Building a better brain (model) in the lab

Leica Picture of a brain organoid: courtesy National Institute of Allergy and Infectious Diseases, NIH

One of the biggest problems with trying to understand what is happening in a disease that affects the brain is that it’s really difficult to see what is going on inside someone’s head. People tend to object to you trying to open their noggin while they are still using it.

New technologies can help, devices such as MRI’s – which chart activity and function by measuring blood flow – or brain scans using electroencephalograms (EEGs), which measure activity by tracking electrical signaling and brain waves. But these are still limited in what they can tell us.

Enter brain organoids. These are three dimensional models made from clusters of human stem cells grown in the lab. They aren’t “brains in a dish” – they can’t function or think independently – but they can help us develop a deeper understanding of how the brain works and even why it doesn’t always work as well as we’d like.

Now researchers at UCLA’s Broad Center of Regenerative Medicine have created brain organoids that demonstrate brain wave activity similar to that found in humans, and even brain waves found in particular neurological disease.

The team – with CIRM funding – took skin tissue from healthy individuals and, using the iPSC method – which enables you to turn these cells into any other kind of cell in the body – they created brain organoids. They then studied both the physical structure of the organoids by examining them under a microscope, and how they were functioning by using a probe to measure brain wave activity.

In a news release Dr. Ranmal Samarasinghe, the first author of the study in the journal Nature Neuroscience, says they wanted to do this double test for a very good reason: “With many neurological diseases, you can have terrible symptoms but the brain physically looks fine. So, to be able to seek answers to questions about these diseases, it’s very important that with organoids we can model not just the structure of the brain but the function as well.”

Next, they took skin cells from people with a condition called Rhett syndrome. This is a rare genetic disorder that affects mostly girls and strikes in the first 18 months of life, having a severe impact on the individual’s ability to speak, walk, eat or even breathe easily. When the researchers created brain organoids with these cells the structure of the organoids looked similar to the non-Rhett syndrome ones, but the brain wave activity was very different. The Rhett syndrome organoids showed very erratic, disorganized brain waves.

When the team tested an experimental medication called Pifithrin-alpha on the Rhett organoids, the brain waves became less erratic and more like the brain waves from the normal organoids.

“This is one of the first tangible examples of drug testing in action in a brain organoid,” said Samarasinghe. “We hope it serves as a stepping stone toward a better understanding of human brain biology and brain disease.”

A conversation with Bob Klein about the past, present and future of CIRM

Bob Klein

Anyone who knows anything about CIRM knows about Bob Klein. He’s the main author and driving force behind both Proposition 71 and Proposition 14, the voter-approved ballot initiatives that first created and then refunded CIRM. It’s safe to say that without Bob there’d be no CIRM.

Recently we had the great good fortune to sit down with Bob to chat about the challenges of getting a proposition on the ballot in a time of pandemic and electoral pandemonium, what he thinks CIRM’s biggest achievements are (so far) and what his future plans are.

You can hear that conversation in the latest episode of our podcast, “Talking ’bout (re) Generation”.

Enjoy.

Board Funds Fifteen Bridges to Stem Cell Research and Therapy Programs Across California and New Sickle Cell Disease Trial

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $8.39 million to the University of California, San Francisco (UCSF) to fund a clinical trial for sickle cell disease (SCD).  An additional $51.08 million was awarded to fifteen community colleges and universities across California to fund undergraduate and master’s level programs that will help train the next generation of stem cell researchers. 

SCD is an inherited blood disorder caused by a single gene mutation that changes a single base in the B globin gene leading to the production of defective hemoglobin that polymerizes and damages red blood cells thus the “sickle” shaped red blood cells.  The damaged cells cause blood vessels to occlude/close up and that can lead to multiple organ damage as well as reduced quality of life and life expectancy. 

Mark Walters, M.D., and his team at UCSF Benioff Children’s Hospital Oakland will be conducting a clinical trial that uses CRISPR-Cas9 gene editing technology to correct the genetic mutation in the blood stem cells of patients with severe SCD.  The corrected blood stem cells will then be reintroduced back into patients with the goal of correcting the defective hemoglobin and thus producing functional, normal shaped red blood cells.

