CIRM-Funded Clinical Trial for Sickle Cell Gives Hope to People Battling the Disease

Marissa Cors (right) with her mother Adrienne Shapiro

Marissa Cors has lived with Sickle Cell Disease (SCD) for more than 40 years. The co-founder of The Sickle Cell Experience Live, an online platform designed to bring more awareness to Sickle Cell Disease around the world, says it’s hard, knowing that at any moment you may have to put your life on hold to cope with another attack of excruciating pain.

“It is incredibly frustrating to have a disease that is constantly disrupting and interfering with your life. The daily pain and fatigue make it difficult to have a normal life. You may be experiencing manageable pain one minute and then a crisis will hit – knocking you to the ground with horrible pain and requiring pain management and hospitalization. It makes going to school or having a job or even a normal adult relationship near impossible.”

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The disease affects around 100,000 Americans, mostly Black Americans but also members of the Latinx community. Marissa says coping with it is more than just a medical struggle. “Born into the cycle of fatigue, pain and fear. Depending on a healthcare system filled with institutionalized bias and racism. It is a life that is difficult on all facets.” 

CIRM is committed to trying find new treatments, and even a cure for SCD. That’s why the CIRM Board recently awarded $8,333,581 to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease.  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

In recent years we have made impressive strides in developing new approaches to treating sickle cell disease,” says Dr. Maria T. Millan, President & CEO of CIRM. “But we still have work to do. That’s why this partnership, this research is so important. It reflects our commitment to pushing ahead as fast as we can to find a treatment, a cure, that will help all the people battling the disease here in the U.S. and the estimated 20 million worldwide.”

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease. 

For Marissa, anything that helps make life easier will be welcome not just for people with SCD but their families and the whole community. “A stem cell cure will end generations of guilt, suffering, pain and early death. It will give SCD families relief from the financial, emotional and spiritual burden of caring someone living with SCD. It will give all of us an opportunity to have a normal life. Go to school, go to work, live with confidence.” 

Scientists Engineer Stem Cells to Fight HIV

Image of the virus that causes AIDS – courtesy NIH

If that headline seems familiar it should. It came from an article in MIT Technology Review back in 2009. There have been many other headlines since then, all on the same subject, and yet here we are, in 2020, and still no cure for HIV/AIDS. So what’s the problem, what’s holding us back?

First, the virus is incredibly tough and wily. It is constantly mutating so trying to target it is like playing a game of ‘whack a mole’. Secondly not only can the virus evade our immune system, it actually hijacks it and uses it to help spread itself throughout the body. Even new generations of anti-HIV medications, which are effective at controlling the virus, can’t eradicate it. But now researchers are using new tools to try and overcome those obstacles and tame the virus once and for all.

Dr. Scott Kitchen: Photo David Geffen School of Medicine, UCLA

UCLA researchers Scott Kitchen and Irvin Chen have been awarded $13.65 million by the National Institutes of Health (NIH) to see if they can use the patient’s own immune system to fight back against HIV.

Dr. Irvin Chen: Photo UCLA

Dr. Kitchen and Dr. Chen take the patient’s own blood-forming stem cells and then, in the lab, they genetically engineer them to carry proteins called chimeric antigen receptors or CARs. Once these blood cells are transplanted back into the body, they combine with the patient’s own immune system T cells (CAR T). These T cells now have a newly enhanced ability to target and destroy HIV.

That’s the theory anyway. Lots of research in the lab shows it can work. For example, the UCLA team recently showed that these engineered CAR T cells not only destroyed HIV-infected cells but also lived for more than two years. Now the team at UCLA want to take the lessons learned in the lab and apply them to people.

In a news release Dr. Kitchen says the NIH grant will give them a terrific opportunity to do that: “The overarching goal of our proposed studies is to identify a new gene therapy strategy to safely and effectively modify a patient’s own stem cells to resist HIV infection and simultaneously enhance their ability to recognize and destroy infected cells in the body in hopes of curing HIV infection. It is a huge boost to our efforts at UCLA and elsewhere to find a creative strategy to defeat HIV.”

By the way, CIRM helped get this work off the ground with an early-stage grant. That enabled Dr. Kitchen and his team to get the data they needed to be able to apply to the NIH for this funding. It’s a great example of how we can kick-start projects that no one else is funding. You can read a blog about that early stage research here.

CIRM has already funded three clinical trials targeting HIV/AIDS. Two of these are still active; Dr. Mehrdad Abedi at UC Davis and Dr. John Zaia at City of Hope.

‘A Tornado at the Front Door, a Tsunami at the Back Door’

CIRM funds a lot of research and all of it has life-saving potential. But every once in a while you come across a story about someone benefiting from CIRM-supported research that highlights why the work we do is so important. This story is about a brilliant researcher at UC San Diego developing a treatment for a really rare disease, one that was unlikely to get funding from a big pharmaceutical company because it offered little chance for a return on its investment. At CIRM we don’t have to worry about things like that. Stories like this are our return on investment.

Our thanks to our colleagues at UCSD News for allowing us to run this piece in full.

Jordan Janz and Dr. Stephanie Cherqui in her lab at the UC San Diego School of Medicine: Photo courtesy UC San Diego

====================================

By Heather Buschman, PhD

Born with a rare disease called cystinosis, 20-year-old Jordan Janz arrived at a crossroads: continue life as-is, toward a future most likely leading to kidney failure and an early death or become the first patient in the world to undergo a new gene-and-stem cell therapy developed over more than a decade by UC San Diego School of Medicine researchers

For the majority of Jordan Janz’s 20 years of life, most neighbors in his tiny Canadian town never knew he was sick. Janz snowboarded, hunted and fished. He hung with friends, often playing ice hockey video games. He worked in shipping and receiving for a company that makes oil pumps.

But there were times when Janz was younger that he vomited up to 13 times each day. He received a growth hormone injection every day for six years. He needed to swallow 56 pills every day just to manage his symptoms. And the medication required around-the-clock administration, which meant his mother or another family member had to get up with him every night.

“I was tired for school every day,” Janz said. “I was held back in second grade because I missed so much school. And because the medication had a bad odor to it, when I did go to school kids would ask, ‘What’s that smell?’ It was hard.”

Janz was born with cystinosis, a rare metabolic disorder that’s detected in approximately one in 100,000 live births worldwide. People with cystinosis inherit a mutation in the gene that encodes a protein called cystinosin. Cystinosin normally helps cells transport the amino acid cystine. Because cells in people with cystinosis don’t produce the cystinosin protein, cystine accumulates. Over the years, cystine crystals build up and begin to damage tissues and organs, from the kidneys and liver to muscles, eyes and brain. Numerous symptoms and adverse consequences result.

These days, Janz manages his condition. There’s a time-release version of the symptom-relieving medication now that allows him to go 12 hours between doses, allowing for a good night’s sleep. But there’s no stopping the relentless accumulation of cystine crystals, no cure for cystinosis.  

In October 2019, Janz became the first patient to receive treatment as part of a Phase I/II clinical trial to test the safety and efficacy of a unique gene therapy approach to treating cystinosis. The treatment was developed over more than a decade of research by Stephanie Cherqui, PhD, associate professor of pediatrics, and her team at University of California San Diego School of Medicine.

“The day they started looking for people for the trial, my mom picked up the phone, found a number for Dr. Cherqui, called her and put my name in as a candidate,” Janz said.

Janz’s mom, Barb Kulyk, has long followed Cherqui’s work. Like many parents of children with cystinosis, Kulyk has attended conferences, read up on research and met many other families, doctors and scientists working on the condition. Kulyk says she trusts Cherqui completely. But she was understandably nervous for her son to be the first person ever to undergo a completely new therapy.

“It’s like giving birth,” she said shortly before Janz received his gene therapy. “You’re really looking forward to the outcome, but dreading the process.”

The treatment

Cherqui’s gene therapy approach involves genetical modifying the patient’s own stem cells. To do this, her team obtained hematopoietic stem cells from Janz’s bone marrow. These stem cells are the precursors to all blood cells, including both red blood cells and immune cells. The scientists then re-engineered Janz’s stem cells in a lab using gene therapy techniques to introduce a normal version of the cystinosin gene. Lastly, they reinfused Janz with his own now-cystinosin-producing cells. The approach is akin to a bone marrow transplant — the patient is both donor and recipient.

“A bone marrow transplant can be very risky, especially when you take hematopoietic stem cells from a another person. In that case, there’s always the chance the donor’s immune cells will attack the recipient’s organs, so-called graft-versus-host disease,” Cherqui explained. “It’s a great advantage to use the patient’s own stem cells.”

As is the case for other bone marrow transplants, Janz’s gene-modified stem cells are expected to embed themselves in his bone marrow, where they should divide and differentiate to all types of blood cells. Those cells are then expected to circulate throughout his body and embed in his tissues and organs, where they should produce the normal cystinosin protein. Based on Cherqui’s preclinical data, she expects the cystinosin protein will be transferred to the surrounding diseased cells. At that point, Janz’s cells should finally be able to appropriately transport cystine for disposal — potentially alleviating his symptoms.

Before receiving his modified stem cells, Janz had to undergo chemotherapy to make space in his bone marrow for the new cells. Not unexpectedly, Janz experienced a handful of temporary chemotherapy-associated side-effects, including immune suppression, hair loss and fatigue. He also had mucositis, an inflammation of mucous membranes lining the digestive tract, which meant he couldn’t talk or eat much for a few days.

Now, only three months after his transfusion of engineered stem cells, Cherqui reports that Janz is making a good recovery, though it’s still too early to see a decrease in his cystinosis-related symptoms.

“I’ve been sleeping at least 10 hours a day for the last few weeks,” Janz said. “It’s crazy, but I know my body is just working hard to, I guess, create a new ‘me.’ So it’s no wonder I’m tired. But I’m feeling okay overall.

“One of the hardest parts for me is being inactive for so long. I’m not used to doing nothing all day. But I’m taking an online course while I wait for my immune system to rebuild. And I’m getting pretty good at video games.”

Like all Phase I/II clinical trials, the current study is designed to first test the safety and tolerability of the new treatment. Janz knows the treatment might not necessarily help him.

“When we started this trial, my mom explained it like this: ‘We have a tornado at the front door and a tsunami at the back door, and we have to pick one to go through. Neither will be any fun and we don’t know what’s going to happen, but you have to believe you will make it and go.

“So we weighed the pros and cons and, basically, if I don’t do this trial now, when I’m older I might not be healthy and strong enough for it. So I decided to go for it because, even if there are consequences from the chemotherapy, if it works I could live 20 years longer than I’m supposed to and be healthy for the rest of my life. That’s worth it.”

Besides the possible benefit to himself, Janz also sees his participation in the clinical trial as a way to contribute to the tight-knit community of families with children who have cystinosis.

“I’m willing to do if it helps the kids,” he said. “Somebody has to do it. I don’t have the money to donate to scientific conferences and stuff like that, but I can do this trial.”

The trial

If the treatment continues to meet certain criteria for safety and efficacy for Janz and one other participant after three months, two more adult participants will be enrolled. Three months after that, if the treatment continues to be safe and effective, the trial might enroll two adolescent participants. To participate in the clinical trial, individuals must meet specific eligibility requirements.

Later in the trial, Cherqui and team will begin measuring how well the treatment actually works. The specific objectives include assessing the degree to which gene-modified stem cells establish themselves in  bone marrow, how they affect cystine levels and cystine crystal counts in blood and tissues.

“This trial is the first to use gene-modified hematopoietic stem cell gene therapy to treat a multi-organ degenerative disorder for which the protein is anchored in the membrane of the lysosomes, as opposed to secreted enzymes,” Cherqui said. “We were amazed when we tested this approach in the mouse model of cystinosis — autologous stem cell transplantation reversed the disease. The tissues remained healthy, even the kidneys and the eyes.”

Trial participants are closely monitored for the first 100 days after treatment, then tested again at six, nine, 12, 18 and 24 months post-gene therapy for a variety of factors, including vital signs, cystine levels in a number of organs, kidney function, hormone function and physical well-being.

