Regulated, Reputable and Reliable: FDA’s Taking Additional Steps to Advance Safe and Effective Regenerative Medicine Products

Peter Marks, M.D., Ph.D., Director, Center for Biologics Evaluation and Research

In February 2020, CIRM presented a series of benchmarks for the responsible delivery of stem cell and regenerative medicine products. These benchmarks are outlined in the publication Regulated, reliable and reputable: Protect patients with uniform standards for stem cell treatments. In a nutshell, CIRM advocates for the delivery of regenerative medicine products in a context where:

  • The product is authorized by the Food and Drug Administration (FDA) and is overseen by an IRB or ethics board,
  • The treatment is delivered by qualified doctors, nurses, and technicians,
  • Treatment occurs at a clinical treatment center with expertise in regenerative medicine, and
  • There is ongoing monitoring and follow-up of patients.

On April 21 of 2021, Dr. Peter Marks, Director of the Center for Biologics Evaluation and Research, indicated the FDA’s intent to ensure new regenerative medicine products are FDA-authorized. Specifically, the FDA will require product developers to obtain an Investigational New Drug or IND authorization. In his news release Dr. Marks says the agency is willing to exercise more enforcement of these rules should clinics or therapy producers fail to follow these guidelines.

“These regenerative medicine products are not without risk and are often marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they haven’t been adequately studied in clinical trials. We’ve said previously and want to reiterate here – there is no room for manufacturers, clinics, or health care practitioners to place patients at risk through products that violate the law, including by not having an IND in effect or an approved biologics license. We will continue to take action regarding unlawfully marketed products.”

IND authorization is particularly important as the agency pays close attention to how the product is produced and whether there is a scientific rationale and potential clinical evidence that it may be effective against the specific disease condition. All CIRM-funded clinical trials and all trials conducted in the CIRM Alpha Stem Cell Clinics Network must have IND authorization.

Regenerative medicine products are generally created from human cells or tissues. These products are frequently referred to as “living medicines.” The “living” nature of these products is what contributes to their remarkable potential to relieve, stop or reverse disease in a durable or sustainable manner.

The risk with unregulated products is that there is no assurance that they have been  produced in a quality controlled process or manner  where all components of the  injected material have been well characterized and studied for safety and efficacy for a given disease as well as a specific site in the body. In addition, there is no way to ensure that unregulated products meet standards or quality specifications such as ensuring that they have the active and beneficial component while making sure that they do not include harmful contaminants..  There have been documented examples of patients being severely injured by unregulated and inadequately characterized products. For example, in 2017 three Florida women were blinded by an unauthorized product.  Dr. George Daley, a stem cell expert and the Dean of Harvard Medical School, described the clinic operators as “charlatans peddling the modern equivalent of snake oil.”

To receive FDA authorization, detailed scientific data and well controlled clinical data are required to ensure safety and a demonstration that  the product is safe has the potential to improve or resolve the patient’s disease condition.

While it seems both important and self-evident that stem cell products be safe and effective and supported by evidence they can impact the patient’s disease condition, that doesn’t always happen. Unfortunately, too many patients have experienced unnecessary medical risks and financial harm from unauthorized treatments. CIRM applauds the FDA for taking additional steps to advance regenerative medicine products where the clinical benefits of such therapies outweigh any potential harms.

Three UC’s Join Forces to Launch CRISPR Clinical Trial Targeting Sickle Cell Disease

Sickle shaped red blood cells

The University of California, San Francisco (UCSF), in collaboration with UC Berkeley (UCB) and UC Los Angeles (UCLA), have been given permission by the US Food and Drug Administration (FDA) to launch a first-in-human clinical trial using CRISPR technology as a gene-editing technique to cure Sickle Cell Disease.

This research has been funded by CIRM from the early stages and, in a co-funding partnership with theNational Heart, Lung, and Blood Institute under the Cure Sickle Cell initiatve, CIRM supported the work that allowed this program to gain FDA permission to proceed into clinical trials.    

Sickle Cell Disease is a blood disorder that affects around 100,000 people, mostly Black and Latinx people in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells. Normal red blood cells are round and smooth and flow easily through blood vessels. But the sickle-shaped ones are rigid and brittle and clump together, clogging vessels and causing painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

The three UC’s have combined their respective expertise to bring this program forward.