This clinical trial will be eligible for co-funding under the landmark agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI) of the NIH.  The CIRM-NHLBI agreement is intended to co-fund cell and gene therapy programs under the NHLBI’s “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD. CIRM has previously funded the preclinical development of this therapy through a Translational award as well as its IND-enabling studies through a Late Stage Preclinical award in partnership with NHLBI.

The CIRM Bridges to Stem Cell Research and Therapy program provides undergraduate and master’s students with the opportunity to take stem cell related courses and receive hands on experience and training in a stem cell research related laboratory at a university or biotechnology company.  Fifteen institutions received a total of $51.08 million to carry out these programs to train the next generation of scientists.

The awards are summarized in the table below.

ApplicationTitleInstitutionAward Amount
  EDUC2-12607Bridges to Stem Cell Research and Therapy at Pasadena City College  Pasadena City College$3,605,500
  EDUC2-12611CIRM Bridges to Stem Cell Research and Therapy Training Grant  CSU San Marcos$3,606,500
  EDUC2-12617Bridges to Stem Cell Research Internship Program  San Diego State University$3,606,500
EDUC2-12620CIRM Bridges 3.0  Humboldt State$3,605,495
  EDUC2-12638CIRM Regenerative Medicine and Stem Cell Research Biotechnology Training Program  CSU Long Beach$3,276,500
    EDUC2-12677Stem Cell Internships in Laboratory-based Learning (SCILL) continue to expand the scientific workforce for stem cells research and therapies.  San Jose State University$3,606,500
  EDUC2-12691Strengthening the Pipeline of Master’s-level Scientific and Laboratory Personnel in Stem Cell Research  CSU Sacramento$2,946,500
EDUC2-12693CIRM Bridges Science Master’s Program  San Francisco State University$3,606,500
      EDUC2-12695CIRM Graduate Student Training in Stem Cell Sciences in the Stem Cell Technology and Lab Management Emphasis of the MS Biotechnology Program  CSU Channel Islands$3,606,500
  EDUC2-12718CSUN CIRM Bridges 3.0 Stem Cell Research & Therapy Training Program  CSU Northridge$3,606,500
      EDUC2-12720Stem Cell Scholars: a workforce development pipeline, educating, training and engaging students from basic research to clinical translation.  CSU San Bernardino$3,606,500
  EDUC2-12726Training Master’s Students to Advance the Regenerative Medicine Field  Cal Poly San Luis Obispo$3,276,500
  EDUC2-12730Building Career Pathways into Stem Cell Research and Therapy Development  City College of San Francisco$2,706,200
      EDUC2-12734Bridges to Stem Cell Research and Therapy: A Talent Development Program for Training Diverse Undergraduates for Careers in Regenerative Medicine  CSU Fullerton$3,606,500
  EDUC2-12738CIRM Bridges to Stem Cell Research and Therapy  Berkeley City College  $2,806,896

“We are pleased to fund a promising trial for sickle cell disease that uses the Nobel Prize winning gene editing technology CRISPR-Cas9,” says Maria T. Millan, M.D., President and CEO of CIRM.  “This clinical trial is a testament to how the CIRM model supports promising early-stage research, accelerates it through translational development, and advances it into the clinics. As the field advances, we must also meet the demand for promising young scientists.  The CIRM Bridges programs across the state of California will provide students with the tools and resources to begin their careers in regenerative medicine.”

Welcoming back old friends and some new ones

When Proposition 14 was approved by voters in November we were given a chance to carry on the work we have been doing for more than 16 years. What we hadn’t anticipated was that we would also get a chance to do that with some of the team that helped us make CIRM what it is, but who had since moved on to other jobs.

We are delighted to say that as we build up our team again we are welcoming back a couple of dear friends, and welcoming in some new ones too. They’re a talented bunch and, if they don’t mind me saying so, a darned good looking group too.

