Good news for two CIRM-supported therapies

Jake Javier, a patient in the spinal cord injury stem cell therapy clinical trial

It’s always satisfying to see two projects you have supported for a long time do well. That’s particularly true when the projects in question are targeting conditions that have no other effective therapies.

This week we learned that a clinical trial we funded to help people with spinal cord injuries continues to show benefits. This trial holds a special place in our hearts because it is an extension of the first clinical trial we ever funded. Initially it was with Geron, and was later taken up by Asterias Biotherapeutics, which has seen been bought by Lineage Cell Therapeutics Inc.

The therapy involved transplanting oligodendrocyte progenitor cells (OPCs), which are derived from human embryonic stem cells, into people who suffered recent spinal cord injuries that left them paralyzed from the neck down.  OPCs play an important role in supporting and protecting nerve cells in the central nervous system, the area damaged in a spinal cord injury. It’s hoped the cells will help restore some of the connections at the injury site, allowing patients to regain some movement and feeling.

In a news release, Lineage said that its OPC therapy continues to report positive results, “where the overall safety profile of OPC1 has remained excellent with robust motor recovery in upper extremities maintained through Year 2 patient follow-ups available to date.”

Two years in the patients are all continuing to do well, and no serious unexpected side effects have been seen. They also reported:

– Motor level improvements

  1. Five of six Cohort 2 patients achieved at least two motor levels of improvement over baseline on at least one side as of their 24-month follow-up visit.
  2. In addition, one Cohort 2 patient achieved three motor levels of improvement on one side over baseline as of the patient’s 24-month follow-up visit; improvement has been maintained through the patient’s 36-month follow-up visit.

Brian M. Culley, CEO of Lineage Cell Therapeutics called the news “exciting”, saying “To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence.”

Evie, cured of SCID by a therapy licensed to Orchard Therapeutics

The other good news came from Orchard Therapeutics, a company we have partnered with on a therapy for Severe Combined Immunodeficiency (SCID) also known as “bubble baby diseases” (we have blogged about this a lot including here).

In a news release Orchard announced that the European Medicines Agency (EMA) has granted an accelerated assessment for their gene therapy for metachromatic leukodystrophy (MLD). This is a rare and often fatal condition that results in the build-up of sulfatides in the brain, liver, kidneys and other organs. Over time this makes it harder and harder for the person to walk, talk, swallow or eat.

Anne Dupraz-Poiseau, chief regulatory officer of Orchard Therapeutics, says this is testimony to the encouraging early results of this therapy. “We look forward to working with the EMA to ensure this potentially transformative new treatment, if approved, reaches patients in the EU as quickly as possible, and continuing our efforts to expand patient access outside the EU.”

The accelerated assessment potentially provides a reduced review timeline from 210 to 150 days, meaning it could be available to a wider group of patients sooner.  

CIRM Board Approves $19.7 Million in Awards for Translational Research Program

In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before getting into the details of each project, here is a table with a brief synopsis of the awards:

TRAN1 – 11532

Illustration of a healthy eye vs eye with AMD

$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).

AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million.  A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images.  The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD.  One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.

TRAN1 – 11579

Illustration depicting the role neuronal relays play in muscle sensation

$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).

According to data from the National Spinal Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000 people in the United States alone, with about 17,700 new cases each year. There are currently no effective therapies for SCI. Many people suffer SCI in early adulthood, leading to life-long disability and suffering, extensive treatment needs and extremely high lifetime costs of health care.

The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs).  These newly created NSCs would then be grafted at the site of injury of those with SCI.  In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI.  The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.

TRAN1 – 11548

Graphic depicting the challenges of traumatic brain injury (TBI)

$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).

TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.

The approach that Dr. Cummings is developing will also use hESCs to create NSCs.  These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes.  This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.

TRAN1 – 11628

Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions

$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).

HII occurs when there is a lack of oxygen flow to the brain.  A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment.  Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury.  However, this is not very effective in severe cases of HII. 

The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line.   These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.

One year later, spinal cord therapy still looks promising

Jake Javier – participant in the SCIStar study

The beginning of a clinical trial, particularly the first time a new therapy is being tested in people, is often a time of equal parts anticipation and nervousness. Anticipation, because you have been working to this point for many years. Nervousness, because you have never tested this in people before and even though you have done years of study to show it is probably safe, until you try it in people you never really know.