“If successful in clinical trials, this approach could provide a one-time, lifelong therapy that may prevent the need for kidney transplantation and long-term complications caused by cystine buildup,” Cherqui said.

The future

For the trial participants, all of the pre-treatment tests, the treatment itself, and monitoring afterward means a lot of travel to and long stays in San Diego.

It’s tough on Kulyk and Janz. They have to fly in from Alberta, Canada and stay in a San Diego hotel for weeks at a time. Kulyk has two older adult children, as well as a 12-year-old and a seven-year-old at home. 

“I’ve missed a lot of things with my other kids, but none of them seem to hold any grudges,” she said. “They seem to be totally fine and accepting. They’re like, ‘We’re fine, mom. You go and take care of Jordan.’”

Janz is looking forward to getting back home to his friends, his dog and his job, which provided him with paid leave while he received treatment and recovers.

For Cherqui, the search for a cystinosis cure is more than just a scientific exercise. Cherqui began working on cystinosis as a graduate student more than 20 years ago. At the time, she said, it was simply a model in which to study genetics and gene therapy.

“When you read about cystinosis, it’s just words. You don’t put a face to it. But after I met all the families, met the kids, and now that I’ve seen many of them grow up, and some of them die of the disease — now it’s a personal fight, and they are my family too.”

Patients with cystinosis typically experience kidney failure in their 20s, requiring kidney dialysis or transplantation for survival. For those born with cystinosis who make it into adulthood, the average lifespan is approximately 28 years old.

“I’m optimistic about this trial because it’s something we’ve worked so hard for and now it’s actually happening, and these families have so much hope for a better treatment,” Cherqui said. “After all the years of painstaking laboratory research, we now need to move into the clinic. If this works, it will be wonderful. If it doesn’t, we will all be disappointed but a least we’ll be able to say we tried.”

Nancy Stack, who founded the Cystinosis Research Foundation after her own daughter, Natalie, was diagnosed with the disease, calls Cherqui “the rock star of our community.”

“She cares deeply about the patients and is always available to talk, to explain her work and to give us hope,” Stack said. “She said years ago that she would never give up until she found the cure — and now we are closer to a cure than ever before.” (Read more about Natalie here.)

In addition to cystinosis, Cherqui says this type of gene therapy approach could also lead to treatment advancements for other multi-organ degenerative disorders, such as Friedreich’s ataxia and Danon disease, as well as other kidney, genetic and systemic diseases similar to cystinosis.

While they wait for the long-term results of the treatment, Kulyk is cautiously hopeful.

“Moms are used to being able to fix everything for their children — kiss boo-boos make them better, make cupcakes for school, whip up Halloween costumes out of scraps, pull a coveted toy out of thin air when it has been sold out for months.

“But we have not been able to fix this, to take it away. I not only want this disease gone for my child, I want cystinosis to be nothing more than a memory for all the children and adults living with it. I know that even if and when Jordan is cured, there will still be so much work to do, in terms of regulatory approvals and insurance coverage.

“Having hope for your child’s disease to be cured is a slippery slope. We have all been there, held hope in our hands and had to let go. But, I find myself in a familiar place, holding onto hope again and this time I am not letting go.”

Video of Dr. Cherqui and Jordan Janz talking about the therapy

For more information about the Phase I/II clinical trial for cystinosis and to learn how to enroll, call 1-844-317-7836 or email alphastemcellclinic@ucsd.edu.

Cherqui’s research has been funded by the Cystinosis Research Foundation, California Institute for Regenerative Medicine (CIRM), and National Institutes of Health. She receives additional support from the Sanford Stem Cell Clinical Center and CIRM-funded Alpha Stem Cell Clinic at UC San Diego Health, and AVROBIO.

NIH collaboration aims to develop affordable gene therapies for sickle cell disease and HIV

Sickle cell disease (SCD) and HIV have a major burden on the health of impoverished communities all over the world.

Of the 38 million people living with HIV all over the world, approximately 95% reside within developing countries, with 67% in sub-Saharan Africa, half of whom are living without any treatment.

Fifteen million babies will be born with SCD globally over the next 30 years. Of those births, 75% will occur in sub-Saharan Africa. In this region, SCD is the underlying cause of 1 in 12 newborn deaths and an estimated 50-90% of infants born with SCD in developing countries will die before their 5th birthday.

It is because of this epidemic around the world that the National Institutes of Health (NIH) and The Bill & Melinda Gates Foundation have formed a collaboration, with the bold goal of advancing safe, effective and durable gene-based therapies to clinical trials in the United States and relevant countries in sub-Saharan Africa within the next seven to 10 years. The ultimate goal is to scale and implement these treatments globally in areas hardest hit by these diseases.

Through this collaboration, the NIH plans to invest at least $100 million over the next four years towards gene therapies related to SCD and HIV and in return The Bill and Melinda Gates Foundation will match this investment with an additional $100 million towards the same goal.

Currently, due to their intrinsic complexity and cost of treatment requirements, gene based therapies are generally limited to hospitals in wealthy countries. The collaborative effort between the NIH and the Gates Foundation seeks to change that by investing in the development of curative therapies that can be delivered safely, effectively and affordably in low-resource settings.

In a news release, NIH Director Dr. Francis Collins discusses the potential this agreement holds:

“This unprecedented collaboration focuses from the get-go on access, scalability and affordability of advanced gene-based strategies for sickle cell disease and HIV to make sure everybody, everywhere has the opportunity to be cured, not just those in high-income countries.”

In the same news release, Dr. Trevor Mundel, President of the Global Health Program at The Bill & Melinda Gates Foundation echoes the same sentiment:

“In recent years, gene-based treatments have been groundbreaking for rare genetic disorders and infectious diseases. While these treatments are exciting, people in low- and middle-income countries do not have access to these breakthroughs. By working with the NIH and scientists across Africa, we aim to ensure these approaches will improve the lives of those most in need and bring the incredible promise of gene therapy to the world of public health.”

Similarly, CIRM and the National Heart, Lung, and Blood Institute (NHLBI), an institute within the NIH, have entered a landmark agreement on curing SCD. CIRM has already funded one program under this agreement and has another $27 million available to fund other potential therapies.

CIRM Board Approves New Clinical Trial for Rare Childhood Disease

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved a grant of almost $12 million to Dr. Stephanie Cherqui at the University of California, San Diego (UCSD) to conduct a clinical trial for treatment of cystinosis.

This award brings the total number of CIRM funded clinical trials to 55. 

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene called CTNS, which results in abnormal accumulation of an amino acid called cystine in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular defects.  There is currently a drug treatment for cystinosis, but it only delays the progression of the disease, has severe side effects and is expensive.

Dr. Cherqui’s clinical trial will use a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective CTNS gene. Based on pre-clinical data, the approach is to reintroduce the corrected stem cells into the patient to give rise to blood cells that will reduce cystine buildup in affected tissues.  

Because this is the first time this approach has been tested in patients, the primary goal of the clinical trial is to see if the treatment is safe.  In addition, patients will be monitored for improvements in the symptoms of their disease.  This award is in collaboration with the University of California, Los Angeles which will handle the manufacturing of the therapy.

CIRM has also funded the preclinical work for this study, which involved completing the testing needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial in people.

“CIRM has funded 24 clinical stage programs utilizing cell and gene medicine approaches to date,” says Maria T. Millan, M.D., the President and CEO of CIRM.  “This project continues to broaden the scope of unmet medical need we can impact with these types of approaches.”

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.

Gene therapy gives patient a cure and a new lease on life

Brenden Whittaker (left), of Ohio, is a patient born with a rare genetic immune disease who was treated at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center in a CIRM funded gene therapy trial. Dr. David Williams (on right) is Brenden’s treating physician.
Photo courtesy of Rose Lincoln – Harvard Staff Photographer

Pursuing an education can be quite the challenge in itself without the added pressure of external factors. For Brenden Whittaker, a 25 year old from Ohio, the constant trips to the hospital and debilitating nature of an inherited genetic disease made this goal particularly challenging and, for most of his life, out of sight.

Brenden was born with chronic granulomatous disease (CGD), a rare genetic disorder that affects the proper function of neutrophils, a type of white blood cell that is an essential part of the body’s immune system. This leads to recurring bacterial and fungal infections and the formation of granulomas, which are clumps of infected tissue that arise as the body attempts to isolate infections it cannot combat. People with CGD are often hospitalized routinely and the granulomas themselves can obstruct digestive pathways and other pathways in the body. Antibiotics are used in an attempt to prevent infections from occurring, but eventually patients stop responding to them. One in two people with CGD do not live past the age of 40.

In Brenden’s case, when the antibiotics he relied on started failing, the doctors had to resort to surgery to cut out an infected lobe of his liver and half his right lung. Although the surgery was successful, it would only be a matter of time before a vital organ was infected and surgery would no longer be an option.

This ultimately lead to Brenden becoming the first patient in a CGD gene therapy trial at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center.  The trial, lead by UCLA’s Dr. Don Kohn thanks to a CIRM grant, combats the disease by correcting the dysfunctional gene inside a patient’s blood stem cells. The patient’s corrected blood stem cells are then reintroduced, allowing the body to produce properly functioning neutrophils, rebooting the immune system.

It’s been a little over three years since Brenden received this treatment in late 2015, and the results have been remarkable. Dr. David Williams, Brenden’s treating physician, expected Brenden’s body to produce at least 10 percent of the functional neutrophils, enough so that Brenden’s immune system would provide protection similar to somebody without CGD. The results were over 50 percent, greatly exceeding expectations.

Brenden Whittaker mowing the lawn in the backyard of his home in Columbus, Ohio. He is able to do many more things without the fear of infection since participating in the trial. Photo courtesy of Colin McGuire

In an article published by The Harvard Gazette, Becky Whittaker, Brendan’s mother, is quoted as saying, ““Each day that he’s free of infection, he’s able to go to class, he’s able to work at his part-time job, he’s able to mess around playing with the dog or hanging out with friends…[this] is a day I truly don’t believe he would have had beyond 2015 had something not been done.”

In addition to the changes to his immune system, the gene therapy has reinvigorated Brenden’s drive for the future. Living with CGD had caused Brenden to miss out on much of his schooling throughout the years, having to take constant pauses from his academics at a community college. Now, Brenden aims to graduate with an associate’s degree in health sciences in the spring and transfer to Ohio State in the fall for a bachelor’s degree program. In addition to this, Brenden now has dreams of attending medical school.

In The Harvard Gazette article, Brenden elaborates on why he wants to go to medical school saying, ” Just being the patient for so long, I want to give back. There are so many people who’ve been there for me — doctors, nurses who’ve been there for me [and] helped me for so long.”

In a press release dated February 25, 2019, Orchard Therapeutics, a biopharmaceutical company that is continuing the aforementioned approach for CGD, announced that six patients treated have shown adequate neutrophil function 12 months post treatment. Furthermore, these six patients no longer receive antibiotics related to CGD. Orchard Therapeutics also announced that they are in the process of designing a registrational trial for CGD.

Gene therapy and blood stem cells cure sickle cell disease patients

Sickle-shaped blood cells. The cells become lodged in blood vessels, causing strokes or excruciating pain as blood stops flowing. Photo courtesy of Omikron/Science Source

Blood is the lifeline of the body. The continuous, unimpeded circulation of blood maintains oxygen flow throughout the body and enables us to carry out our everyday activities. Unfortunately, there are individuals whose own bodies are in a constant battle that prevents this from occurring seamlessly. They have something known as sickle cell disease (SCD), an inherited condition caused by a mutation in a single gene. Rather than producing normal, circular red blood cells, their bodies produce sickle shaped cells (hence the name) that can become lodged in blood vessels, preventing blood flow. The lack of blood flow can cause agonizing pain, known as crises, as well as strokes. Chronic crises can cause organ damage, which can eventually lead to organ failure. Additionally, since the misshapen cells don’t survive long in the body, people with SCD have a greater risk of being severely anemic and are more prone to infections. Monthly blood transfusions are often needed to help temporarily alleviate symptoms. Due to the debilitating nature of SCD, important aspects of everyday life such as employment and health insurance can be extremely challenging to find and maintain.

An estimated 100,000 people in the United States are living with SCD. Around the world, about 300,000 infants are born with the condition each year, a statistic that will increase to 400,000 by 2050 according to one study. Many people with SCD do not live past the age of 50. It is most prevalent in individuals with sub-Saharan African descent followed by people of Hispanic descent. Experts have stated that advances in treatment have been limited in part because SCD is concentrated in poorer minority communities.

Despite these grim statistics and prognosis, there is hope.

The New York Times and Boston Herald recently released featured articles that tell the personal stories of patients enrolled in a clinical trial conducted by bluebird bio. The trial uses gene therapy in combination with hematopoietic (blood) stem cells (HSCs) to give rise to normal red blood cells in SCD patients.

Here are the stories of these patients. To read the full New York Times article, click here. For the Boston Herald article, click here.

Brothers, Emmanuel “Manny” 21 and Aiden Johnson 7 at their home in Brockton, Massachusetts. Both brothers were born with sickle cell disease. Photo courtesy of Matt Stone for MediaNews Group/Boston Herald

Emmanuel “Manny” Johnson was the very first patient in the SCD trial. He was motivated to participate in the trial not just for himself but for his younger brother Aiden Johnson, who was also born with SCD. Manny has a tattoo with Aiden’s name written inside a red sickle cell awareness ribbon.

In the article Manny is quoted as saying “It’s not only that we share the same blood disease, it’s like I have to do better for him.”

Since receiving the treatment, Manny’s SCD symptoms have disappeared.

Brandon Williams received the stem cell gene therapy to replace sickle cells with healthy red blood cells. The tattoo on his right forearm is in honor of his sister, Britney, who died of sickle cell disease. Photo courtesy of Alyssa Schukar for The New York Times

For Brandon Williams of Chicago, the story of SCD is a very personal one. At just 21 years old, Brandon had suffered four strokes by the time he turned 18. His older sister, Britney Williams, died of sickle cell disease at the age of 22. Brandon was devastated and felt that his own life could end at any moment. He was then told about the SCD trial and decided to enroll. Following the treatment, his symptoms have vanished along with the pain and fear inflicted by the disease.

Carmen Duncan participated in the stem cell gene therapy trial and no longer has sickle-cell symptoms. She wants to join the military, something that wasn’t an option until now. Photo courtesy of Sean Rayford for The New York Times

The NY Times piece also profiles Carmen Duncan, a 20 year old from Charleston, South Carolina. She had her spleen removed when she was just two years old as a result of complications form SCD. Duncan spent a large portion of her childhood in hospitals, coping with the pain in her arms and legs from blocked blood vessels. She enrolled in the SCD trial as well and she no longer has any signs of SCD. Duncan had aspirations to join the military but was unable to because of her condition. Now that she is symptom free, she plans to enlist.

This SCD clinical trial has multiple trial sites across the US, one which is the UCSF Alpha Stem Cell Clinic , a CIRM funded clinic specializing in the delivery of stem cell clinical trials to patients. CIRM awarded a $7,999,999 grant to help establish this site.

Stem Cell Round: Improving memory, building up “good” fat, nanomedicine

Stem Cell Photo of the Week

roundup03618In honor of brain awareness week, our featured stem cell photo is of the brain! Scientists at the Massachusetts General Hospital and Harvard Stem Cell Institute identified a genetic switch that could potentially improve memory during aging and symptoms of PTSD. Shown in this picture are dentate gyrus cells (DGC) (green) and CA3 interneurons (red) located in the memory-forming area of the brain known as the hippocampus. By reducing the levels of a protein called abLIM3 in the DGCs of older mice, the researchers were able to boost the connections between DGCs and CA3 cells, which resulted in an improvement in the memories of the mice. The team believes that targeting this protein in aging adults could be a potential strategy for improving memory and treating patients with post-traumatic stress disorder (PTSD). You can read more about this study in The Harvard Gazette.

New target for obesity.
Fat cells typically get a bad rap, but there’s actually a type of fat cell that is considered “healthier” than others. Unlike white fat cells that store calories in the form of energy, brown fat cells are packed with mitochondria that burn energy and produce heat. Babies have brown fat, so they can regulate their body temperature to stay warm. Adults also have some brown fat, but as we get older, our stores are slowly depleted.

In the fight against obesity, scientists are looking for ways to increase the amount of brown fat and decrease the amount of white fat in the body. This week, CIRM-funded researchers from the Salk Institute identified a molecule called ERRg that gives brown fat its ability to burn energy. Their findings, published in Cell Reports, offer a new target for obesity and obesity-related diseases like diabetes and fatty liver disease.

The team discovered that brown fat cells produce the ERRg molecule while white fat cells do not. Additionally, mice that couldn’t make the ERRg weren’t able to regulate their body temperature in cold environments. The team concluded in a news release that ERRg is “involved in protection against the cold and underpins brown fat identity.” In future studies, the researchers plan to activate ERRg in white fat cells to see if this will shift their identity to be more similar to brown fat cells.

brownfat_mice

Mice that lack ERR aren’t able to regulate their body temperature and are much colder (right) than normal mice (left). (Image credit Salk Institute)

Tale of two nanomedicine stories: making gene therapies more efficient with a bit of caution (Todd Dubnicoff).
This week, the worlds of gene therapy, stem cells and nanomedicine converged for not one, but two published reports in the journal American Chemistry Society NANO.

The first paper described the development of so-called nanospears – tiny splinter-like magnetized structures with a diameter 5000 times smaller than a strand of human hair – that could make gene therapy more efficient and less costly. Gene therapy is an exciting treatment strategy because it tackles genetic diseases at their source by repairing or replacing faulty DNA sequences in cells. In fact, several CIRM-funded clinical trials apply this method in stem cells to treat immune disorders, like severe combined immunodeficiency and sickle cell anemia.

This technique requires getting DNA into diseased cells to make the genetic fix. Current methods have low efficiency and can be very damaging to the cells. The UCLA research team behind the study tested the nanospear-delivery of DNA encoding a gene that causes cells to glow green. They showed that 80 percent of treated cells did indeed glow green, a much higher efficiency than standard methods. And probably due to their miniscule size, the nanospears were gentle with 90 percent of the green glowing cells surviving the procedure.

As Steve Jonas, one of the team leads on the project mentions in a press release, this new method could bode well for future recipients of gene therapies:

“The biggest barrier right now to getting either a gene therapy or an immunotherapy to patients is the processing time. New methods to generate these therapies more quickly, effectively and safely are going to accelerate innovation in this research area and bring these therapies to patients sooner, and that’s the goal we all have.”

While the study above describes an innovative nanomedicine technology, the next paper inserts a note of caution about how experiments in this field should be set up and analyzed. A collaborative team from Brigham and Women’s Hospital, Stanford University, UC Berkeley and McGill University wanted to get to the bottom of why the many advances in nanomedicine had not ultimately led to many new clinical trials. They set out looking for elements within experiments that could affect the uptake of nanoparticles into cells, something that would muck up the interpretation of results.

164931_web

imaging of female human amniotic stem cells incubated with nanoparticles demonstrated a significant increase in uptake compared to male cells. (Green dots: nanoparticles; red: cell staining; blue: nuclei) Credit: Morteza Mahmoudi, Brigham and Women’s Hospital.

In this study, they report that the sex of cells has a surprising, noticeable impact on nanoparticle uptake. Nanoparticles were incubated with human amniotic stem cells derived from either males or females. The team showed that the female cells took up the nanoparticles much more readily than the male cells.  Morteza Mahmoudi, PhD, one of the authors on the paper, explained the implications of these results in a press release:

“These differences could have a critical impact on the administration of nanoparticles. If nanoparticles are carrying a drug to deliver [including gene therapies], different uptake could mean different therapeutic efficacy and other important differences, such as safety, in clinical data.”