Rosa Canet-Aviles, PhD., has been named as the new Vice President Scientific Programs. Rosa is a familiar face at the agency, serving as a Science Officer with CIRM from 2008 to 2014. During that time she helped oversee the development of our Translational program, managed a broad portfolio of projects and organized workshops on Parkinson’s and autism.

After leaving CIRM she joined the Foundation for the National Institutes of Health (FINH) where she served as the Director of Neuroscience Research Partnerships. In that role she led the successful development and management of 5 new large partnerships including the Biomarkers Consortium Neuroscience Steering Committee, the Accelerating Medicines Partnership (AMP) for Alzheimer’s disease 1.0 and 2.0, AMP Parkinson’s disease and AMP Schizophrenia.

Rosa has more than 15 years of experience working in industry, academia and government and her experience in developing and managing neuroscience programs will be invaluable as CIRM looks to invest some $1.5 billion in neuroscience under Proposition 14.

“I am very excited to be back,” says Rosa. ”It is a dream come true being able to translate all the skills, learning and networks gathered over the past 7 years towards the development and implementation of CIRM’s new phase and accelerate stem cell therapies for patients in need.” 

“We are thrilled to announce the timely return of Rosa to CIRM as we build our new strategic plan under Prop 14,” says Dr. Maria T. Millan, CIRM’s President & CEO. “Rosa has demonstrated time and again the unique ability to bring together often seemingly disparate stakeholders to successfully drive toward a common goal of advancing the science on behalf of patients with diseases of the brain and neuropsychiatric disorders. At CIRM, she assembled key international leaders who went on to form an international Parkinson’s Disease consortium. At the Foundation for NIH (FNIH), she directed the development of five prominent public-private partnerships. A neuroscientist by training, she is held in high regard and has been called a “quick study” in her ability to lead in new areas such as in genomics and data science, key components of her role at FNIH and at Eisai’s Center for Genetics Guided Dementia Discovery.“

In addition, CIRM is pleased to announce the following new team members:

Uta Grieshammer, PhD. is also returning to CIRM as the Senior Science Officer for our Discovery program. Uta was at CIRM from 2007 to 2015 and led the programs that created both our Genomics Initiative and our iPSC bank. She also organized several scientific conferences and workshops involving hundreds of CIRM-funded researchers.

After leaving CIRM she became the Scientific Director of the California Initiative to Advance Precision Medicine at the University of California San Francisco where she created and managed the application and peer review process. Most recently she was the Program Officer at the University of California Office of the President’s (UCOP) Tobacco Related Disease Research Program where she focused on the neuroscience of nicotine addiction. She also helped develop a scholarship program to attract students from diverse backgrounds to pursue a career in science. 

Michael Bunch joins CIRM as a Business Service Officer. Michael is a decorated veteran who has been working as the Chief Business Officer at the Veterans Home in Yountville, California. In that role he implemented new contract and reviewing processes and oversaw the income and insurance tracking for some 1,000 residents. With his extensive background in acquisition management, contingency contracting, and his deep knowledge of state regulations and guidelines Michael was able to increase funding, streamline processes and assist Veterans and their families to obtain the benefits and services that they qualified for.

Michael spent 25 years in the US Army including serving as part of the NATO peacekeeping force in Kosovo. During that deployment he was awarded the Joint Service Commendation Medal (JSCM) for managing the fuel needs of 4 Multinational Task Forces and 33 Nations, an essential element in helping the mission succeed.

A Senior Drill Sergeant, Infantry Instructor and Financial and Resource Manager Michael has been awarded the Army Commendation Medal with 4 Oak Leaves, Army Achievement Medal with 4 Oak Leaves, Global War on Terrorism Service Medal, KOSOVO Campaign Medal, Military Outstanding Volunteer Service Medal, NATO Medal, Expert Infantryman Badge, Honorary Kentucky Colonel and Honorary Kentucky Admiral.

Nellie Almazan joins CIRM as a Grants Management Specialist. Nellie comes to us from the California Department of Transportation (Caltrans) where she has worked for 16 years, most recently as the Associate Transportation Planner with the Low Carbon Transit Operations program. Nellie managed more than 150 projects, reviewing grants to help reduce greenhouse gas emissions in the state and overseeing programs that had an emphasis on serving Disadvantaged Communities.

She is currently enrolled at Sacramento City College where her focus is on Sociology and Deaf Culture.

Alexandra Caraballo joins CIRM as a Grants Management Specialist. Alex has more than 15 years of grant administration experience with a focus on incorporating equity, diversity, and inclusion into grantmaking practices and decision-making. She comes to CIRM from the Kaiser Foundation Health Plan where she was the National Manager of Philanthropy. There she was responsible for the administration of approximately 200 grants in the national community health portfolio. Before Kaiser she was the Program Assistant and Associate Program Officer at the East Bay Community Foundation, where she partnered with donors and community-based organizations to advance racial equity and transform political, social and economic outcomes for East Bay Communities.

Alex currently serves on the Board of Directors for the Lindsay Wildlife Experience and was a former Advisory Board member for Oakland Head Start.

Call for a worldwide approach to regulating predatory stem cell clinics

You can’t fix a global problem at the local level. That’s the gist of a new perspective piece in the journal Stem Cell Reports that calls for a global approach to rogue stem cell clinics that offer bogus therapies.

The authors of the article are calling on the World Health Organization (WHO) to set up an advisory committee to draw up rules and regulations to help guide countries trying to shut these clinics down.

In a news release, senior author Mohamed Abou-el-Enein, the executive director of the joint University of Southern California/Children’s Hospital of Los Angeles Cell Therapy Program, says these clinics are trying to cash in on the promise of regenerative medicine.

“Starting in the early 2000s… unregulated stem cell clinics offering untested and poorly characterized treatments with insufficient information on their safety and efficacy began emerging all over the world, taking advantage of the media hype around stem cells and patients’ hope and desperation.”

Dr. Larry Goldstein

The authors include Lawrence Goldstein, PhD, a CIRM Board member and a Science Policy Fellows for the International Society for Stem Cell Research (ISSCR).

Zubin Master, an associate professor of biomedical ethics at the Mayo Clinic, says the clinics prey on vulnerable people who have serious medical conditions and who have often tried conventional medical approaches without success.

“We should aim to develop pathways to provide patients with evidenced-based experimental regenerative intervention as possible options where there is oversight, especially in circumstances where there is no suitable alternative left.”

The report says: “The unproven SCI (stem cell intervention) industry threatens the advancement of regenerative medicine. Reports of adverse events from unproven SCIs has the potential to affect funding and clinical trial recruitment, as well as increasing burdens among regulatory agencies to oversee the industry.

Permitting unregulated SCIs to flourish demonstrates a lack of concern over patient welfare and undermines the need for scientific evidence for medicinal product R&D. While some regulatory agencies have limited oversight or enforcement powers, or choose not to use them, unproven SCI clinics still serve to undermine authority given to regulatory agencies and may reduce public trust impacting the development of safe and effective therapies. Addressing the continued proliferation of clinics offering unproven SCIs is a problem worth addressing now.”

The authors say the WHO is uniquely positioned to help create a framework for the field that can help address these issues. They recommend setting up an advisory committee to develop global standards for regulations governing these clinics that could be applied in all countries. They also say we need more educational materials to let physicians as well as patients understand the health risks posed by bogus clinics.

This article comes out in the same week that reports by the Pew Charitable Trust and the FDA also called for greater regulation of these predatory clinics (we blogged about that here). Clearly there is growing recognition both in the US and worldwide that these clinics pose a threat not just to the health and safety of patients, but also to the reputation of the field of regenerative medicine as a whole.

“I believe that the global spread of unproven stem cell therapies reflects critical gaps in the international system for responding to health crises, which could put the life of thousands of patients in danger,” Abou-el-Enein says. “Urgent measures are needed to enhance the global regulatory capacity to detect and respond to this eminent crisis rapidly.”