The CRISPR-Cas9 technology was developed by UC Berkeley’s Nobel laureate Jennifer Doudna, PhD. UCLA is a collaborating site, with expertise in genetic analysis and cell manufacturing and UCSF Benioff Children’s Hospital Oakland is the lead clinical center, leveraging its renowned expertise in cord blood and marrow transplantation and in gene therapy for sickle cell disease.

The approach involves retrieving blood stem cells from the patient and, using a technique involving electrical pulses, these cells are treated to correct the mutation using CRISPR technology. The corrected cells will then be transplanted back into the patient.

Dr. Mark Walters

In a news release, UCSF’s Dr. Mark Walters, the principal investigator of the project, says using this new gene-editing approach could be a game-changer. “This therapy has the potential to transform sickle cell disease care by producing an accessible, curative treatment that is safer than the current therapy of stem cell transplant from a healthy bone marrow donor. If this is successfully applied in young patients, it has the potential to prevent irreversible complications of the disease. Based on our experience with bone marrow transplants, we predict that correcting 20% of the genes should be sufficient to out-compete the native sickle cells and have a strong clinical benefit.”

Dr. Maria T. Millan, President & CEO of CIRM, said this collaborative approach can be a model for tackling other diseases. “When we entered into our partnership with the NHLBI we hoped that combining our resources and expertise could accelerate the development of cell and gene therapies for SCD. And now to see these three UC institutions collaborating on bringing this therapy to patients is truly exciting and highlights how working together we can achieve far more than just operating individually.”

The 4-year study will include six adults and three adolescents with severe sickle cell disease. It is planned to begin this summer in Oakland and Los Angeles.

The three UCs combined to produce a video to accompany news about the trial. Here it is:

Hitting our goals: regulatory reform

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. We are going to start with Regulatory Reform.

The political landscape in 2015 was dramatically different than it is today. Compared to more conventional drugs and therapies stem cells were considered a new, and very different, approach to treating diseases and disorders. At the time the US Food and Drug Administration (FDA) was taking a very cautious approach to approving any stem cell therapies for a clinical trial.

A survey of CIRM stakeholders found that 70% said the FDA was “the biggest impediment for the development of stem cell treatments.” One therapy, touted by the FDA as a success story, had such a high clinical development hurdle placed on it that by the time it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially. As one stakeholder said: “Is perfect becoming the enemy of better?”

So, we set ourselves a goal of establishing a new regulatory paradigm, working with Congress, academia, industry, and patients, to bring about real change at the FDA and to find ways to win faster approval for promising stem cell therapies, without in any way endangering patients.

It seemed rather ambitious at the time, but achieving that goal happened much faster than any of us anticipated. With a sustained campaign by CIRM and other industry leaders, working with the patient advocacy groups, the FDA, Congress, and President Obama, the 21st Century Cures Act was signed into law on December 13, 2016.

President Obama signs the 21st Century Cures Act.
Photo courtesy of NBC News

The law did something quite radical; it made the perspectives of patients an integral part of the FDA’s decision-making and approval process in the development of drugs, biological products and devices. And it sped up the review process by:

In a way the FDA took its foot off the brake but didn’t hit the accelerator, so the process moved faster, but in a safe, manageable way.

Fast forward to today and eight projects that CIRM funds have been granted RMAT designation. We have become allies with the FDA in helping advance the field. We have created a unique partnership with the National Heart, Lung and Blood Institute (NHLBI) to support the Cure Sickle Cell initiative and accelerate the development of cell and gene therapies for sickle cell disease.

The landscape has changed since we set a goal of regulatory reform. We still have work to do. But now we are all working together to achieve the change we all believe is both needed and possible.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

Everything you wanted to know about COVID vaccines but never got a chance to ask

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a rare treat, an interview with Moderna’s Dr. Derrick Rossi.

Moderna co-founder Dr. Derrick Rossi

It’s not often you get a chance to sit down with one of the key figures in the fight against the coronavirus and get to pick his brain about the best ways to beat it. We were fortunate enough to do that on Wednesday, talking to Dr. Derrick Rossi, the co-founder of Moderna, about the vaccine his company has developed.

CIRM’s President and CEO, Dr. Maria Millan, was able to chat to Dr. Rossi for one hour about his background (he got support from CIRM in his early post-doctoral research at Stanford) and how he and his colleagues were able to develop the COVID-19 vaccine, how the vaccine works, how effective it is, how it performs against new variations of the virus.

He also told us what he would have become if this science job hadn’t worked out.

All in all it was a fascinating conversation with someone whose work is offering a sense of hope for millions of people around the world.

If you missed it first time around you can watch it here.

Month of CIRM: Making sure stem cell therapies don’t get lost in Translation

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a blog written by two of our fabulous Discovery and Translation team Science Officers, Dr. Kent Fitzgerald and Dr. Ross Okamura.

Dr. Ross Okamura

If you believe that you can know a person by their deeds, the partnership opportunities offered by CIRM illustrate what we, as an agency, believe is the most effective way to deliver on our mission statement, accelerating regenerative medicine treatments to patients with unmet medical needs.

Dr. Kent Fitzgerald

 In our past, we have offered awards covering basic biology projects which in turn provided the foundation to produce promising therapies  to ease human suffering.  But those are only the first steps in an elaborate process.

In order to bring these potential therapies to the clinic, selected drug candidates must next go through a set of activities designed to prepare them for review by the Food and Drug Administration (FDA). For cell therapies, the first formal review is often the Pre- Investigational New Drug Application Consultation or pre-IND.  This stage of drug development is commonly referred to as Translational, bridging the gap between our Discovery or early stage research and Clinical Trial programs.

One of our goals at CIRM is to prepare Translational projects we fund for that  pre-IND meeting with the FDA, to help them gather data that support the hope this approach will be both safe and effective in patients.  Holding this meeting with the FDA is the first step in the often lengthy process of conducting FDA regulated clinical trials and hopefully bringing an approved therapy to patients.

What type of work is required for a promising candidate to move from the Discovery stage into FDA regulated development?  To address the needs of Translational science, CIRM offers the Translational Research Project funding opportunity.  Activities that CIRM supports at the Translational stage include:

  • Process Development to allow manufacturing of the candidate therapy under Good Manufacturing Practices (GMP). This is to show that they can manufacture  at a large enough scale to treat patients.
  • Assay development and qualification of measurements to determine whether the drug is being manufactured safely while retaining its curative properties.
  • Studies to determine the optimal dose and the best way to deliver that dose.
  • Pilot safety studies looking how the patient might respond after treatment with the drug.
  • The development of a clinical plan indicating under what rules and conditions the drug might be prescribed to a patient. 

These, and other activities supported under our Translational funding program, all help to inform the FDA when they consider what pivotal studies they will require prior to approving an Investigational New Drug (IND) application, the next step in the regulatory approval process.

Since CIRM first offered programs specifically aimed at addressing the Translational stage of therapeutic candidates we have made 41 awards totaling approximately $150 million in funding.  To date, 13 have successfully completed and achieved their program goals, while 19 others are still actively working towards meeting their objective.  Additionally, three (treating Spina Bifida, Osteonecrosis, and Sickle Cell Disease) of the 13 programs have gone on to receive further CIRM support through our Clinical Stage programs.

During our time administering these awards, CIRM has actively partnered with our grantees to navigate what is required to bring a therapy from the bench to the bedside.  CIRM operationalizes this by setting milestones that provide clear definitions of success, specific goals the researchers have to meet to advance the project and also by providing resources for a dedicated project manager to help ensure the project can keep the big picture in mind while executing on their scientific progress. 

Throughout all this we partner with the researchers to support them in every possible way. For example, CIRM provides the project teams with Translational Advisory Panels (TAPs, modeled after the CIRM’s Clinical Advisory Panels) which bring in outside subject matter experts as well as patient advocates to help provide additional scientific, regulatory and clinical expertise to guide the development of the program at no additional cost to the grantees.  One of the enduring benefits that we hope to provide to researchers and organizations is a practical mastery of translational drug development so that they may continue to advance new and exciting therapies to all patients.

Through CIRM’s strong and continued support of this difficult stage of development, CIRM has developed an internal practical expertise in advancing projects through Translation.  We employ our experience to guide our awardees so they can avoid common pitfalls in the development of cell and gene therapies. The end goal is simple, helping to accelerate their path to the clinic and fulfilling the mission of CIRM that has been twice given to us by the voters of California, bringing treatments to patients suffering from unmet medical needs.

Month of CIRM – Our Therapeutics Team Goes Hunting

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we have a guest blog by CIRM Senior Science Officer Lisa Kadyk, outlining how she and her colleagues actively search for the best science to fund.

Lisa Kadyk, Ph.D.

