t do with living patients.

Brain-in-a-Dish

Dr. Sergiu Pasca is a professor at Stanford University who is using 3D cultures to understand human brain development. Pasca and his lab have previously published methods to make different types of brain organoids from induced pluripotent stem cells (iPSCs) that recapitulate human brain developmental events in a dish.

Sergiu Pasca, Stanford University (Image credit: Steve Fisch)

My colleague, Todd Dubnicoff, blogged about Pasca’s research last year:

“Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.”

Pasca generated brain organoids from the iPSCs of patients with a genetic disease called Timothy Syndrome – a condition that causes heart problems and some symptoms of autism spectrum disorder in children. By comparing the nerve cell circuits in patient versus healthy brain organoids, he observed a disruption in the migration of nerve cells in the organoids derived from Timothy Syndrome iPSCs.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

The Rise of 3D Brain Cultures

Pasca’s lab is just one of many that are working with 3D brain culture technologies to study human development and disease. These technologies are rising in popularity amongst scientists because they make it possible to study human brain tissue in normal and abnormal conditions. Brain organoids have also appeared in the mainstream news as novel tools to study how epidemics like the Zika virus outbreak affect the developing fetal brain (more here and here).

While these advances are exciting and promising, the field is still in its early stages and the 3D organoid models are far from perfect at representing the complex biology of the human brain.

Pasca addresses the progress and the hurdles of 3D brain cultures in a review article titled “The rise of three-dimensional brain cultures” published this week in the journal Nature. The article, describes in detail how pluripotent stem cells can assemble into structures that represent different regions of the human brain allowing scientists to observe how cells interact within neural circuits and how these circuits are disrupted by disease.

The review goes on to compare different approaches for creating 3D brain cultures (see figure below) and their different applications. For instance, scientists are culturing organoids on microchips (brains-on-a-chip) to model the blood-brain barrier – the membrane structure that protects the brain from circulating pathogens in the blood but also makes drug delivery to brain very challenging. Brain organoids are also being used to screen for new drugs and to model complex diseases like Alzheimer’s.

Human pluripotent stem cells, adult stem cells or cancer cells  can be used to derive microfluidics-based organs-on-a-chip (top), undirected organoids (middle), and region-specific brain organoids or organ spheroids (bottom). These 3D cultures can be manipulated with CRISPR-Cas9 genome-editing technologies, transplanted into animals or used for drug screening. (Pasca, Nature)

Pasca ends the review by identifying the major hurdles facing 3D brain culture technologies. He argues that “3D cultures only approximate the appearance and architecture of neural tissue” and that the cells and structures within these organoids are not always predictable. These issues can be address over time by enforcing quality control in how these 3D cultures are made and by using new biomaterials that enable the expansion and maturation of these cultures.

Nonetheless, Pasca believes that 3D brain cultures combined with advancing technologies to study them have “the potential to give rise to novel features for studying human brain development and disease.”

He concludes the review with a cautiously optimistic outlook:

“This is an exciting new field and as with many technologies, it may follow a ‘hype’ cycle in which we overestimate its effects in the short run and underestimate its effects in the long run. A better understanding of the complexity of this platform, and bringing interdisciplinary approaches will accelerate our progress up a ‘slope of enlightenment’ and into the ‘plateau of productivity’.”

3D brain culture from the Pasca Lab, Stanford University


Related Links:

Stem Cell RoundUp: CIRM Clinical Trial Updates & Mapping Human Brain

It was a very CIRMy news week on both the clinical trial and discovery research fronts. Here are some the highlights:

Stanford cancer-fighting spinout to Genentech: ‘Don’t eat me’San Francisco Business Times

Ron Leuty, of the San Francisco Business Times, reported this week on not one, but two news releases from CIRM grantee Forty Seven, Inc. The company, which originated from discoveries made in the Stanford University lab of Irv Weissman, partnered with Genentech and Merck KGaA to launch clinical trials testing their drug, Hu5F9-G4, in combination with cancer immunotherapies. The drug is a protein antibody that blocks a “don’t eat me” signal that cancer stem cells hijack into order to evade destruction by a cancer patient’s immune system.

Genentech will sponsor two clinical trials using its FDA-approved cancer drug, atezolizumab (TECENTRIQ®), in combination with Forty Seven, Inc’s product in patients with acute myeloid leukemia (AML) and bladder cancer. CIRM has invested $5 million in another Phase 1 trial testing Hu5F9-G4 in AML patients. Merck KGaA will test a combination treatment of its drug avelumab, or Bavencio, with Forty-Seven’s Hu5F9-G4 in ovarian cancer patients.

In total, CIRM has awarded Forty Seven $40.5 million in funding to support the development of their Hu5F9-G4 therapy product.


