Dr. Vito Imbasciani elected as Chair of California stem cell agency

Dr. Vito Imbasciani will be the new Chair of the California Institute for Regenerative Medicine (CIRM), the state agency created by voters in 2004 and funded again in 2020 to invest in stem cell and regenerative medicine research and treatments.

At January’s Board meeting, the agency’s 35-member Governing Board elected Imbasciani to the six-year term, replacing outgoing chair Jonathan Thomas, who has served in the position since 2011.

“Dr. Imbasciani’s experience across many relevant fronts will help him hit the ground running in guiding the Agency as it continues to grow its programs to bring treatments to patients with unmet medical needs,” Thomas said in welcoming Imbasciani to the role. “The agency, as well as the people of California and the world, will be well served by Imbasciani’s appointment as Chair of the CIRM Governing Board.”

Imbasciani expressed excitement in taking on the role, citing his extensive career in academia, government, military service and medicine.

“My experience has positioned me to champion the aims of CIRM, advocate for it cogently, and represent it responsibly before the public and their state and federal elected representatives,” Imbasciani said. “I look forward to the challenge of advancing the groundbreaking work of this Agency, at the same time nourishing the hopes for medical advances held by the citizens of our great State.”

Imbasciani has served as the Secretary of the California Department of Veterans Affairs (CalVet) since 2015. As Secretary, he created several new programs within the department, including forging eight independent California veteran homes into a unified system, establishing programs for veterans in state prisons, and supporting the 58 county veteran service offices.

In addition, Dr. Imbasciani has been a practicing urologic surgeon for 30 years, treating a mostly older population suffering from congenital and acquired conditions.

Dr. Imbasciani completed medical school at the University of Vermont College of Medicine, and his surgical and urologic residencies at Yale-New Haven Hospital and the West Haven VA Hospital in Connecticut. At the University of Vermont, he worked in the laboratory assisting in studies of neurodegenerative diseases.

He earned MA and PhD degrees from Cornell University, and was a Fulbright Scholar to Rome, Italy in 1973. He held academic teaching positions at the University of Florida, Cornell University and Middlebury College in Vermont.

He also served for 27 years as a surgeon in the United States Army Medical Corps, with four wartime deployments that exposed him to battlefield medicine and post-acute care.

Dr. Imbasciani also has a documented history in successful stem cell research advocacy. As an elected member of the Board of Directors of both the California Medical Association and the Los Angeles County Medical Association, he advocated for investments in basic stem cell research, and for the passage of Proposition 71, the ballot initiative that created CIRM. This included participating in activities aimed at educating the wider medical community in the long-term benefits of stem cell research.

CIRM President and CEO Dr. Maria T. Millan applauded Imbasciani’s appointment as Chair.

“Dr. Imbasciani’s experience as a state secretary, surgeon, professor, stem cell research advocate, and board member of various medical agencies and organizations makes him exceptionally well-suited to fill the role of ICOC Chair and to lead CIRM in accelerating world class science and treatments for a diverse California and the world. I look forward to working with him in his new role.”

Imbasciani will be sworn in and start on March 28, 2023.

A timeless message about stem cells

Dr. Daniel Kota

The world of stem cell research is advancing rapidly, with new findings and discoveries seemingly every week. And yet some things that we knew years ago are still every bit as relevant today as they were then.

Take for example a TEDx talk by Dr. Daniel Kota, a stem cell researcher and the Director, Cellular Therapy – Research and Development at Houston Methodist.

Dr. Kota’s talk is entitled: “Promises and Dangers of Stem Cell Therapies”. In it he talks about the tremendous potential of stem cells to reverse the course of disease and help people battle previously untreatable conditions.

But he also warns about the gap between what the science can do, and what people believe it can do. He says too many people have unrealistic expectations of what is available right now, fueled by many unscrupulous snake oil salesmen who open clinics and offer “treatments” that are both unproven and unapproved by the Food and Drug Administration.

He says we need to “bridge the gap between stem cell science and society” so that people have a more realistic appreciation of what stem cells can do.

Sadly, as the number of clinics peddling these unproven therapies grows in the US, Dr. Kota’s message remains all too timely.

Stem Cell Agency Expands Industry Alliance Program to  Accelerate Therapies

An ever-growing array of academic and industry resources are required to rapidly translate scientific discoveries and emerging technologies toward safe and effective regenerative medicine therapies for patients. To help, the California Institute for Regenerative Medicine (CIRM) is creating a network of Industry Resource Partners (IRP) that will make its unique resources available to help accelerate the progression of CIRM-funded Discovery, Translational and Clinical stage research projects toward transformative regenerative medicine therapies for rare and prevalent diseases.

The Industry Resource Partners will offer their services, technologies and expertise to CIRM-funded projects in a cost-effective, stage-appropriate and consistent manner.

For example, Novo Nordisk is making research-grade vials of its Good Manufacturing Practice (GMP)-grade human embryonic stem cell line available for CIRM Discovery Quest stage research projects at no cost. Having access to clinically compatible pluripotent stem cell lines such as this one will help CIRM researchers accelerate the translation of their therapeutic discoveries toward clinical use. Researchers will also have future access to Novo Nordisk’s GMP seed stock as well as opportunities for partnering with Novo Nordisk.

“CIRM is a lender of first resort, supporting projects in the very early stages, long before they are able to attract outside investment,” says Shyam Patel, PhD, the Director of Business Development at CIRM. “With the launch of this program we hope to create a force-multiplier effect by bringing in industry partners who have the resources, experience and expertise to help further accelerate CIRM-funded regenerative medicine research projects.”

This new network builds on work CIRM started in 2018 with the Industry Alliance Program (IAP). The goal of the IAP was to partner researchers and industry to help accelerate the most promising stem cell, gene and regenerative medicine therapy programs to commercialization. Four of the members of the IAP are also founding members or the IRP.

In addition to Novo Nordisk, the IRP includes:

ElevateBio is providing access to high quality, well-characterized induced pluripotent stem cell (iPSC) lines to CIRM Discovery Quest stage research projects for product development in regenerative medicine. CIRM awardees will also have access to ElevateBio’s viral vector technologies, process development, analytical development, and GMP manufacturing services.

Bayer is offering to support the cell therapy process development and GMP manufacturing needs of CIRM Translational and Clinical awardees at its newly built Berkeley facilities. The partnered projects will have access to Bayer’s cell therapy manufacturing facilities, equipment, resources and expertise. Bayer is also open to partnering from fee-based-services to full business development and licensing opportunities. 

Resilience is providing access to its GMP manufacturing services for CIRM Translational and Clinical Stage projects. In addition to providing access to its cell therapy manufacturing services and partnering opportunities, Resilience will provide project consultation that could aid CIRM applicants in drafting manufacturing plans and budgets for CIRM applications.

“These partnerships are an important step forward in helping advance not only individual projects but also the field as a whole,” says Dr. Maria T. Millan, President and CEO of CIRM. “One of the biggest challenges facing regenerative medicine right now involves manufacturing. Providing researchers with access to high quality starting materials and advanced manufacturing capabilities is going to be essential in helping these projects maintain high quality standards and comply with the regulatory frameworks needed to bring these therapies to patients.”

While the IRP Network will offer its services to CIRM grantees there is no obligation or requirement that any CIRM awardee take advantage of these services.

A big deal for type 1 diabetes

It’s not often you get excited talking about company mergers, but a deal announced today is something worth getting excited about, particularly if you have type 1 diabetes (T1D).  

Today Vertex announced it was buying ViaCyte for $320 million in cash. Why is that important? Because both companies are working on developing stem cell therapies for people with type 1 diabetes, so combining the two may help speed up that work. 

Now, in the interests of full disclosure the California Institute for Regenerative Medicine (CIRM) has been supporting ViaCyte’s work for some years now, investing in nine different research programs, including two clinical trials with the company.  

ViaCyte has been developing an implantable device which contains pancreatic endoderm cells that mature over a few months and turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D.  

Vertex is taking a slightly different approach, manufacturing synthetic islet cells which are then injected into the patient.  

In a news release both companies said the deal – which is slated to be completed later this year – would help speed up that work.:  

“VX-880 has successfully demonstrated clinical proof of concept in T1D, and the acquisition of ViaCyte will accelerate our goal of transforming, if not curing T1D by expanding our capabilities and bringing additional tools, technologies and assets to our current stem cell-based programs,” said Reshma Kewalramani, M.D., Chief Executive Officer and President of Vertex.  

“ViaCyte’s commitment to finding a functional cure for T1D is shared by Vertex, and this acquisition will allow Vertex to deploy ViaCyte’s tools, technologies and assets toward the development of Vertex’s multiple cell replacement therapy approaches designed to reduce the burden of millions of people living with T1D worldwide,” said Michael Yang, President and Chief Executive Officer of ViaCyte.  

Dr. Maria Millan, CIRM’s President and CEO, says it’s always gratifying to see a project we have supported continue to progress.

“We are delighted at the news that Vertex and ViaCyte are combining their experience, expertise and resources in working to develop a stem cell therapy for type 1 diabetes. At CIRM we pride ourselves on helping de-risk projects, giving promising research the support it needs to attract outside investment. We have been big supporters of ViaCyte’s work over many years. That support has been vital in helping lead to this deal. We believe this is good news for both companies and hope it will ultimately be even better news for everyone with type 1 diabetes.”

Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

It’s hard to be modest when people keep telling you how good you are

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

I have a confession. Deep down I’m shallow. So when something I am part of is acknowledged as one of the best, I delight in it (my fellow bloggers Katie and Esteban also delight in it, I am just more shameless about letting everyone know.)

And that is just what happened with this blog, The Stem Cellar. We have been named as one of the “22 best biology and stem cell blogs of 2022”. And not just by anyone. We were honored by Dr. Paul Knoepfler, a stem cell scientist, avid blogger and all-round renaissance man (full disclosure, Paul is a recipient of CIRM funding but that has nothing to do with this award. Obviously.)

We are particularly honored to be on the list because Paul includes some heavy hitters including The Signals Blog, a site that he describes this way:

“This one from our friends in Canada is fantastic. They literally have dozens of authors, which is probably the most of any stem cell-related website, and their articles include many interesting angles. They post really often too. I might rank Signal and The Stem Cellar as tied for best stem cell blog in 2021.”

Now I’m really blushing.

Other highly regarded blogs are EuroStemCell, the Mayo Clinic Regenerative Medicine Blog and Stem Cell Battles (by Don Reed, a good friend of CIRM’s)

Another one of the 22 is David Jensen’s California Stem Cell report which is dedicated to covering the work of, you guessed it, CIRM. So, not only are we great bloggers, we are apparently great to blog about. 

As a further demonstration of my modesty I wanted to point out that Paul regularly produces ‘best of’ lists, including his recent “50 influencers on stem cells on Twitter to follow” which we were also on.

Overcoming obstacles and advancing treatments to patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

UC Davis GMP Manufacturing facility: Photo courtesy UC Davis

When you are trying to do something that has never been done before, there are bound to be challenges to meet and obstacles to overcome. At the California Institute for Regenerative Medicine (CIRM) we are used to coming up with great ideas and hearing people ask “Well, how are you going to do that?”

Our new 5-year Strategic Plan is how. It’s the roadmap that will help guide us as we work to overcome critical bottlenecks in bringing regenerative medicine therapies to people in need.

Providing more than money

People often think of CIRM as a funding agency, providing the money needed to do research. That’s true, but it’s only part of the story. With every project we fund, we also offer a lot of support. That’s particularly true at the clinical stage, where therapies are being tested in people. Projects we fund in clinical trials don’t just get money, they also have access to:

  • Alpha Stem Cells Clinic Network – This is a group of specialized medical centers that have the experience and expertise to deliver new stem cell and gene therapies.
  • The CIRM Cell and Gene Therapy Center – This helps with developing projects, overcoming manufacturing problems, and offers guidance on working with the US Food and Drug Administration (FDA) to get permission to run clinical trials.
  • CIRM Clinical Advisory Panels (CAPs) – These are teams put together to help advise researchers on a clinical trial and to overcome problems. A crucial element of a CAP is a patient advocate who can help design a trial around the needs of the patients, to help with patient recruitment and retention.

Partnering with key stakeholders

Now, we want to build on this funding model to create new ways to support researchers in bringing their work to patients. This includes earlier engagement with regulators like the FDA to ensure that projects match their requirements. It includes meetings with insurers and other healthcare stakeholders, to make sure that if a treatment is approved, that people can get access to it and afford it.

In the past, some in the regenerative medicine field thought of the FDA as an obstacle to approval of their work. But as David Martin, a CIRM Board member and industry veteran says, the FDA is really a key ally.

“Turning a promising drug candidate into an approved therapy requires overcoming many bottlenecks… CIRM’s most effective and committed partner in accelerating this is the FDA.”

Removing barriers to manufacturing

Another key area highlighted in our Strategic Plan is overcoming manufacturing obstacles. Because these therapies are “living medicines” they are complex and costly to produce. There is often a shortage of skilled technicians to do the jobs that are needed, and the existing facilities may not be able to meet the demand for mass production once the FDA gives permission to start a clinical trial. 

To address all these issues CIRM wants to create a California Manufacturing Network that combines academic innovation and industry expertise to address critical manufacturing bottlenecks. It will also coordinate training programs to help build a diverse and expertly trained manufacturing workforce.

CIRM will work with academic institutions that already have their own manufacturing facilities (such as UC Davis) to help develop improved ways of producing therapies in sufficient quantities for research and clinical trials. The Manufacturing Network will also involve industry partners who can develop facilities capable of the large-scale production of therapies that will be needed when products are approved by the FDA for wider use.

CIRM, in collaboration with this network, will also help develop education and hands-on training programs for cell and gene therapy manufacturing at California community colleges and universities. By providing internships and certification programs we will help create a talented, diverse workforce that is equipped to meet the growing demands of the industry.

You can read more about these goals in our 2022-27 Strategic Plan.

Lack of diversity leaves cloud hanging over asthma drug study

Asthma spacer, photo courtesy Wiki Media Creative Commons

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you want to know if a new drug or therapy is going to work in the people it affects the most you need to test the drug or therapy in the people most affected by the disease. That would seem blindingly obvious, wouldn’t it? Apparently not.

Case in point. A new asthma medication, one that seemingly shows real promise in reducing attacks in children, was tested on an almost entirely white patient population, even though Black and Puerto Rican children are far more likely to suffer from asthma.

The study enrolled more than 400 children, between the ages of 6 and 11, with moderate to serious uncontrolled asthma and treated them with a medication called Dupixent. The results, published in the New England Journal of Medicine, were impressive. Children given Dupixent had an average drop in severe asthma attacks of 65 percent compared to children given a placebo.

The only problem is 90 percent of the children in the study were white. Why is that a problem? Because, according to the Asthma and Allergy Foundation of America, only 9.5 percent of white children have asthma, compared to 24 percent of Puerto Rican children and 18 percent of Black children. So, the groups most likely to suffer from the disease were disproportionately excluded from a study about a treatment for the disease.

Some people might think, “So what! If the medication works for one kid it will work for another, what does race have to do with it?” Quite a lot actually.

A study in the Journal of Allergy and Clinical Immunology concluded that: “Race/ethnicity modified the association between total IgE (an antibody in the blood that is a marker for asthma) and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans… Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations.”

The article concluded by calling for “more studies in diverse populations for equitable treatment of minority patients with asthma.” Something that clearly didn’t happen in the Dupixent study.

While that’s more than disappointing, it’s not surprising. A recent study of vaccine clinical trials in JAMA Network Open found that:

  • Overall, white individuals made up almost 80 percent of people enrolled.
  • Black individuals were represented only 10.6 percent of the time.
  • Latino participants were represented just 11.6 percent of the time. 

Additionally, in pediatric trials, Black participants were represented just over 10 percent of the time and Latino participants were represented 22.5 percent of the time. The study concluded by saying that “diversity enrollment targets are needed for vaccine trials in the US.”

I would expand on that, saying they are needed for all clinical trials. That’s one of the many reasons why we at the California Institute for Regenerative Medicine (CIRM) are making Diversity, Equity and Inclusion an important part of everything we do, such as requiring all applicants to have a written DEI plan if they want funding from us. Dr. Maria Millan, our President and CEO, recently co-authored an article in Nature Cell Biology, driving home the need for greater diversity in basic science and research in general.

DEI has become an important part of the conversation this past year. But the Dupixent trial shows that if we are truly serious about making it part of what we do, we have to stop talking and start acting.

Sweating bullets and other stories from the front line

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

When the COVID-19 pandemic hit and the 2020 election became one of the most contentious in living history it suddenly made trying to get a proposition on the ballot in California a lot harder. That meant the fate of Proposition 14, a ballot initiative refunding CIRM, California’s Stem Cell Agency, was in doubt. And if the agency went down, then a vital source of future funding for scientific research that could change and even save lives would also disappear.

It was a pretty nerve-racking time for all of us involved. We waited day after day after day after day before the election was finally called. Happily, it was in our favor. But only just!

In this podcast we talk to two of the key figures in this saga. Melissa King and Maria Bonneville. Melissa was part of the team that helped secure the votes needed to pass Proposition 14, and Maria helped keep CIRM on track to cope with whatever the outcome of the election was. 

I hope you enjoy this latest episode of our podcast ‘Talking ‘Bout (re)Generation.’

Creating a better way to treat type 1 diabetes

LISTEN TO THIS BLOG AS AN AUDIOCAST ON SPOTIFY

The cell encapsulation device (right) that is being developed by Encellin, a San Francisco–based biotechnology company. Photo courtesy of Encellin

Type 1 diabetes (t1d) affects every aspect of a person’s life, from what they eat and when they eat, to when they exercise and how they feel physically and emotionally. Because the peak age for being diagnosed with t1d is around 13 or 14 years of age it often hits at a time when a child is already trying to cope with big physical and emotional changes. Add in t1d and you have a difficult time made a lot more challenging.

There are ways to control the disease. Regular blood sugar monitoring and insulin injections can help people manage their condition but those come with their own challenges. Now researchers are taking a variety of different approaches to developing new, innovative ways of helping people with t1d.

One of those companies is Encellin. They are developing a pouch-like device that can be loaded with stem cells and then implanted in the body. The pouch acts like a mini factory, releasing therapies when they are needed.

This work began at UC San Francisco in the lab of Dr. Tejal Desai – with help from CIRM funding – that led to the creation of Encellin. We recently sat down – virtually of course – with Dr. Grace Wei, the co-founder of the company to chat about their work, and their hopes for the future.

Dr. Grace Wei

She said the decision to target t1d was an easy one:

Type 1 diabetes is an area of great need. It’s very difficult to manage at any age but particularly in children. It affects what they can eat, what they can do, it’s a big burden on the family and can become challenging to manage when people get older.

“It’s an autoimmune disease so everyone’s disease progression is a bit different. People think it’s just a matter of you having too much blood sugar and not enough insulin, but the problem with medicines like insulin is that they are not dynamic, they don’t respond to the needs of your body as they occur. That means people can over-regulate and give themselves too much insulin for what their body needs and if it happens at night, it can be deadly.

Dr. Wei says stem cell research opens up the possibility of developing dynamic therapies, living medicines that are delivered to you by cells that respond to your dynamic needs. That’s where their pouch, called a cell encapsulation device (CED) comes in.

The pouch is tiny, only about the size of a quarter, and it can be placed just under the skin. Encellin is filling the pouch with glucose-sensitive, insulin producing islet cells, the kind of cells destroyed by t1d. The idea is that the cells can monitor blood flow and, when blood sugar is low, secrete insulin to restore it to a healthy level. 

Another advantage of the pouch is that it may eliminate the need for the patient to take immunosuppressive medications.

“The pouch is really a means to protect both the patient receiving the cells and the cells themselves. Your body tends to not like foreign objects shoved into it and the pouch in one respect protects the cells you are trying to put into the person. But you also want to be able to protect the person, and that means knowing where the cells are and having a means to remove them if you need to. That’s why it’s good to have a pouch that you can put in the body, take it out if you need, and replace if needed.”

Dr. Wei says it’s a little like making tea with a tea bag. When the need arises the pouch can secrete insulin but it does so in a carefully controlled manner.

“These are living cells and they are responsive, it’s not medicine where you can overdose, these cells are by nature self-regulating.”

They have already tested their approach with a variety of different kinds of islets, in a variety of different kinds of model.

“We’ve tested for insulin production, glucose stimulation and insulin response. We have tested them in a number of animal models and those studies are supporting our submission for a first-in-human safety clinical trial.”

Dr. Wei says if this approach works it could be used for other metabolic conditions such as parathyroid disorders. And she says a lot of this might not be possible without the early funding and support from CIRM.

“CIRM had the foresight to invest in groups that are looking ahead and said it would be great to have renewable cells to transplant into the body  (that function properly. We are grateful that groundwork that has been laid and are looking forward to advancing this work.”

And we are looking forward to working with them to help advance that work too.