That’s why the latest results from the CIRM-funded SCiStar Study, a clinical trial for spinal cord injury, are so encouraging. The results show that, one year after being treated, all the patients are doing well, none have experienced any serious side effects, and most have experienced impressive gains in movement, mobility and strength.

Ed Wirth, Chief Medical Officer at BioTime

In a news release Ed Wirth,  BioTIme’s Chief Medical Officer, said they were encouraged by what they saw:

“We believe the primary goals of the SCiStar Study, which were to observe the safety of OPC1 in cervical spinal cord injury patients as well as other important metrics including related to the optimal timing of OPC1 injection, tolerability of the immunosuppression regimen, engraftment of OPC1 cells, and rates of motor recovery observed among different study subpopulations, have all been successfully achieved.”

The study involved transplanting what the researchers called AST-OPC1 cells into patients who have suffered recent injuries that have left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

Altogether 25 patients were involved. Three, in Cohort 1, were given injections of just two million OPC1 cells. This was to ensure the approach was safe and wouldn’t endanger patients. The remaining 22, in Cohorts 2-5, were given between 10 and 20 million cells. One year after the last patient was treated the results show:

  • MRI scans show no evidence of adverse changes in any of the 25 SCiStar study subjects.
    • No SCiStar study subjects had worsening of neurological function post-injection
    • At 12 months, 95% (21/22) of patients in Cohorts 2-5 recovered at least one motor level on at least one side and 32% (7/22) of these subjects recovered two or more motor levels on at least one side. 
    • No patient saw decreased motor function following administration of OPC1 and all either retained for 12 months the motor function recovery seen through 6 months or experienced further motor function recovery from 6 to 12 months.
    • All three subjects in Cohort 1 and 95% (21/22) of those in Cohorts 2 to 5 have MRI scans at 12 months consistent with the formation of a tissue matrix at the injury site. This is encouraging evidence the OPC1 cells have engrafted at the injury site and helped to prevent cavitation, a destructive process that occurs within the spinal cord following spinal cord injuries, and typically results in permanent loss of motor and sensory function.

“We appreciate the support of the California Institute for Regenerative Medicine, the world’s largest institution dedicated to bringing the future of cellular medicine closer to reality, whose generous grant funding to date of $14.3 million has helped advance the clinical development of our OPC1 program and generate these encouraging clinical results in patients with traumatic spinal cord injuries.”

BioTime is now planning to meet with the Food and Drug Administration (FDA) later this year to discuss next steps for the therapy. Soon as we know the outcome of those talks, we’ll share them with you.

Rats, research and the road to new therapies

Don Reed

Don Reed has been a champion of CIRM even before there was a CIRM. He’s a pioneer in pushing for funding for stem cell research and now he’s working hard to raise awareness about the difference that funding is making.

In a recent article on Daily Kos, Don highlighted one of the less celebrated partners in this research, the humble rat.

A BETTER RAT? Benefit #62 of the California Stem Cell Agency

By Don C. Reed

When I told my wife Gloria I was writing an article about rats, she had several comments, including: “Oo, ugh!” and also “That’s disgusting!”

Obviously, there are problems with rats, such as when they chew through electrical wires, which may cause a short circuit and burn down the house. Also, they are blamed for carrying diseased fleas in their ears and spreading the Black Plague, which in 1340 killed half of China and one-third of Europe—but this is not certain. The plague may in fact have been transmitted by human-carried parasites.

But there are positive aspects to rats as well. For instance: “…a rat paired with  another that has a disability…will be very kind to the other rat. Usually, help is offered with food, cleaning, and general care.”—GUIDE TO THE RAT, by Ginger Cardinal.

Above all, anyone who has ever been sick owes a debt to rats, specifically the Norway rat with that spectacular name, rattus norvegicus domesticus, found in labs around the world.

I first realized its importance on March 1, 2002, when I held in my hand a rat which had been paralyzed, but then recovered the use of its limbs.

The rat’s name was Fighter, and she had been given a derivative of embryonic stem cells, which restored function to her limbs. (This was the famous stem cell therapy begun by Hans Keirstead with a Roman Reed grant, developed by Geron, and later by CIRM and Asterias, which later benefited humans.)