Novel regenerative drug for osteoarthritis entering clinical trialsThe Scripps Research Institute

The California Institute for Biomedical Research (Calibr), a nonprofit affiliate of The Scripps Research Institute, announced on Tuesday that its CIRM-funded trial for the treatment of osteoarthritis will start treating patients in March. The trial is testing a drug called KA34 which prompts adult stem cells in joints to specialize into cartilage-producing cells. It’s hoped that therapy will regenerate the cartilage that’s lost in OA, a degenerative joint disease that causes the cartilage that cushions joints to break down, leading to debilitating pain, stiffness and swelling. This news is particularly gratifying for CIRM because we helped fund the early, preclinical stage research that led to the US Food and Drug Administration’s go-ahead for this current trial which is supported by a $8.4 million investment from CIRM.


And finally, for our Cool Stem Cell Image of the Week….

Genetic ‘switches’ behind human brain evolutionScience Daily

180111115351_1_540x360

This artsy scientific imagery was produced by UCLA researcher Luis del la Torre-Ubieta, the first author of a CIRM-funded studied published this week in the journal, Cell. The image shows slices of the mouse (bottom middle), macaque monkey (center middle), and human (top middle) brain to scale.

The dramatic differences in brain size highlights what sets us humans apart from those animals: our very large cerebral cortex, a region of the brain responsible for thinking and complex communication. Torre-Ubieta and colleagues in Dr. Daniel Geschwind’s laboratory for the first time mapped out the genetic on/off switches that regulate the growth of our brains. Their results reveal, among other things, that psychiatric disorders like schizophrenia, depression and Attention-Deficit/Hyperactivity Disorder (ADHD) have their origins in gene activity occurring in the very earliest stages of brain development in the fetus. The swirling strings running diagonally across the brain slices in the image depict DNA structures, called chromatin, that play a direct role in the genetic on/off switches.

CIRM interviews Lorenz Studer: 2017 recipient of the Ogawa-Yamanaka Stem Cell Prize [Video]

For eight long years, researchers who were trying to develop a stem cell-based therapy for Parkinson’s disease – an incurable movement disorder marked by uncontrollable shaking, body stiffness and difficulty walking – found themselves lost in the proverbial wilderness. In initial studies, rodent stem cells were successfully coaxed to specialize into dopamine-producing nerve cells, the type that are lost in Parkinson’s disease. And further animal studies showed these cells could treat Parkinson’s like symptoms when transplanted into the brain.

Parkinsonsshutterstock_604375424

studer-lorenz

Lorenz Studer, MD
Photo Credit: Sloan Kettering

But when identical recipes were used to make human stem cell-derived dopamine nerve cells the same animal experiments didn’t work. By examining the normal developmental biology of dopamine neurons much more closely, Lorenz Studer cracked the case in 2011. Now seven years later, Dr. Studer, director of the Center for Stem Cell Biology at the Memorial-Sloan Kettering Cancer Center, and his team are on the verge of beginning clinical trials to test their Parkinson’s cell therapy in patients

It’s for these bottleneck-busting contributions to the stem cell field that Dr. Studer was awarded the Gladstone Institutes’ 2017 Ogawa-Yamanaka Stem Cell Prize. Now in its third year, the prize was founded by philanthropists Hiro and Betty Ogawa along with  Shinya Yamanaka, Gladstone researcher and director of the Center for iPS Cell Research and Application at Kyoto University, and is meant to inspire and celebrate discoveries that build upon Yamanaka’s Nobel prize winning discovery of induced pluripotent stem cells (iPSCs).

LorenzStuder_OgawaAward2017-12

(L to R) Shinya Yamanaka, Andrew Ogawa, Deepak Srivastava present Lorenz Studer the 2017 Ogawa-Yamanaka Stem Cell Prize at Gladstone Institutes. Photo Credit: Todd Dubnicoff/CIRM

Studer was honored at the Gladstone in November and presented the Ogawa-Yamanka Stem Cell Prize Lecture. He was kind enough to sit down with me for a brief video interview (watch it below) a few minutes before he took the stage. He touched upon his Parkinson’s disease research as well as newer work related to hirschsprung disease, a dangerous intestinal disorder often diagnosed at birth that is caused by the loss of nerve cells in the gut. Using human embryonic stem cells and iPSCs derived from hirschsprung patients, Studer’s team has worked out the methods for making the gut nerve cells that are lost in the disease. This accomplishment has allowed his lab to better understand the disease and to make solid progress toward a stem cell-based therapy.

His groundbreaking work has also opened up the gates for other Parkinson’s researchers to make important insights in the field. In fact, CIRM is funding several interesting early stage projects aimed at moving therapy development forward:

We posted the 8-minute video with Dr. Studer today on our official YouTube channel, CIRM TV. You can watch the video here:

And for a more detailed description of Studer’s research, watch Gladstone’s webcast recording of his entire lecture: