CIRM weekly stem cell roundup: stomach bacteria & cancer; vitamin C may block leukemia; stem cells bring down a 6’2″ 246lb football player

gastric

This is what your stomach glands looks like from the inside:  Credit: MPI for Infection Biology”

Stomach bacteria crank up stem cell renewal, may be link to gastric cancer.

The Centers for Disease Control and Prevention estimate that two-thirds of the world’s population is infected with H. pylori, a type of bacteria that thrives in the harsh acidic conditions of the stomach. Data accumulated over the past few decades shows strong evidence that H. pylori infection increases the risk of stomach cancers. The underlying mechanisms of this link have remained unclear. But research published this week in Nature suggests that the bacteria cause stem cells located in the stomach lining to divide more frequently leading to an increased potential for cancerous growth.

Tumors need to make an initial foothold in a tissue in order to grow and spread. But the cells of our stomach lining are replaced every four days. So, how would H. pylori bacterial infection have time to induce a cancer? The research team – a collaboration between scientists at the Max Planck Institute in Berlin and Stanford University – asked that question and found that the bacteria are also able to penetrate down into the stomach glands and infect stem cells whose job it is to continually replenish the stomach lining.

Further analysis in mice revealed that two groups of stem cells exist in the stomach glands – one slowly dividing and one rapidly dividing population. Both stem cell populations respond similarly to an important signaling protein, called Wnt, that sustains stem cell renewal. But the team also discovered a second key stem cell signaling protein called R-spondin that is released by connective tissue underneath the stomach glands. H. pylori infection of these cells causes an increase in R-spondin which shuts down the slowly dividing stem cell population but cranks up the cell division of the rapidly dividing stem cells. First author, Dr. Michal Sigal, summed up in a press release how these results may point to stem cells as the link between bacterial infection and increased risk of stomach cancer:

“Since H. pylori causes life-long infections, the constant increase in stem cell divisions may be enough to explain the increased risk of carcinogenesis observed.”

vitamin-c-1200x630

Vitamin C may have anti-blood cancer properties

Vitamin C is known to have a number of health benefits, from preventing scurvy to limiting the buildup of fatty plaque in your arteries. Now a new study says we might soon be able to add another benefit: it may be able to block the progression of leukemia and other blood cancers.

Researchers at the NYU School of Medicine focused their work on an enzyme called TET2. This is found in hematopoietic stem cells (HSCs), the kind of stem cell typically found in bone marrow. The absence of TET2 is known to keep these HSCs in a pre-leukemic state; in effect priming the body to develop leukemia. The researchers showed that high doses of vitamin C can prevent, or even reverse that, by increasing the activity level of TET2.

In the study, in the journal Cell, they showed how they developed mice that could have their levels of TET2 increased or decreased. They then transplanted bone marrow with low levels of TET2 from those mice into healthy, normal mice. The healthy mice started to develop leukemia-like symptoms. However, when the researchers used high doses of vitamin C to restore the activity levels of TET2, they were able to halt the progression of the leukemia.

Now this doesn’t mean you should run out and get as much vitamin C as you can to help protect you against leukemia. In an article in The Scientist, Benjamin Neel, senior author of the study, says while vitamin C does have health benefits,  consuming large doses won’t do you much good:

“They’re unlikely to be a general anti-cancer therapy, and they really should be understood based on the molecular understanding of the many actions vitamin C has in cells.”

However, Neel says these findings do give scientists a new tool to help them target cells before they become leukemic.

Jordan reed

Bad toe forces Jordan Reed to take a knee: Photo courtesy FanRag Sports

Toeing the line: how unapproved stem cell treatment made matters worse for an NFL player  

American football players are tough. They have to be to withstand pounding tackles by 300lb men wearing pads and a helmet. But it wasn’t a crunching hit that took Washington Redskins player Jordan Reed out of the game; all it took to put the 6’2” 246 lb player on the PUP (Physically Unable to Perform) list was a little stem cell injection.

Reed has had a lingering injury problem with the big toe on his left foot. So, during the off-season, he thought he would take care of the issue, and got a stem cell injection in the toe. It didn’t quite work the way he hoped.

In an interview with the Richmond Times Dispatch he said:

“That kind of flared it up a bit on me. Now I’m just letting it calm down before I get out there. I’ve just gotta take my time, let it heal and strengthen up, then get back out there.”

It’s not clear what kind of stem cells Reed got, if they were his own or from a donor. What is clear is that he is just the latest in a long line of athletes who have turned to stem cells to help repair or speed up recovery from an injury. These are treatments that have not been approved by the Food and Drug Administration (FDA) and that have not been tested in a clinical trial to make sure they are both safe and effective.

In Reed’s case the problem seems to be a relatively minor one; his toe is expected to heal and he should be back in action before too long.

Stem cell researcher and avid blogger Dr. Paul Knoepfler wrote he is lucky, others who take a similar approach may not be:

“Fortunately, it sounds like Reed will be fine, but some people have much worse reactions to unproven stem cells than a sore toe, including blindness and tumors. Be careful out there!”

 

CIRM weekly stem cell roundup: minibrain model of childhood disease; new immune insights; patient throws out 1st pitch

New human Mini-brain model of devastating childhood disease.
The eradication of Aicardi-Goutieres Syndrome (AGS) can’t come soon enough. This rare but terrible inherited disease causes the immune system to attack the brain. The condition leads to microcephaly (an abnormal small head and brain size), muscle spasms, vision problems and joint stiffness during infancy. Death or a persistent comatose state is common by early childhood. There is no cure.

Though animal models that mimic AGS symptoms are helpful, they don’t reflect the human disease closely enough to provide researchers with a deeper understanding of the mechanisms of the disease. But CIRM-funded research published this week may be a game changer for opening up new therapeutic strategies for the children and their families that are suffering from AGS.

Organoid mini-brains are clusters of cultured cells self-organized into miniature replicas of organs. Image courtesy of Cleber A. Trujillo, UC San Diego.

To get a clearer human picture of the disease, Dr. Alysson Muotri of UC San Diego and his team generated AGS patient-derived induced pluripotent stem cells (iPSCs). These iPSCs were then grown into “mini-brains” in a lab dish. As described in Cell Stem Cell, their examination of the mini-brains revealed an excess of chromosomal DNA in the cells. This abnormal build up causes various toxic effects on the nerve cells in the mini-brains which, according to Muotri, had the hallmarks of AGS in patients:

“These models seemed to mirror the development and progression of AGS in a developing fetus,” said Muotri in a press release. “It was cell death and reduction when neural development should be rising.”

In turns out that the excess DNA wasn’t just a bunch of random sequences but instead most came from so-called LINE1 (L1) retroelements. These repetitive DNA sequences can “jump” in and out of DNA chromosomes and are thought to be remnants of ancient viruses in the human genome. And it turns out the cell death in the mini-brains was caused by the immune system’s anti-viral response to these L1 retroelements. First author Charles Thomas explained why researchers may have missed this in their mouse models:

“We uncovered a novel and fundamental mechanism, where chronic response to L1 elements can negatively impact human neurodevelopment. This mechanism seems human-specific. We don’t see this in the mouse.”

The team went on to test the anti-retroviral effects of HIV drugs on their AGS models. Sure enough, the drugs decreased the amount of L1 DNA and cell growth rebounded in the mini-brains. The beauty of using already approved drugs is that the route to clinical trials is much faster and in fact a European trial is currently underway.

For more details, watch this video interview with Dr. Muotri:

New findings about immune cell development may open door to new cancer treatments
For those of you who suffer with seasonal allergies, you can blame your sniffling and sneezing on an overreaction by mast cells. These white blood cells help jump start the immune system by releasing histamines which makes blood vessels leaky allowing other immune cells to join the battle to fight disease or infection. Certain harmless allergens like pollen are mistaken as dangerous and can also cause histamine release which triggers tearing and sneezing.

Mast cells in lab dish. Image: Wikipedia.

Dysfunction of mast cells are also involved in some blood cancers. And up until now, it was thought a protein called stem cell factor played the key role in the development of blood stem cells into mast cells. But research reported this week by researchers at Karolinska Institute and Uppsala University found cracks in that previous hypothesis. Their findings published in Blood could open the door to new cancer therapies.

The researchers examine the effects of the anticancer drug Glivec – which blocks the function of stem cell factor – on mast cells in patients with a form of leukemia. Although the number of mature mast cells were reduced by the drug, the number of progenitor mast cells were not. The progenitors are akin to teenagers in that they’re at an intermediate stage of development, more specialized than stem cells but not quite mast cells. The team went on to confirm that stem cell factor was not required for the mast cell progenitors to survive, multiply and mature. Instead, their work identified two other growth factors, interleukin 3 and 6, as important for mast cell development.

In a press release, lead author Joakim Dahlin, explained how these new insights could lead to new therapies:

“The study increases our understanding of how mast cells are formed and could be important in the development of new therapies, for example for mastocytosis for which treatment with imatinib/Glivec is not effective. One hypothesis that we will now test is whether interleukin 3 can be a new target in the treatment of mast cell-driven diseases.”

Patient in CIRM-funded trial regains use of arms, hands and fingers will throw 1st pitch in MLB game.
We end this week with some heart-warming news from Asterias Biotherapeutics. You avid Stem Cellar readers will remember our story about Lucas Lindner several weeks back. Lucas was paralyzed from the neck down after a terrible car accident. Shortly after the accident, in June of 2016, he enrolled in Asterias’ CIRM-funded trial testing an embryonic stem cell-based therapy to treat his injury. And this Sunday, August 13th, we’re excited to report that due to regaining the use of his arms, hands and fingers since the treatment, he will throw out the first pitch of a Major League Baseball game in Milwaukee. Congrats to Lucas!

For more about Lucas’ story, watch this video produced by Asterias Biotherapeutics:

Stem cell stories that caught our eye: skin grafts fight diabetes, reprogramming the immune system, and Asterias expands spinal cord injury trial sites

Here are the stem cell stories that caught our eye this week.

Skin grafts fight diabetes and obesity.

An interesting new gene therapy strategy for fighting type 1 diabetes and obesity surfaced this week. Scientists from the University of Chicago made genetically engineered skin grafts that secrete a peptide hormone called glucagon-liked peptide-1 (GLP-1). This peptide is released by cells in the intestine and can lower blood sugar levels by stimulating pancreatic islet cells to secrete insulin (a hormone that promotes the absorption of glucose from the blood).

The study, which was published in the journal Cell Stem Cell, used CRISPR gene editing technology to introduce a mutation to the GLP-1 gene in mouse and human skin stem cells. This mutation stabilized the GLP-1 peptide, allowing it to hang around in the blood for longer. The team matured these stem cells into skin grafts that secreted the GLP-1 into the bloodstream of mice when treated with a drug called doxycycline.

When fed a high-fat diet, mice with a skin graft (left), genetically altered to secrete GLP-1 in response to the antibiotic doxycycline, gained less weight than normal mice (right). (Image source: Wu Laboratory, the University of Chicago)

On a normal diet, mice that received the skin graft saw a rise in their insulin levels and a decrease in their blood glucose levels, proving that the gene therapy was working. On a high fat diet, mice with the skin graft became obese, but when they were treated with doxycycline, GLP-1 secreted from their grafts reduced the amount of weight gain. So not only does their engineered skin graft technology look like a promising new strategy to treat type 1 diabetes patients, it also could be used to control obesity. The beauty of the technology is in its simplicity.

An article in Genetic Engineering and Biotechnology News that covered this research explained that Xiaoyang Wu, the senior author on the study, and his team “worked with skin because it is a large organ and easily accessible. The cells multiply quickly and are easily transplanted. And, transplanted cells can be removed, if needed. “Skin is such a beautiful system,” Wu says, noting that its features make it a perfect medium for testing gene therapies.”

Wu concluded that, “This kind of therapy could be potentially effective for many metabolic disorders.” According to GenBio, Wu’s team “is now testing the gene-therapy technique in combination with other medications.” They also hope that a similar strategy could be used to treat patients that can’t make certain proteins like in the blood clotting disorder hemophilia.

How to reprogram your immune system (Kevin McCormack)

When your immune system goes wrong it can cause all manner of problems, from type 1 diabetes to multiple sclerosis and cancer. That’s because an overactive immune system causes the body to attack its own tissues, while an underactive one leaves the body vulnerable to outside threats such as viruses. That’s why scientists have long sought ways to correct those immune dysfunctions.

Now researchers at the Gladstone Institutes in San Francisco think they have found a way to reprogram specific cells in the immune system and restore a sense of health and balance to the body. Their findings are published in the journal Nature.

The researchers identified a drug that targets effector T cells, which get our immune system to defend us against outside threats, and turns them into regulatory T cells, which control our immune system and stops it from attacking our own body.

Why would turning one kind of T cell into another be helpful? Well, in some autoimmune diseases, the effector T cells become overly active and attack healthy tissues and organs, damaging and even destroying them. By converting them to regulatory T cells you can prevent that happening.

In addition, some cancers can hijack regulatory T cells and suppress the immune system, allowing the disease to spread. By turning those cells into effector T cells, you can boost the immune system and give it the strength to fight back and, hopefully, kill the cancer.

In a news release, Gladstone Senior Investigator Sheng Ding, the lead scientists on the study, said their findings could have several applications:

“Our findings could have a significant impact on the treatment of autoimmune diseases, as well as on stem cell and immuno-oncology therapies.” 

Gladstone scientists Sheng Ding (right) and Tao Xu (left) discovered how to reprogram cells in our immune system. (Gladstone Institutes)

CIRM-funded spinal cord injury trial expands clinical sites

We have another update from CIRM’s clinical trial front. Asterias Biotherapeutics, which is testing a stem cell treatment for complete cervical (neck) spinal cord injury, is expanding its clinical sites for its CIRM-funded SCiStar Phase 1/2a trial. The company is currently treating patients at six sites in the US, and will be expanding to include two additional sites at Thomas Jefferson University Hospital in Philadelphia and the UC San Diego Medical Center, which is part of the UCSD Health CIRM Alpha Stem Cell Clinic.

In a company news release, Ed Wirth, Chief Medical Officer of Asterias said,

Ed Wirth

“We are excited about the clinical site openings at Thomas Jefferson University Hospital and UC San Diego Health. These sites provide additional geographical reach and previous experience with spinal cord injury trials to our SCiStar study. We have recently reported completion of enrollment in four out of five cohorts in our SCiStar study so we hope these institutions will also participate in a future, larger study of AST-OPC1.”

The news release also gave a recap of the trial’s positive (but still preliminary) results this year and their plans for completing trial enrollment.

“In June 2017, Asterias reported 9 month data from the AIS-A 10 million cell cohort that showed improvements in arm, hand and finger function observed at 3-months and 6-months following administration of AST-OPC1 were confirmed and in some patients further increased at 9-months. The company intends to complete enrollment of the entire SCiStar study later this year, with multiple safety and efficacy readouts anticipated during the remainder of 2017 and 2018.”

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

Stem Cell Roundup: Battle of the Biotech Bands, “Cells I See” Art Contest and Teaching Baseball Fans the Power of Stem Cells

This Friday’s stem cell roundup is dedicated to the playful side of stem cell science. Scientists are often stereotyped as lab recluses who honorably forgo social lives in the quest to make game-changing discoveries and advance cutting-edge research. But as a former bench scientist, I can attest that scientists are normal people too. They might have a nerdy, slightly neurotic side around their field of research, but they know how to enjoy life and have fun. So here are a few stories that caught our eye this week about scientists having a good time with science.

Rockin’ researchers battle for glory (Kevin McCormack)

Did you know that Bruce Springsteen got his big break after winning the Biotech Battle of the Bands (BBOB)? Probably not, I just made that up. But just because Bruce didn’t hit it big because of BBOB doesn’t mean you can’t.

BBOB is a fun chance for you and your labmates, or research partners, to cast off your lab coats, pick up a guitar, form a band, show off your musical chops, play before a live audience and raise money for charity.  This is the fourth year the event is being held. It’s part of Biotech Week Boston, on Wednesday, September 27th at the Royale Nightclub, Boston.

Biotech Week is a celebration of science and, duh, biotech; bringing together what the event organizers call “the most inventive scientific minds and business leaders in Boston and around the world.” And they wouldn’t lie would they, after all, they’re scientists.

If you want to check out the competition here’s some video from a previous year – see if you can spot the man with the cowbell!

“Cells I See” Stem Cell Art Contest

It’s that time again! The “Cells I See” art contest hosted by Canada’s Centre for Commercialization for Regenerative Medicine (CCRM) and The Stem Cell Network is now open for business. This is a super fun event that celebrates the beauty of stem cells and biomaterials that support regenerative medicine.

Not only is “Cells I See” a great way for scientists to share their research with the public, it’s also a way for them to tap into their artistic, creative side. Last year’s ­contestants submitted breathtaking microscope images, paintings and graphic designs of stem cells in action. The titles for these art submissions were playful. “Nucleic Shower” “The Quest for Innervation” and “Flat, Fluorescent & Fabulous” were some of my favorite title entries.

There are two prizes for this contest. The grand prize of $750 will be awarded to the submission with the highest number of votes from scientists attending the Till and McCulloch Stem Cell Meeting in November. There is also a “People’s Choice” prize of $500 given to the contestant who has the most numbers of likes on the CCRM Facebook page.

The deadline for “Cell I See” submissions is September 8th so you have plenty of time to get your creative juices flowing!

Iris

The 2016 Grand Prize and People’s Choice Winner, Sabiha Hacibekiroglu, won for her photo titled “Iris”.

Scientists Teach Baseball Fans the Power of Stem Cells

San Francisco Giants fans who attended Tuesday’s ball game were in for a special treat – a science treat that is. Researchers from the Gladstone Institutes partnered with the SF Giants to raise awareness about the power of stem cells for advancing research and developing cures for various diseases.

Gladstone PhD student Jessica Butts explains the Stem Cell Plinko game to a Giants fan.

The Gladstone team had a snazzy stem cell booth at the Giant’s Community Clubhouse with fun science swag and educational stem cell activities for fans of all ages. One of the activities was a game called “Stem Cell Plinko” where you drop a ball representing a pluripotent stem cell down a plinko board. The path the ball travels represents how that stem cell differentiates or matures into adult cells like those in the heart.

Gladstone also debuted their new animated stem cell video, which explains how “stem cell research has opened up promising avenues for personalized and regenerative medicine.”

Finally, Gladstone scientists challenged fans to participate in a social media contest about their newfound stem cell knowledge cells on Twitter. The winner of the contest, a woman named Nicole, will get an exclusive, behind-the-scenes lab tour at the Gladstone and “see firsthand how Gladstone is using stem cells to overcome disease.”

The Gladstone “Power of Stem Cells” event is a great example of how scientists are trying to make research and science more accessible to the public. It not only benefits people by educating them about the current state of stem cell research, but also is a fun way for scientists to engage with the local community.

“Participating in the SF Giants game was very fun,” said Megan McDevitt, vice president of communications at the Gladstone Institutes. “Our booth experienced heavy traffic all evening, giving us a wonderful opportunity to engage with the San Francisco community about science and, more specifically, stem cell research. We were delighted to see how interested fans were to learn more on the topic.”

And as if all that wasn’t enough, the Giants won, something that hasn’t been happening very much this season.

Go Giants. Go Gladstone.

Gladstone scientist dropping stem cell knowledge to Giants fans.

Stories that caught our eye: Spinal cord injury trial milestone, iPS for early cancer diagnosis, and storing videos in DNA

Spinal cord injury clinical trial hits another milestone (Kevin McCormack)
We began the week with good news about our CIRM-funded clinical trial with Asterias for spinal cord injury, and so it’s nice to end the week with more good news from that same trial. On Wednesday, Asterias announced it had completed enrolling and dosing patients in their AIS-B 10 million cell group.

asterias

People with AIS-B spinal cord injuries have some level of sensation and feeling but very little, if any, movement below the site of injury site. So for example, spinal cord injuries at the neck, would lead to very limited movement in their arms and hands. As a result, they face a challenging life and may be dependent on help in performing most daily functions, from getting out of bed to eating.astopc1

In another branch of the Asterias trial, people with even more serious AIS-A injuries – in which no feeling or movement remains below the site of spinal cord injury – experienced improvements after being treated with Asterias’ AST-OPC1 stem cell therapy. In some cases the improvements were quite dramatic. We blogged about those here.

In a news release Dr. Ed Wirth, Asterias’ Chief Medical Officer, said they hope that the five people treated in the AIS-B portion of the trial will experience similar improvements as the AIS-A group.

“Completing enrollment and dosing of the first cohort of AIS-B patients marks another important milestone for our AST-OPC1 program. We have already reported meaningful improvements in arm, hand and finger function for AIS-A patients dosed with 10 million AST-OPC1 cells and we are looking forward to reporting initial efficacy and safety data for this cohort early in 2018.”

Asterias is already treating some AIS-A patients with 20 million cells and hopes to start enrolling AIS-B patients for the 20 million cell therapy later this summer.

Earlier diagnosis of pancreatic cancer using induced pluripotent stem cells Reprogramming adult cells to an embryonic stem cell-like state is as common in research laboratories as hammers and nails are on a construction site. But a research article in this week’s edition of Science Translational Medicine used this induced pluripotent stem cell (iPSC) toolbox in a way I had never read about before. And the results of the study may lead to earlier detection of pancreatic cancer, the fourth leading cause of cancer death in the U.S.

Zaret STM pancreatic cancer tissue July 17

A pancreatic ductal adenocarcinoma
Credit: The lab of Ken Zaret, Perelman School of Medicine, University of Pennsylvania

We’ve summarized countless iPSCs studies over the years. For example, skin or blood samples from people with Parkinson’s disease can be converted to iPSCs and then specialized into brain cells to provide a means to examine the disease in a lab dish. The starting material – the skin or blood sample – typically has no connection to the disease so for all intents and purposes, it’s a healthy cell. It’s only after specializing it into a nerve cell that the disease reveals itself.

But the current study by researchers at the University of Pennsylvania used late stage pancreatic cancer cells as their iPSC cell source. One of the reasons pancreatic cancer is thought to be so deadly is because it’s usually diagnosed very late when standard treatments are less effective. So, this team aimed to reprogram the cancer cells back into an earlier stage of the cancer to hopefully find proteins or molecules that could act as early warning signals, or biomarkers, of pancreatic cancer.

Their “early-stage-cancer-in-a-dish” model strategy was a success. The team identified a protein called thrombospodin-2 (THBS2) as a new candidate biomarker. As team lead, Dr. Ken Zaret, described in a press release, measuring blood levels of THBS2 along with a late-stage cancer biomarker called CA19-9 beat out current detection tests:

“Positive results for THBS2 or CA19-9 concentrations in the blood consistently and correctly identified all stages of the cancer. Notably, THBS2 concentrations combined with CA19-9 identified early stages better than any other known method.”

DNA: the ultimate film archive device?
This last story for the week isn’t directly related to stem cells but is too cool to ignore. For the first time ever, researchers at Harvard report in Nature that they have converted a video into a DNA sequence which was then inserted into bacteria. As Gina Kolata states in her New York Times article about the research, the study represents the ultimate data archive system which can “be retrieved at will and multiplied indefinitely as the host [bacteria] divides and grows.”

A video file is nothing but a collection of “1s” and “0s” of binary code which describe the makeup of each pixel in each frame of a movie. The researchers used the genetic code within DNA to describe each pixel in a short clip of one of the world’s first motion pictures: a galloping horse captured by Eadward Muybridge in 1878.

Horse_1080.gif

The resulting DNA sequence was then inserted into the chromosome of E.Coli., a common bacteria that lives in your intestines, using the CRISPR gene editing method. The video code was still retrievable after the bacteria was allowed to multiply.

The Harvard team envisions applications well beyond a mere biological hard drive. Dr. Seth Shipman, an author of the study, told Paul Rincon of BBC news that he thinks this cell system could be placed in various parts of the body to analyze cell function and “encode information about what’s going on in the cell and what’s going on in the cell environment by writing that information into their own genome”.

Perhaps then it could be used to monitor the real-time activity of stem cell therapies inside the body. For now, I’ll wait to hear about that in some upcoming science fiction film.

Stem Cell Stories that Caught Our Eye: perfecting pluripotency, building a spinal cord, and CIRM Board funds new clinical trials

Here are the stem cell stories that caught our eye this week. 

Perfecting Pluripotency in stem cells.

The power of pluripotent stem cells lies in their ability to become any cell type in the body. But how did they get this impressive power?

Scientists from the University of Zurich in Switzerland think they might have an answer. In a study published in Nature Cell Biology, the team discovered that stem cells in the early stage embryo express a protein called Pramel7. This protein is like an eraser. Its presence ensures that a cell’s DNA is free of epigenetic marks, which are chemical tags that tell genes to switch on or off.

Embryonic stem cells have a blank slate meaning their genomes are free of epigenetic marks. This allows them to follow any developmental path and become any cell in the body. But as embryonic stem cells develop into more specialized adult cells, epigenetic marks called methyl groups are added to their genomes to effectively seal off genetic material containing genes that aren’t necessary to the fate of that cell.

The team found that Pramel7 was active in the stem cells of embryos that were only a few days old. Interestingly, when they studied embryonic stem cells grown in a petri dish outside of embryos, these stem cells didn’t express Pramel7 and consequently had more methyl marks on their DNA. These findings, which were captured in coverage by Phys.org, led the scientists to dub Pramel7 expressing embryonic stem cells as the “perfect allrounders.”

“Despite its short action period of just a few days, Pramel7 seems to play a vital role: When the researchers headed up by Cinelli and Santoro switched off the gene for this protein using genetic tricks, development remained stuck in the embryonic cell cluster stage. In the cultivated stem cells, on the other hand, Pramel7 is rarely found. This circumstance could also explain why the genetic material of these cells contains more methyl groups than that of natural embryonic cells.”

Just a few days old embryonic cell clusters: with functional Pramel7 (left), without the protein (right) – the development of the stem cells remains stuck and the embyos die. Credit: Paolo Cinelli, USZ

In future studies, the scientists will use their newly found knowledge about stem cell pluripotency to study how stem cells can regenerate bone fractures in patients. Before they can replace broken and damaged bones, they argue that “we have to know how stem cells work [first].”

CIRM Invests in Treatments for Stroke, Cancer and Blood Disorders.

Yesterday, the CIRM governing Board convened for our June ICOC meeting to consider the funding of stem cell research applications ranging from early, discovery stage studies to clinical trials.

Two new trials were added to our pipeline. SanBio was awarded $20 million to test a mesenchymal stem cell-based treatment for patients that have suffered from a stroke. UCSF received $12.1 million for a hematopoietic stem cell treatment for babies with a blood disorder called alpha thalassemia major. The stem cells are taken from the mother’s bone marrow and transplanted into the womb before the baby is born in hopes of improving the chances of a healthy birth.

The Board also approved 13 early stage research projects that are part of our Discovery Quest Awards Program, which promotes the discovery of promising new stem cell-based technologies that could be translated to enable broad use and ultimately improve patient care. You can read more about these studies in yesterday’s news release.

The Board meeting was particularly memorable one. A patient named Caleb Sizemore, who participated in the CIRM-funded Capricor trial for Duchenne muscular dystrophy, spoke to the Board about his experience in the trial and the importance of funding stem cell research for patients.

We also said an emotional goodbye to two important members of the CIRM team, President Randy Mills and General Counsel James Harrison. Randy will be the new President and CEO of the National Marrow Donor Program and James will be returning to his role as a partner at the law firm of Remcho, Johansen & Purcell, LLP.

We’ll be blogging more about the events of our Board meeting next week, so stay tuned!

CIRM President and CEO Dr. Randy Mills receives an award of appreciation and a CIRM plaque with his family.

Building a spinal cord comes down to location, location, location. (Todd Dubnicoff)

The spinal cord is an amazing part of our anatomy. Its long bundle of nerve cells acts like an elaborate highway starting from the brain, running down the spine and jutting out to countless “off-ramps” that make connections to our limbs and organs. These nerve cells are critical for bringing in sensory information from the body up to the brain and for sending out movement instructions from the brain down to our muscles. Assuming these cells aren’t equipped with their own GPS technology, how do they determine their precise location and turn into the right type of cell while building this information highway during embryo development?

A normal developing spinal cord (left) showing precise patterns of gene activity (red, blue, green demarcating different types of cells). In a spinal cord in which one of the signals is disrupted (right) the accuracy of gene activity has been lost. Image: Anna Kicheva

 

This week, a collaborative team of European scientists answered a large piece of that fundamental question. Reporting in Science, the researchers show evidence that progenitor, or early stage, nerve cells in developing mouse embryos sense the concentration of two proteins that spread out in opposite directions along the dorsal/ventral axis (from the belly to the back) of the body. Each progenitor nerve cell encounters a specific local concentration of these opposing protein gradients and then activates an appropriate set of genes in response.

Through some in-depth number crunching, the team showed that either gradient alone was not as precise in providing dorsal/ventral position information to cells compared to when both gradients are in place. They also showed that these gradients remained intact for the first 30 hours of development and then dissipated which indicates their importance in the earliest moments of life.

Anna Kicheva, the team lead for the research group the Institute of Science and Technology in Austria, explained the significance of these findings in a press release:

“We’ve made an important step in understanding how the diverse cell types in the spinal cord of a developing embryo are organized in a precise spatial pattern. The quantitative measurements and new experimental techniques we used, as well as the combined effort of biologists, physicists and engineers were key. This allowed us to gain new insight into the exquisite accuracy of embryonic development and revealed that cells have remarkable ability of to orchestrate precise tissue development.”

These new insights will not only provide a better understanding of how spinal cord development works but could also create new therapeutic approaches to diseases and injuries. James Briscoe, the senior author from the Francis Crick Institute in the United Kingdom, thinks these finding could also shed light on the development of other parts of the body:

“It’s likely that similar strategies are used in other developing tissues and our findings might be relevant to these cases. In the long run this will help inform the use of stem cells in approaches such as tissue engineering and regenerative medicine.”

Stories that caught our eye: An antibody that could make stem cell research safer; scientists prepare for clinical trial for Parkinson’s disease; and the stem cell scientist running for Congress

Antibody to make stem cells safer:

There is an old Chinese proverb that states: ‘What seems like a blessing could be a curse’. In some ways that proverb could apply to stem cells. For example, pluripotent stem cells have the extraordinary ability to turn into many other kinds of cells, giving researchers a tool to repair damaged organs and tissues. But that same ability to turn into other kinds of cells means that a pluripotent stem cell could also turn into a cancerous one, endangering someone’s life.

A*STAR

Researchers at the A*STAR Bioprocessing Technology Institute: Photo courtesy A*STAR

Now researchers at the Agency for Science, Technology and Research (A*STAR) in Singapore may have found a way to stop that happening.

When you change, or differentiate, stem cells into other kinds of cells there will always be some of the original material that didn’t make the transformation. Those cells could turn into tumors called teratomas. Scientists have long sought for a way to identify pluripotent cells that haven’t differentiated, without harming the ones that have.

The team at A*STAR injected mice with embryonic stem cells to generate antibodies. They then tested the ability of the different antibodies to destroy pluripotent stem cells. They found one, they called A1, that did just that; killing pluripotent cells but leaving other cells unharmed.

Further study showed that A1 worked by attaching itself to specific molecules that are only found on the surface of pluripotent cells.

In an article on Phys.Org Andre Choo, the leader of the team, says this gives them a tool to get rid of the undifferentiated cells that could potentially cause problems:

“That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect.”

Reviving hope for Parkinson’s patients:

In the 1980’s and 1990’s scientists transplanted fetal tissue into the brains of people with Parkinson’s disease. They hoped the cells in the tissue would replace the dopamine-producing cells destroyed by Parkinson’s, and stop the progression of the disease.

For some patients the transplants worked well. For some they produced unwanted side effects. But for most they had little discernible effect. The disappointing results pretty much brought the field to a halt for more than a decade.

But now researchers are getting ready to try again, and a news story on NPR explained why they think things could turn out differently this time.

tabar-viviane

Viviane Tabar, MD; Photo courtesy Memorial Sloan Kettering Cancer Center

Viviane Tabar, a stem cell researcher at Memorial Sloan Kettering Cancer Center in New York, says in the past the transplanted tissue contained a mixture of cells:

“What you were placing in the patient was just a soup of brain. It did not have only the dopamine neurons, which exist in the tissue, but also several different types of cells.”

This time Tabar and her husband, Lorenz Studer, are using only cells that have been turned into the kind of cell destroyed by the disease. She says that will, hopefully, make all the difference:

“So you are confident that everything you are putting in the patient’s brain will consist of  the right type of cell.”

Tabar and Studer are now ready to apply to the Food and Drug Administration (FDA) for permission to try their approach out in a clinical trial. They hope that could start as early as next year.

Hans runs for Congress:

Keirstead

Hans Keirstead: Photo courtesy Orange County Register

Hans Keirstead is a name familiar to many in the stem cell field. Now it could become familiar to a lot of people in the political arena too, because Keirstead has announced he’s planning to run for Congress.

Keirstead is considered by some to be a pioneer in stem cell research. A CIRM grant helped him develop a treatment for spinal cord injury.  That work is now in a clinical trial being run by Asterias. We reported on encouraging results from that trial earlier this week.

Over the years the companies he has founded – focused on ovarian, skin and brain cancer – have made him millions of dollars.

Now he says it’s time to turn his sights to a different stage, Congress. Keirstead has announced he is going to challenge 18-term Orange County Republican Dana Rohrabacher.

In an article in the Los Angeles Times, Keirstead says his science and business acumen will prove important assets in his bid for the seat:

“I’ve come to realize more acutely than ever before the deficits in Congress and how my profile can actually benefit Congress. I’d like to do what I’m doing but on a larger stage — and I think Congress provides that, provides a forum for doing the greater good.”

Stories that caught our eye: color me stem cells, delivering cell therapy with nanomagnets, and stem cell decisions

Nanomagnets: the future of targeted stem cell therapies? Your blood vessels are made up of tightly-packed endothelial cells. This barrier poses some big challenges for the delivery of drugs via the blood. While small molecules are able make their way through the small gaps in the blood vessel walls, larger drug molecules, including proteins and cells, are not able to penetrate the vessel to get therapies to diseased areas.

This week, researchers at Rice University report in Nature Communications on an ingenious technique using tiny magnets that may overcome this drug delivery problem.

170608072913_1_900x600

At left, the nanoparticles are evenly distributed among the microtubules that help give the cells their shape. At right, after a magnetic field is applied, the nanoparticles are pulled toward one end of the cells and change their shapes. Credit: Laboratory of Biomolecular Engineering and Nanomedicine/Rice University

Initial studies showed that adding magnetic nanoparticles to the endothelial cells and then applying a magnetic field affected the cells’ internal scaffolding, called microtubules. These structures are responsible for maintaining the tight cell to cell connections. The team took the studies a step further by growing the cells in specialized petri dishes containing tiny, tube-shaped channels. Applying a magnetic field to the cells caused the cell-cell junctions to form gaps, making the blood vessel structures leaky. Simply turning off the magnetic field closed up the gaps within a few hours.

Though a lot of research remains, the team aims to apply this on-demand induction of cell leakiness along with adding the magnetic nanoparticles to stem cell therapy products to help target the treatment to specific area. In a press release, team leader Dr. Gang Bao spoke about possible applications to arthritis therapy:

“The problem is how to accumulate therapeutic stem cells around the knee and keep them there. After injecting the nanoparticle-infused cells, we want to put an array of magnets around the knee to attract them.”

To differentiate or not differentiate: new insights During the body’s development, stem cells must differentiate, or specialize, into functional cells – like liver, heart, brain. But once that specialization occurs, the cells lose their pluripotency, or the ability to become any type of cell. So, stem cells must balance the need to differentiate with the need to make copies of itself to maintain an adequate supply of stem cells to complete the development process. And even after a fully formed baby is born, it’s still critical for adult stem cells to balance the need to regenerate damaged tissue versus stashing away a pool of stem cells in various organs for future regeneration and replacement of damaged or diseased tissues.

genetic-cross-talk.png

Visualizing activation of Nanog gene activity (bright green spot) within cell nucleus. 
Image: Courtesy of Bony De Kumar, Ph.D., and Robb Krumlauf, Ph.D., Stowers Institute for Medical Research

A report this week in the Proceedings of the National Academy of Sciences finds evidence that the two separate processes – differentiation and pluripotency – directly communicate with each other as way to ensure a proper balance between the two states.

The study, carried out by researchers at Stowers Institute for Medical Research in Kansas City, Missouri, focused on the regulation of two genes: Nanog and Hox. Nanog is critical for maintaining a stem cell’s ability to become a specialized cell type. In fact, it’s one of the four genes initially used to reprogram adult cells back into induced pluripotent stem cells. The Hox gene family is responsible for generating a blueprint of the body plan in a developing embryo. Basically, the pattern of Hox gene activity helps generate the body plan, basically predetermining where the various body parts and organs will form.

Now, both Nanog and Hox proteins act by binding to DNA and turning on a cascade of other genes that ultimately maintain pluripotency or promote differentiation. By examining these other genes, the researchers were surprised to find that both Nanog and Hox were bound to both the pluripotency and differentiation genes. They also found that Nanog and Hox can directly inhibit each other. Taken together, these results suggest that exquisite control of both processes occurs cross regulation of gene activity.

Dr. Robb Krumlauf one of authors on the paper talked about the significance of the result in a press release:

“Over the past 10 to 20 years, biologists have shown that cells are actively assessing their environment, and that they have many fates they can choose. The regulatory loops we’ve found show how the dynamic nature of cells is being maintained.”

Color me stem cells Looking to improve your life and the life of those around you? Then we highly recommend you pay a visit to today’s issue of Right Turn, a regular Friday feature of  Signals, the official blog of CCRM, Canada’s public-private consortium supporting the development of regenerative medicine technologies.

COLOURING-SHEETS-COLLAGE-768x948.jpg

Collage sample of CCRM’s new coloring sheets. Image: copyright CCRM 2017

As part of an public outreach effort they have created four new coloring sheets that depict stem cells among other sciency topics. They’ve set up a DropBox link to download the pictures so you can get started right away.

Adult coloring has swept the nation as the hippest new pastime. And it’s not just a frivolous activity, as coloring has been shown to have many healthy benefits like reducing stressed and increasing creativity. Just watch any kid who colors. In fact, share these sheet with them, it’s intended for children too.

Stem cell stories that caught our eye: new baldness treatments?, novel lung stem cells, and giraffe stem cells

Novel immune system/stem cell interaction may lead to better treatments for baldness. When one thinks of the immune system it’s usually in terms of the body’s ability to fight off a bad cold or flu virus. But a team of UCSF researchers this week report in Cell that a particular cell of the immune system is key to instructing stem cells to maintain hair growth. Their results suggest that the loss of these immune cells, called regulatory T cells (Tregs for short), may be the cause of baldness seen in alopecia areata, a common autoimmune disorder and may even play a role in male pattern baldness.

Alopecia, a common autoimmune disorder that causes baldness. Image: Shutterstock

While most cells of the immune system recognize and kill foreign or dysfunctional cells in our bodies, Tregs act to subdue those cells to avoid collateral damage to perfectly healthy cells. If Tregs become impaired, it can lead to autoimmune disorders in which the body attacks itself.

The UCSF team had previously shown that Tregs allow microorganisms that are beneficial to skin health in mice to avoid the grasp of the immune system. In follow up studies they intended to examine what happens to skin health when Treg cells were inhibited in the skin of the mice. The procedure required shaving away small patches of hair to allow observation of the skin. Over the course of the experiment, the scientists notice something very curious. Team lead Dr. Michael Rosenblum recalled what they saw in a UCSF press release:

“We quickly noticed that the shaved patches of hair never grew back, and we thought, ‘Hmm, now that’s interesting. We realized we had to delve into this further.”

That delving showed that Tregs are located next to hair follicle stem cells. And during the hair growth, the Tregs grow in number and surround the stem cells. Further examination, found that Tregs trigger the stem cells through direct cell to cell interactions. These mechanisms are different than those used for their immune system-inhibiting function.

With these new insights, Dr. Rosenblum hopes this new-found role for Tregs in hair growth may lead to better treatments for Alopecia, one of the most common forms of autoimmune disease.

Novel lung stem cells bring new insights into poorly understood chronic lung disease. Pulmonary fibrosis is a chronic lung disease that’s characterized by scarring and changes in the structure of tiny blood vessels, or microvessels, within lungs. This so-called “remodeling” of lung tissue hampers the transfer of oxygen from the lung to the blood leading to dangerous symptoms like shortness of breath. Unfortunately, the cause of most cases of pulmonary fibrosis is not understood.

This week, Vanderbilt University Medical Center researchers report in the Journal of Clinical Investigation the identification of a new type of lung stem cell that may play a role in lung remodeling.

Susan Majka and Christa Gaskill, and colleagues are studying certain lung stem cells that likely contribute to the pathobiology of chronic lung diseases.  Photo by: Susan Urmy

Up until now, the cells that make up the microvessels were thought to contribute to the detrimental changes to lung tissue in pulmonary fibrosis or other chronic lung diseases. But the Vanderbilt team wasn’t convinced since these microvessel cells were already fully matured and wouldn’t have the ability to carry out the lung remodeling functions.

They had previously isolated stem cells from both mouse and human lung tissue located near microvessels. In this study, they tracked these mesenchymal progenitor cells (MPCs) in normal and disease inducing scenarios. The team’s leader, Dr. Susan Majka, summarized the results of this part of the study in a press release:

“When these cells are abnormal, animals develop vasculopathy — a loss of structure in the microvessels and subsequently the lung. They lose the surfaces for gas exchange.”

The team went on to find differences in gene activity in MPCs from healthy versus diseased lungs. They hope to exploit these differences to identify molecules that would provide early warnings of the disease. Dr. Majka explains the importance of these “biomarkers”:

“With pulmonary vascular diseases, by the time a patient has symptoms, there’s already major damage to the microvasculature. Using new biomarkers to detect the disease before symptoms arise would allow for earlier treatment, which could be effective at decreasing progression or even reversing the disease process.”

The happy stem cell story of Mahali the giraffe. We leave you this week with a feel-good story about Mahali, a 14-year old giraffe at the Cheyenne Mountain Zoo in Colorado. Mahali had suffered from chronic arthritis in his front left leg. As a result, he could not move well and was kept isolated from his herd.

Giraffes at Cheyenne Mountain Zoo. Photo: Denver Post

The zoo’s head veterinarian, Dr. Liza Dadone, decided to try a stem cell therapy procedure to bring Mahali some relief and a better quality of life. It’s the first time such a treatment would be performed on a giraffe. With the help of doctors at Colorado State University’s James L. Voss Veterinary Teaching Hospital, 100 million stem cells grown from Mahali’s blood were injected into his arthritic leg.

Before treatment, thermograph shows inflammation (red/yellow) in Mahali’s left front foot (seen at far right of each image); after treatment inflammation resolved (blue/green). Photos: Cheyenne Mountain Zoo

In a written statement to the Colorado Gazette, Dr. Dadone summarized the positive outcome:

“Prior to the procedure, he was favoring his left front leg and would lift that foot off the ground almost once per minute. Since then, Mahali is no longer constantly lifting his left front leg off the ground and has resumed cooperating for hoof care. A few weeks ago, he returned to life with his herd, including yard access. On the thermogram, the marked inflammation up the leg has mostly resolved.”

Now, Dr. Dadone made sure to state that other treatments and medicine were given to Mahali in addition to the stem cell therapy. So, it’s not totally clear to what extent the stem cells contributed to Mahali’s recovery. Maybe future patients will receive stem cells alone to be sure. But for now, we’re just happy for Mahali’s new lease on life.