As I felt the tiny muscles struggling to be free, it was like touching tomorrow— while my paralyzed son, Roman Reed, sat in his wheelchair just a few feet away.

Was it different working with rats instead of mice? I had heard that the far smaller lab mice were more “bitey” than rats.  

Wanting to know more about the possibilities of a “better rat”, I went to the CIRM website, (www.cirm.ca.gov) hunted up the “Tools and Technology III” section, and the following complicated sentence::

“Embryonic stem cell- based generation of rat models for assessing human cellular therapies.”

Hmm. With science writing, it always takes me a couple of readings to know what they were talking about. But I recognized some of the words, so that was a start.

“Stemcells… rat models… human therapies….”  

I called up Dr. Qilong Ying, Principle Investigator (PI) of the study.

As he began to talk, I felt a “click” of recognition, as if, like pieces of a puzzle, facts were fitting together.

It reminded me of Jacques Cousteau, the great underwater explorer, when he tried to invent a way to breathe underwater. He had the compressed air tank, and a mouthpiece that would release air—but it came in a rush, not normal breathing.

So he visited his friend, race car mechanic Emil Gagnan, and told him, “I need something that will give me air, but only when I inhale,”– and Gagnan said: “Like that?” and pointed to a metal contraption on a nearby table.

It was something invented for cars. But by adding it to what Cousteau already had, the Cousteau-Gagnan SCUBA (Self Contained Underwater Breathing Apparatus) gear was born—and the ocean could now be explored.

Qi-Long Ying’s contribution to science may also be a piece of the puzzle of cure…

A long-term collaboration with Dr. Austin Smith centered on an attempt to do with rats what had done with mice.

In 2007, the  Nobel Prize in Medicine had been won by Dr. Martin Evans, Mario Capecchi, and Oliver Smithies. Working independently, they developed “knock-out” and “knock-in” mice, meaning to take out a gene, or put one in.  

But could they do the same with rats?

 “We and others worked very, very hard, and got nowhere,” said Dr. Evans.

Why was this important?

Many human diseases cannot be mimicked in the mouse—but might be in the rat. This is for several reasons: the rat is about ten times larger; its internal workings are closer to those of a human; and the rat is considered several million years closer (in evolutionary terms) to humans than the mouse.

In 2008 (“in China, that is the year of the rat,” noted Dr. Ying in our conversation) he received the first of three grants from CIRM.

“We proposed to use the classical embryonic stem cell-based gene-targeting technology to generate rat models mimicking human heart failure, diabetes and neurodegenerative diseases…”

How did he do?

In 2010, Science Magazine honored him with inclusion in their “Top 10 Breakthroughs for using embryonic stem cell-based gene targeting to produce the world’s first knockout rats, modified to lack one or more genes…”

And in 2016, he and Dr. Smith received the McEwen Award for Innovation,  the highest honor bestowed by the International Society for Stem Cell Research (ISSCR).

Using knowledge learned from the new (and more relevant to humans) lab rat, it may be possible to develop methods for the expansion of stem cells directly inside the patient’s own bone marrow. Stem cells derived in this fashion would be far less likely to be rejected by the patient.  To paraphrase Abraham Lincoln, they would be “of the patient, by the patient and for the patient—and shall not perish from the patient”—sorry!

Several of the rats generated in Ying’s lab (to mimic human diseases) were so successful that they have been donated to the Rat Research Resource center so that other scientists can use them for their study.

“Maybe in the future we will develop a cure for some diseases because of knowledge from using rat models,” said Ying. “I think it’s very possible. So we want more researchers from USC and beyond to come and use this technology.”

And it all began with the humble rat…

Stories that caught our eye: National Geographic takes a deep dive into iPS cells; Japanese researchers start iPS cell clinical trial for spinal cord injury; and do high fat diets increase your risk of colorectal cancer

Can cell therapy beat the most difficult diseases?

That’s the question posed in a headline in National Geographic. The answer; maybe, but it is going to take time and money.

The article focuses on the use of iPS cells, the man-made equivalent of embryonic stem cells that can be turned into any kind of cell or tissue in the body. The reporter interviews Kemal Malik, the member of the Board of Management for pharmaceutical giant Bayer who is responsible for innovation. When it comes to iPS cells, it’s clear Malik is a true believer in their potential.