Hi everyone,

This is Lisa Kadyk, a Science Officer from the CIRM Therapeutics team, here to tell you about some of the work our team does to support the CIRM mission of accelerating stem cell treatments to patients with unmet medical needs.  Our job involves seeking out and recruiting great scientists to apply to CIRM and supporting those we fund.

Therapeutics team members manage both the awards that fund the final preclinical studies required before testing a therapeutic in a clinical trial (CLIN1), and the awards that fund the clinical trials themselves (CLIN2). 

I mentioned above that we actively recruit new applicants for our CLIN1 and CLIN2 awards – which is not an activity that is typical of most funding agencies – so why and how do we do this?  

It all comes down to our mission of accelerating the development of therapies to help patients with unmet medical needs.  It turns out that there are many potential applicants developing cutting edge therapies who don’t know much or anything about CIRM, and the ways we can help them with getting those therapies to the clinic and through clinical trials.    So, to bridge this gap, we Science Officers attend scientific conferences, read the scientific literature and meet regularly with each other to stay abreast of new therapeutic approaches being developed in both academia and industry, with the goal of identifying and reaching out to potential applicants about what CIRM has to offer. 

What are some of the things we tell potential applicants about how partnering with CIRM can help accelerate their programs?   First of all, due to the efforts of a very efficient Review team, CIRM is probably the fastest in the business for the time between application and potential funding.  It can be as short as three months for a CLIN1 or CLIN2 application to be reviewed by the external Grants Working Group and approved by the CIRM Board, whereas the NIH (for example) estimates it takes seven to ten months to fund an application.   Second, we have frequent application deadlines (monthly for CLIN1 and CLIN2), so we are always available when the applicant is ready to apply.  Third, we have other accelerating mechanisms in place to help grantees once they’ve received funding, such as the CIRM Alpha Stem Cell Clinics network of six clinical sites throughout California (more efficient clinical trial processes and patient recruitment) and Clinical Advisory Panels (CAPs) – that provide technical, clinical or regulatory expertise as well as patient advocate guidance to the grantee.  Finally, we Science Officers do our best to help every step of the way, from application through grant closeout.

We now feel confident that our recruitment efforts, combined with CIRM’s more efficient funding pipeline and review processes, are accelerating development of new therapies.  Back in 2016, a new CIRM Strategic Plan included the goal of recruiting 50 successful (i.e., funded) clinical trial applicants within five years.  This goal seemed like quite a stretch, since CIRM had funded fewer than 20 clinical trials in the previous ten years.  Fast-forward to the end of 2020, and CIRM had funded 51 new trials in those five years, for a grand total of 68 trials.    

Now, with the passage of Proposition 14 this past November, we are looking forward to bringing more cell and gene therapeutic candidates into clinical trials.   If you are developing one yourself, feel free to let us know… or don’t be surprised if you hear from us!  

Month of CIRM: Reviewing Review

Dr. Gil Sambrano, Vice President Portfolio & Review

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we take a look at our Review team.

Many people who have to drive every day don’t really think about what’s going on under the hood of their car. As long as the engine works and gets them from A to B, they’re happy. I think the same is true about CIRM’s Review team. Many people don’t really think about all the moving parts that go into reviewing a promising new stem cell therapy.

But that’s a shame, because they are really missing out on watching a truly impressive engine at work.

Just consider the simple fact that since CIRM started about 4,000 companies, groups and individuals have applied to us for funding. Just take a moment to consider that number. Four thousand. Then consider that at no time have there been more than 5 people working in the review team. That’s right. Just 5 people. And more recently there have been substantially fewer. That’s a lot of projects and not a lot of people to review them. So how do they do it? Easy. They’re brilliant.

First, as applications come in they are scrutinized to make sure they meet specific eligibility requirements; do they involve stem cells, is the application complete, is it the right stage of research, is the budget they are proposing appropriate for the work they want to do etc. If they pass that initial appraisal, they then move on to the second round, the Grants Working Group or GWG.

The GWG consists of independent scientific experts from all over the US, all over the world in fact. However, none are from California because we want to ensure there are no possible conflicts of interest. When I say experts, I do mean experts. These are among the top in their field and are highly sought after to do reviews with the National Institutes of Health etc.