Regulated, Reputable and Reliable: FDA’s Taking Additional Steps to Advance Safe and Effective Regenerative Medicine Products

Peter Marks, M.D., Ph.D., Director, Center for Biologics Evaluation and Research

In February 2020, CIRM presented a series of benchmarks for the responsible delivery of stem cell and regenerative medicine products. These benchmarks are outlined in the publication Regulated, reliable and reputable: Protect patients with uniform standards for stem cell treatments. In a nutshell, CIRM advocates for the delivery of regenerative medicine products in a context where:

  • The product is authorized by the Food and Drug Administration (FDA) and is overseen by an IRB or ethics board,
  • The treatment is delivered by qualified doctors, nurses, and technicians,
  • Treatment occurs at a clinical treatment center with expertise in regenerative medicine, and
  • There is ongoing monitoring and follow-up of patients.

On April 21 of 2021, Dr. Peter Marks, Director of the Center for Biologics Evaluation and Research, indicated the FDA’s intent to ensure new regenerative medicine products are FDA-authorized. Specifically, the FDA will require product developers to obtain an Investigational New Drug or IND authorization. In his news release Dr. Marks says the agency is willing to exercise more enforcement of these rules should clinics or therapy producers fail to follow these guidelines.

“These regenerative medicine products are not without risk and are often marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they haven’t been adequately studied in clinical trials. We’ve said previously and want to reiterate here – there is no room for manufacturers, clinics, or health care practitioners to place patients at risk through products that violate the law, including by not having an IND in effect or an approved biologics license. We will continue to take action regarding unlawfully marketed products.”

IND authorization is particularly important as the agency pays close attention to how the product is produced and whether there is a scientific rationale and potential clinical evidence that it may be effective against the specific disease condition. All CIRM-funded clinical trials and all trials conducted in the CIRM Alpha Stem Cell Clinics Network must have IND authorization.

Regenerative medicine products are generally created from human cells or tissues. These products are frequently referred to as “living medicines.” The “living” nature of these products is what contributes to their remarkable potential to relieve, stop or reverse disease in a durable or sustainable manner.

The risk with unregulated products is that there is no assurance that they have been  produced in a quality controlled process or manner  where all components of the  injected material have been well characterized and studied for safety and efficacy for a given disease as well as a specific site in the body. In addition, there is no way to ensure that unregulated products meet standards or quality specifications such as ensuring that they have the active and beneficial component while making sure that they do not include harmful contaminants..  There have been documented examples of patients being severely injured by unregulated and inadequately characterized products. For example, in 2017 three Florida women were blinded by an unauthorized product.  Dr. George Daley, a stem cell expert and the Dean of Harvard Medical School, described the clinic operators as “charlatans peddling the modern equivalent of snake oil.”

To receive FDA authorization, detailed scientific data and well controlled clinical data are required to ensure safety and a demonstration that  the product is safe has the potential to improve or resolve the patient’s disease condition.

While it seems both important and self-evident that stem cell products be safe and effective and supported by evidence they can impact the patient’s disease condition, that doesn’t always happen. Unfortunately, too many patients have experienced unnecessary medical risks and financial harm from unauthorized treatments. CIRM applauds the FDA for taking additional steps to advance regenerative medicine products where the clinical benefits of such therapies outweigh any potential harms.

Three UC’s Join Forces to Launch CRISPR Clinical Trial Targeting Sickle Cell Disease

Sickle shaped red blood cells

The University of California, San Francisco (UCSF), in collaboration with UC Berkeley (UCB) and UC Los Angeles (UCLA), have been given permission by the US Food and Drug Administration (FDA) to launch a first-in-human clinical trial using CRISPR technology as a gene-editing technique to cure Sickle Cell Disease.

This research has been funded by CIRM from the early stages and, in a co-funding partnership with theNational Heart, Lung, and Blood Institute under the Cure Sickle Cell initiatve, CIRM supported the work that allowed this program to gain FDA permission to proceed into clinical trials.    