“Because every cell in our bodies can be produced from a stem cell, the applicability of cell therapy is vast. iPSC technology has the potential to tackle some of the most challenging diseases on the planet.”

But he also acknowledges that the field faces some daunting challenges, including:

  • How to manufacture the cells on a large scale without sacrificing quality and purity
  • How do you create products that have a stable shelf life and can be stored until needed?
  • How do you handle immune reactions if you are giving these cells to patients?

Nonetheless, Malik remains confident we can overcome those challenges and realize the full potential of these cells.

“I believe human beings are on the cusp of the next big wave of pharmaceutical innovation. The use of living cells to make people better.”

As if to prove Malik right there was also news this week that researchers at Japan’s Keio University have been given permission to start a clinical trial using iPS cells to treat people with spinal cord injuries. This would be the first of its kind anywhere in the world.

Japan launches iPSC clinical trial for spinal cord injury

An article in Biospace says that the researchers plan to treat four patients who have suffered varying degrees of paralysis due to a spinal cord injury.  They will take cells from the patients and, using the iPS method, turn them into the kind of nerve cells found in the spinal cord, and then transplant two million of them back into the patient. The hope is that this will create new connections that restore movement and feeling in the individuals.

This trial is expected to start sometime this summer.

CIRM has already funded a first-of-its-kind clinical trial for spinal cord injury with Asterias Biotherapeutics. That clinical trial used embryonic stem cells turned into oligodendrocyte progenitor cells – which develop into cells that support and protect nerve cells in the central nervous system. We blogged about the encouraging results from that trial here.

High fat diet drives colorectal cancer

Finally today, researchers at Salk have uncovered a possible cause to the rise in colorectal cancer deaths among people under the age of 55; eating too much high fat food.

Our digestive system works hard to break down the foods we eat and one way it does that is by using bile acids. Those acids don’t just break down the food, however, they also break down the lining of our intestines. Fortunately, our gut has a steady supply of stem cells that can repair and replace that lining. Unfortunately, at least according to the team from Salk, mutations in these stem cells can lead to colorectal cancer.

The study, published in the journal Cell, shows that bile acids affect a protein called FXR that is responsible for ensuring that gut stem cells produce a steady supply of new lining for the gut wall. When someone eats a high fat diet it upsets the balance of bile acids, starting a cascade of events that help cancer develop and grow.

In a news release Annette Atkins, a co-author of the study, says there is a strong connection between bile acid and cancer growth:

“We knew that high-fat diets and bile acids were both risk factors for cancer, but we weren’t expecting to find they were both affecting FXR in intestinal stem cells.”

So next time you are thinking about having that double bacon cheese burger for lunch, you might go for the salad instead. Your gut will thank you. And it might just save your life.

Using 3D printer to develop treatment for spinal cord injury

3d-printed-device

3D printed device

Spinal cord injuries (SCIs) affect approximately 300,000 Americans, with about 18,000 new cases occurring per year. One of these patients, Jake Javier, who we have written about many times over the past several years, received ten million stem cells as part of a CIRM-funded clinical trial and a video about his first year at Cal Poly depicts how these injuries can impact someone’s life.

Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.

Scientists at UC San Diego’s School of Medicine and Institute of Engineering in Medicine have made critical progress in providing SCI patients with hope towards a more comprehensive and longer lasting treatment option.

shaochen chen

Prof. Shaochen Chen and his 3D printer

In a study partially funded by CIRM and published in Nature Medicine, Dr. Mark Tuszynski’s and Dr. Shaochen Chen’s groups used a novel 3D printing method to grow a spinal cord in the lab.

Previous studies have seen some success in lab grown neurons or nerve cells, improving SCI in animal models. This new study, however, is innovative both for the speed at which the neurons are printed, and the extent of the neuronal network that is produced.

To achieve this goal, the scientists used a biological scaffold that directs the growth of the neurons so they grow to the correct length and generate a complete neuronal network. Excitingly, their 3D printing technology was so efficient that they were able to grow implants for an animal model in 1.6 seconds, and a human-sized implant in just ten minutes, showing that their technology is scalable for injuries of different sizes.

When they tested the spinal cord implants in rats, they found that not only did the implant repair the damaged spinal cord tissue, but it also provided sustained improvement in motor function up to six months after implantation.