Mark Noble, PhD, the Director of the Stem Cell and Regenerative Medicine Institute at the University of Rochester, is a long-time member of the GWG. He says it’s a unique group of people:

“It’s a wonderful scientific education because you come to these meetings and someone is putting in a grant on diabetes and someone’s putting in a  grant on repairing the damage to the heart or spinal cord injury or they have a device that will allow you to transplant cells better and there are people  in the room that are able to talk knowledgeably about each of these areas and understand how this plays into medicine and how it might work in terms of actual financial development and how it might work in the corporate sphere and how it fits in to unmet medical needs . I don’t know of any comparable review panels like this that have such a broad remit and bring together such a breadth of expertise which means that every review panel you come to you are getting a scientific education on all these different areas, which is great.”

The GWG reviews the projects for scientific merit: does the proposal seem plausible, does the team proposing it have the experience and expertise to do the work etc. The reviewers put in a lot of work ahead of time, not just reviewing the application, but looking at previous studies to see if the new application has evidence to support what this team hope to do, to compare it to other efforts in the same field. There are disagreements, but also a huge amount of respect for each other.

Once the GWG makes its recommendations on which projects to fund and which ones not to, the applications move to the CIRM Board, which has the final say on all funding decisions. The Board is given detailed summaries of each project, along with the recommendations of the GWG and our own CIRM Review team. But the Board is not told the identity of any of the applicants, those are kept secret to avoid even the appearance of any conflict of interest.

The Board is not required to follow the recommendations of the GWG, though they usually do. But the Board is also able to fund projects that the GWG didn’t place in the top tier of applications. They have done this on several occasions, often when the application targeted a disease or disorder that wasn’t currently part of the agency’s portfolio.

So that’s how Review works. The team, led by Dr. Gil Sambrano, does extraordinary work with little fanfare or fuss. But without them CIRM would be a far less effective agency.

The passage of Proposition 14 means we now have a chance to resume full funding of research, which means our Review team is going to be busier than ever. They have already started making changes to the application requirements. To help let researchers know what those changes are we are holding a Zoom webinar tomorrow, Thursday, at noon PST. If you would like to watch you can find it on our YouTube channel. And if you have questions you would like to ask send them to info@cirm.ca.gov

Inspiring new documentary about stem cell research

Poster for the documentary “Ending Disease”

2020 has been, to say the very least, a difficult and challenging year for all of us. But while the focus of the world has, understandably, been on the coronavirus there was also some really promising advances in stem cell research. Those advances are captured in a great new documentary called Ending Disease.

The documentary is by Emmy award-winning filmmaker Joe Gantz. In it he follows ten people who are facing life-threatening or life-changing diseases and injuries and who turn to pioneering stem cell therapies for help.

It’s an inspiring documentary, one that reminds you of the real need for new treatments and the tremendous hope and promise of stem cell therapies. Here’s a look at a trailer for Ending Disease.

You can see an exclusive screening of Ending Disease on Friday, January 8th, 2021 at 5:00pm PST.

After the livestream, there will be a live Q&A session where former members of the successful Proposition 14 campaign team – which refunded CIRM with an additional $5.5 billion – will be joined by CIRM’s President and CEO Dr. Maria Millan, talking about what lies ahead for CIRM and the future of stem cell research.

To purchase a ticket, click here. It only costs $12 and 50% of the ticket sales proceeds will go to Americans for Cures to help them continue to advocate for the advancement of stem cell research, and more importantly, for the patients and families to whom stem cell research provides so much hope.

If you need any extra persuading that it’s something you should definitely put on our calendar, here’s a letter from the film maker Joe Gantz.

I am the director of the documentary Ending Disease: The Stem Cell, Anti-Cancer T-Cell, & Antibody Revolution In Medicine, a film that will help inform people about the progress that’s been made in this field and how people with their lives on the line are now able to benefit from these new regenerative therapies. 

I was granted unprecedented access to ten of the first generation of clinical trials using stem cell and regenerative medicine to treat and cure many of the most devastating diseases and conditions including: brain cancer, breast cancer, leukemia and lymphoma, HIV, repairing a broken spinal cord, retinitis pigmentosa and SCID. The results are truly inspiring.

This is personal for me.  After spending four years making this documentary, I was diagnosed with bladder cancer. Upon diagnosis, I immediately felt the same desperation as millions of families who are in search of a medical breakthrough. I understood, on a personal level, what the patients we followed in the film all knew: when you are diagnosed with a disease, there is a narrow window of time in which you can effectively seek a life-saving treatment or cure. If treatment becomes available outside of that window, then it is too late. However, Ending Disease shows that with continued support for regenerative medicine, we can create a near future in which one-time cures and highly mitigating therapies are available to patients for a whole host of diseases.

Best regards,

Joe