Sickle Cell Disease is a blood disorder that affects around 100,000 people, mostly Black and Latinx people in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells. Normal red blood cells are round and smooth and flow easily through blood vessels. But the sickle-shaped ones are rigid and brittle and clump together, clogging vessels and causing painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

The three UC’s have combined their respective expertise to bring this program forward.

The CRISPR-Cas9 technology was developed by UC Berkeley’s Nobel laureate Jennifer Doudna, PhD. UCLA is a collaborating site, with expertise in genetic analysis and cell manufacturing and UCSF Benioff Children’s Hospital Oakland is the lead clinical center, leveraging its renowned expertise in cord blood and marrow transplantation and in gene therapy for sickle cell disease.

The approach involves retrieving blood stem cells from the patient and, using a technique involving electrical pulses, these cells are treated to correct the mutation using CRISPR technology. The corrected cells will then be transplanted back into the patient.

Dr. Mark Walters

In a news release, UCSF’s Dr. Mark Walters, the principal investigator of the project, says using this new gene-editing approach could be a game-changer. “This therapy has the potential to transform sickle cell disease care by producing an accessible, curative treatment that is safer than the current therapy of stem cell transplant from a healthy bone marrow donor. If this is successfully applied in young patients, it has the potential to prevent irreversible complications of the disease. Based on our experience with bone marrow transplants, we predict that correcting 20% of the genes should be sufficient to out-compete the native sickle cells and have a strong clinical benefit.”

Dr. Maria T. Millan, President & CEO of CIRM, said this collaborative approach can be a model for tackling other diseases. “When we entered into our partnership with the NHLBI we hoped that combining our resources and expertise could accelerate the development of cell and gene therapies for SCD. And now to see these three UC institutions collaborating on bringing this therapy to patients is truly exciting and highlights how working together we can achieve far more than just operating individually.”

The 4-year study will include six adults and three adolescents with severe sickle cell disease. It is planned to begin this summer in Oakland and Los Angeles.

The three UCs combined to produce a video to accompany news about the trial. Here it is:

Hitting our goals: regulatory reform

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. We are going to start with Regulatory Reform.

The political landscape in 2015 was dramatically different than it is today. Compared to more conventional drugs and therapies stem cells were considered a new, and very different, approach to treating diseases and disorders. At the time the US Food and Drug Administration (FDA) was taking a very cautious approach to approving any stem cell therapies for a clinical trial.

A survey of CIRM stakeholders found that 70% said the FDA was “the biggest impediment for the development of stem cell treatments.” One therapy, touted by the FDA as a success story, had such a high clinical development hurdle placed on it that by the time it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially. As one stakeholder said: “Is perfect becoming the enemy of better?”

So, we set ourselves a goal of establishing a new regulatory paradigm, working with Congress, academia, industry, and patients, to bring about real change at the FDA and to find ways to win faster approval for promising stem cell therapies, without in any way endangering patients.

It seemed rather ambitious at the time, but achieving that goal happened much faster than any of us anticipated. With a sustained campaign by CIRM and other industry leaders, working with the patient advocacy groups, the FDA, Congress, and President Obama, the 21st Century Cures Act was signed into law on December 13, 2016.

President Obama signs the 21st Century Cures Act.
Photo courtesy of NBC News

The law did something quite radical; it made the perspectives of patients an integral part of the FDA’s decision-making and approval process in the development of drugs, biological products and devices. And it sped up the review process by:

In a way the FDA took its foot off the brake but didn’t hit the accelerator, so the process moved faster, but in a safe, manageable way.

Fast forward to today and eight projects that CIRM funds have been granted RMAT designation. We have become allies with the FDA in helping advance the field. We have created a unique partnership with the National Heart, Lung and Blood Institute (NHLBI) to support the Cure Sickle Cell initiative and accelerate the development of cell and gene therapies for sickle cell disease.

The landscape has changed since we set a goal of regulatory reform. We still have work to do. But now we are all working together to achieve the change we all believe is both needed and possible.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.