Just as importantly, they also observed that blood vessels had infiltrated the implanted tissue. The absence of vascularized tissue is one of the main reasons engineered implants do not last long in the host, because blood vessels are necessary to provide nutrients and support tissue growth. In this case, the animal’s body solved the problem on its own.

In a press release, one of the co-first authors of the paper, Dr. Kobi Koffler, states the importance and novelty of this work:

“This marks another key step toward conducting clinical trials to repair spinal cord injuries in people. The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

In order to make this technology viable for human clinical trials, the scientists are testing their technology in larger animal models before moving into humans, as well as investigating how to improve the longevity of the neuronal network by introducing proteins into the scaffolds.

 

 

Stem Cell Agency celebrates 50 clinical trials with patient #1

Yesterday the CIRM Board approved funding for our 50th clinical trial (you can read about that here) It was an historic moment for us and to celebrate we decided to go back in history and hear from the very first person to be treated in a CIRM-funded clinical trial. Rich Lajara was treated in the Geron clinical trial after experiencing a spinal cord injury, thus he became CIRM’s patient #1. It’s a badge he says he is honored to wear. This is the speech Rich made to our Board.

Rich Lajara

Hello and good afternoon everyone. It’s an honor to be here today as the 50th clinical trial has been officially funded by CIRM. It was feels like it was just yesterday that I was enrolled into the first funded clinical trial by CIRM and in turn became California’s’ 1st embryonic stem cell patient.

I became paralyzed from the waist down in September 2011. It was Labor Day and I was at a river with some close friends. There was this natural granite rock slide feature next to a waterfall, it was about 60 feet long; all you had to do was get a bucket of water to get the rocks wet and slide down into a natural pool. I ended up slipping and went down head first backwards but was too far over and I slid off a 15’ ledge where the waterfall was. I was pulled from the water and banged up pretty bad. Someone said “look at that deformity on his back” and tapped my leg and asked if I could feel that. I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.

So, after a few days in the hospital of course everyone, as well as myself, wanted a cure. We quickly learned one didn’t exist. A close family friend had been making phone calls and was able to connect with the Christopher & Dana Reeve Foundation and learned about a clinical trial with “stem cells”. One of my biggest question was how any people have done this? “Close to none”, I was told.

I was also told I most likely would have no direct benefit as this was a safety trial? So why do it at all? Obviously at that time I was willing to overlook the “most likely” part because I was willing to do anything to try and get my normal life back.

Looking back the big picture was laying the ground work for others like Kris or Jake (two people enrolled in a later version of this trial). At the time I had no clue that what I was doing would be such a big deal. The data collected from me would end up being priceless. It’s stories like Jake’s and Kris’ that make me proud and reinforce my decision to have participated in California’s first stem cell clinical trial funded by prop 71.

Like I said earlier it was just the beginning for me. A couple of years later I became a patient advocate working with Americans for Cures. I have been able to meet many people in the stem cell industry and love to see the glow in their face when they learn I was California’s first embryonic stem cell patient.

I can’t even fathom all the year’s of hard work and countless hours of research that had lead up to my long anticipated surgery, but when I see their glowing smile I know they knew what it took.

I also enjoy sharing my story and bridging the gap between myths and facts about stem cells, or talking to students and helping inspire the next generation that will be in the stem cell industry.  As a matter of fact, I have 13 year old sister, Maddie, dead set on being a neurosurgeon.

Fast forward to today. Life in a wheelchair is not exactly a roll in the park (no pun intended) but I have grown accustomed to the new normal. Aside from some neuropathic pain, life is back on track.

Not once did I feel sorry for myself, I was excited to be alive. Sure I have bad days but don’t we all.

In the last 14 years CIRM has funded 50 human clinical trials, published around 2750 new peer-reviewed scientific discoveries, and they’ve transformed California into the world leader in stem cell research. As I look around the posters on the wall, of the people whose lives have been transformed by the agency, I can’t help but be struck by just how much has been achieved in such a short period of time.

While my journey might not yet be over, Evie and 40 other children like her, (children born with SCID) will never remember what it was like to live with the horrible condition they were born with because they have been cured thanks to CIRM. There are hundreds of others whose lives have been transformed because of work the agency has funded.

CIRM has proven how much can be achieved if we invest in cutting-edge medical research.

As most of you here probably know CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this. Everyone in this room knows how much CIRM has done in a little over a decade and how many lives have been changed because of its existence. We have the responsibility to make sure this work continues. We have a responsibility to make sure that the stories we’ve heard today are just the beginning.

I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California, and can’t wait to see what’s on the horizon.

 

Stem Cell Agency Board Approves 50th Clinical Trial

2018-12-13 01.18.50Rich Lajara

Rich Lajara, the first patient treated in a CIRM-funded clinical trial

May 4th, 2011 marked a landmark moment for the California Institute for Regenerative Medicine (CIRM). On that day the Stem Cell Agency’s Board voted to invest in its first ever clinical trial, which was also the first clinical trial to use cells derived from embryonic stem cells. Today the Stem Cell Agency reached another landmark, with the Board voting to approve its 50th clinical trial.

“We have come a long way in the past seven and a half years, helping advance the field from its early days to a much more mature space today, one capable of producing new treatments and even cures,” says Jonathan Thomas, JD, PhD, Chair of the CIRM Board. “But we feel that in many ways we are just getting started, and we intend funding as many additional clinical trials as we can for as long as we can.”

angiocrinelogo

The project approved today awards almost $6.2 million to Angiocrine Bioscience Inc. to see if genetically engineered cells, derived from cord blood, can help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people,” says Maria T. Millan, MD, President & CEO of CIRM. “Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

The first clinical trial CIRM funded was with Geron, targeting spinal cord injury. While Geron halted the trial for business reasons (and returned the money, with interest) the mantle was later picked up by Asterias Biotherapeutics, which has now treated 25 patients with no serious side effects and some encouraging results.

Rich Lajara was part of the Geron trial, the first patient ever treated in a CIRM-funded clinical trial. He came to the CIRM Board meeting to tell his story saying when he was injured “I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.”

When he learned about the Geron clinical trial he asked how many people had been treated with stem cells. “Close to none” he was told. Nonetheless he went ahead with it. He says he has never regretted that decision, knowing it helped inform the research that has since helped others.

Since that first trial the Stem Cell Agency has funded a wide range of projects targeting heart disease and stroke, cancer, diabetes, HIV/AIDS and several rare diseases. You can see the full list on the Clinical Trials Dashboard page on our website.

Rich ended by saying: “CIRM has proven how much can be achieved if we invest in cutting-edge medical research. As most of you here probably know, CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this, I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California and can’t wait to see what’s on the horizon.”

lubinbert-mug

The CIRM Board also took time today to honor Dr. Bert Lubin, who is stepping down after serving almost eight years on the Board.

When he joined the Board in February, 2011 Dr. Lubin said: “I hope to use my position on this committee to advocate for stem cell research that translates into benefits for children and adults, not only in California but throughout the world.”

Over the years he certainly lived up to that goal. As a CIRM Board member he has supported research for a broad range of unmet medical needs, and specifically for curative treatments for children born with a rare life-threatening conditions such as Sickle Cell Disease and Severe Combined Immunodeficiency (SCID) as well as  treatments to help people battling vision destroying diseases.

As the President & CEO of Children’s Hospital Oakland (now UCSF Benioff Children’s Hospital Oakland) Dr. Lubin was a leader in helping advance research into new treatments for sickle cell disease and addressing health disparities in diseases such as asthma, diabetes and obesity.

Senator Art Torres said he has known Dr. Lubin since the 1970’s and in all that time has been impressed by his devotion to patients, and his humility, and that all Californians should be grateful to him for his service, and his leadership.

Dr. Lubin said he was “Really grateful to be on the Board and I consider it an honor to be part of a group that benefits patients.”

He said he may be stepping down from the CIRM Board but that was all: “I am going to retire the word retirement. I think it’s a mistake to stop doing work that you find stimulating. I’m going to repurpose the rest of my life, and work to make sure the treatments we’ve helped develop are available to everyone. I am so proud to be part of this. I am stepping down, but I am devoted to doing all I can to ensure that you get the resources you need to sustain this work for the future.”

3D printed neuronal networks are an important step forward in treating spinal cord injury

Screen Shot 2018-08-20 at 9.56.34 AM

3D printed live neuronal cells. Image courtesy of the University of Minnesota.

Approximately 300,000 people in the United States live with spinal cord injury (SCI), and 17,000 new cases are reported every year. With no cure, the primary treatment option for people with SCI is rehabilitation with a physical therapist combined with medications to control the pain. Given the relatively permanent nature of these injuries, a new study conducted by Dr. Michael McAlpine and Dr. Ann Parr’s groups at the University of Minnesota is particularly exciting. These scientists have developed a 3D-printing technique to generate a network of neuronal cells in the lab, which they hope will be useful to treat patients with long term SCI. This is the first instance of printing and differentiating neuronal stem cells in a lab. Let’s take a look at how they did it!

The investigators started with induced pluripotent stem cells derived from adult cells (ex. blood, skin etc…), which were then used to bioprint the neurons of interest. They not only printed neurons, but also neuronal support cells called oligodendrocytes, which are responsible for ensuring that neurons can transmit messages efficiently. The uniqueness of their approach lies in their printing process, where the cells were printed in the context of a silicone mold. The silicone “guide” promoted neuronal differentiation as well as provided a scaffold for the scientists to spatially organize the architecture of the cells they generated. Both spatial organization and the presence of the neuronal support cells is particularly important because previous studies have shown that while injecting rodents with neural stem cells has improved SCI, the longevity of these results was compromised by a lack of support system for the injected cells. Therefore, the ability to generate both a functional cell type as well as a spatially accurate structure is important to make this neuronal printing system relevant for treating patients.

To confirm that printed cells were functional, the investigators used calcium flux assays, which demonstrated that the neuronal networks generated were able to communicate with each other. Not only were the cells healthy and functional, but their viability was exceptional: 75% of the cells stayed alive, which is remarkable for cells printed in a laboratory.

While there is still a long way to go before this type of treatment can used to treat SCI in humans, the potential for helping people with long term spinal cord injury is significant. Dr. Parr states:

“We’ve found that relaying any signals across the injury could improve functions for the patients. There’s a perception that people with spinal cord injuries will only be happy if they can walk again. In reality, most want simple things like bladder control or to be able to stop uncontrollable movements of their legs. These simple improvements in function could greatly improve their lives.”

The possibility of implanted neuronal stem cells being effective to treat SCI is also being investigated with the CIRM-funded Asterias trial. To check out more information about this work, read our blog post here and the clinical trial details here.

Stem cell treatment for spinal cord injury offers improved chance of independent life for patients

kris-boesen

Kris Boesen, CIRM spinal cord injury clinical trial patient works to strengthen his upper body. (Photo/Greg Iger)

A spinal cord injury is devastating, changing a person’s life in a heartbeat. In the past there was little that doctors could do other than offer pain relief and physical therapy to try and regain as much muscle function as possible. That’s why the latest results from the CIRM-supported Asterias Biotherapeutics spinal cord injury trial are so encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered injuries that left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

The latest results seem to suggest they are doing just that.

In a news release, Asterias reports that of the 25 patients treated in this clinical trial none have experienced serious side effects. They also reported that magnetic resonance imaging (MRI) tests show that more than 95 percent of the patients have shown evidence of what’s called “tissue matrix” at the injury site. This is encouraging because it suggests the implanted cells are engrafting and helping prevent a cavitation, a serious process that often occurs in spinal cord injuries and can lead to permanent loss of muscle and sensory function plus chronic pain.

The study also shows that after six months:

  • 100 percent of the patients in Group 5 (who received 20 million cells) have recovered at least one motor level (for example increased ability to use their arms) on at least one side
  • Two patients in Group 5 recovered one motor level on both sides
  • Altogether four of the 25 patients have recovered two or more motor levels on at least one side.

Not surprisingly Ed Wirth, the Chief Medical Officer at Asterias, was pleased with the results:

“The results from the study remain encouraging as the six-month follow-up data continued to demonstrate a positive safety profile and show that the AST-OPC1 cells are successfully engrafting in patients.”

While none of the patients are able to walk, just regaining some use of their arms or hands can have a hugely important impact on their quality of life and their ability to lead an independent life. And, because lifetime costs of taking care of someone who is paralyzed from the neck or chest down can run as high as $5 million, anything that increases a patient’s independence can have a big impact on those costs.

The impact of this research is helping change the lives of the patients who received it. One of those patients is Jake Javier. We have blogged about Jake several times over the last two years and recently showed this video about his first year at Cal Poly and how Jake is turning what could have been a life-ending event into a life-affirming one.