Expanding CIRM’s Alpha Clinics Network to deliver transformative regenerative medicine treatments 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Almost every day, we hear new reports from the thousands of regenerative medicine clinical trials globally sponsored by hundreds of companies and academic researchers. The California Institute for Regenerative Medicine (CIRM) is a leader in this space supporting some of the most advanced cell and gene therapy clinic trials for a variety of unmet medical needs. With all this current activity, it’s easy to forget that there were only a handful of clinical trials going on just seven years ago. 

A New System for Delivering Treatments 

In 2015, CIRM’s leadership recognized that we were on the cusp of introducing an array of new regenerative medicine clinical trials. However, there was one big concern—the existing clinical delivery systems had limited experience and capacity for managing these new and comparatively complex clinical trials. Cell and gene therapy regenerative medicine treatments require new systems for manufacturing, processing, and delivering treatments to patients.  

In anticipation of the need for clinical bandwidth to support clinical trials, CIRM funded a network of California medical centers to develop teams dedicated to supporting regenerative medicine clinical trials. This network was called the Alpha Clinics Network

Since 2015, the Alpha Clinics Network has grown to include six academic medical centers in California. The Network has treated over a thousand patients in more than 100 clinical trials. CIRM frequently encounters companies and academic researchers that are specifically interested in bringing their research to California to be performed in the Alpha Clinics Network. These research sponsors cite expertise in manufacturing, process, delivery and regulatory compliance as the Networks value proposition. One sponsor summed it up by indicating there are “fewer protocol deviations (errors)” in the Alpha Clinics. 

Expanding the Alpha Clinics Network 

As we enter 2022 with CIRM’s new five year strategic plan, a major aim is to create a broad network of medical centers capable of supporting diverse patient participation in clinical trials.  

As a first step in this effort, CIRM recently announced $80 million in funding to expand the Alpha Clinics Network. This funding is intended to expand both the scale and scope of the Network. This funding will allow the scale to grow from six medical center to up to ten. Scale is important because as the number of clinical trials grow, there needs to be increased coordination and sharing of the workload. Alpha Clinic sites already collaborate to conduct individual clinical trials, and an expanded network will enable a greater number of trials to occur simultaneously. 

In addition, the Expansion Awards will enable the Network to expand the scope of its activities to address current needs of the field. These needs include new research platforms for conducting clinical trials. For example, sites are looking at integrating new types of genomic (DNA sequencing) tools to support improved diagnosis and treatment of patients.  

Also, CIRM is committed to funding research to treat neurological diseases. We anticipate network sites will develop advanced systems for delivering treatments to patients and evaluating the effectiveness of these treatments. In addition, sites will be developing training programs to address the growing workforce needs of the field of regenerative medicine. 

In 2015, CIRM invested in the Alpha Clinics Network which positioned California as a leader in supporting regenerative medicine clinical trials. In 2022, we will be expanding the Network with the aim of delivering transformative treatments to a diverse California and the world. The Network will fulfill this aim by expanding its reach in the state, developing advanced research planforms and technologies, and by training the next generations of researchers with the skills to deliver patient treatments. 

Watch a recording of our recent Alpha Clinics concept plan webinar: 

The Most Read Stem Cellar Blog Posts of 2021

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

This year was a momentous one for the California Institute for Regenerative Medicine (CIRM). We celebrated the passage of Proposition 14, and as a result, introduced our new strategic plan and added a group of talented individuals to our team.  

We shared our most exciting updates and newsworthy stories—topics ranging from stem cell research to diversity in science—right here on The Stem Cellar. Nearly 100,000 readers followed along throughout the year! 

In case you missed them, here’s a recap of our most popular blogs of 2021. We look forward to covering even more topics in 2022 and send a sincere thank you to our wonderful Stem Cellar readers for tuning in!  

Image courtesy of ViaCyte
  1. Type 1 Diabetes Therapy Gets Go-Ahead for Clinical Trial 
    This past year, ViaCyte and CRISPR Therapeutics put their heads together to develop a novel treatment for type 1 diabetes (T1D). The result was an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood. 
CIRM’s new General Counsel Kevin Marks
  1. CIRM Builds Out World Class Team With 5 New hires 
    After the Passage of Proposition 14 in 2020, CIRM set ambitious goals as part of our new strategic plan. To help meet these goals and new responsibilities, we added a new group of talented individuals with backgrounds in legal, finance, human resources, project management, and more. The CIRM team will continue to grow in 2022, as we add more team members who will work to fulfil our mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. 
Image source: Doug Blackiston
  1. Meet Xenobots 2.0 – the Next Generation of Living Robots 
    In 2020, we wrote about how researchers at the University of Vermont and Tufts University were able to create what they call xenobots – the world’s first living, self-healing robots created from frog stem cells. Fast forward to 2021: the same team created an upgraded version of these robots that they have dubbed Xenobots 2.0. These upgraded robots can self-assemble a body from single cells, do not require muscle cells to move, and demonstrate the capability to record memory. Interesting stuff! 
Pictured: Clive Svendsen, Ph.D.
  1. CIRM Board Approves New Clinical Trial for ALS 
    In June, CIRM’s governing Board awarded $11.99 million to Cedars-Sinai to fund a clinical trial for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. Clive Svendsen, Ph.D. and his team will be conducting a trial that uses a combined cell and gene therapy approach as a treatment for ALS. The trial builds upon CIRM’s first ALS trial, also conducted by Cedars-Sinai and Svendsen. 
Image courtesy of Karolina Grabowska
  1. COVID is a Real Pain in the Ear 
    Viral infections are a known cause of hearing loss and other kinds of infection. That’s why before the pandemic started, Dr. Konstantina Stantovic at Massachusetts Eye and Ear and Dr. Lee Gherke at MIT had been studying how and why things like measles, mumps and hepatitis affected people’s hearing. After COVID hit, they heard reports of patients experiencing sudden hearing loss and other problems, so they decided to take a closer look. 

And there you have it: The Stem Cellar’s top blog posts of 2021! If you’re looking for more ways to get the latest updates from The Stem Cellar and CIRM, follow us on social media on FacebookTwitterLinkedIn, and Instagram

A year unlike any other – a look back at one year post Prop 14

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

State flag of California

2020 was, by any standards, a pretty wacky year. Pandemic. Political convulsions. And a huge amount of uncertainty as to the funding of life-saving therapies at CIRM. Happily those all turned out OK. We got vaccines to take care of COVID. The election was won fair and square (seriously). And Proposition 14 was approved by the voters of California, re-funding your favorite state Stem Cell Agency.

But for a while, quite a while, there was uncertainty surrounding our future. For a start, once the pandemic lockdown kicked in it was impossible for people to go out and collect the signatures needed to place Proposition 14 on the November ballot. So the organizers of the campaign reached out online, using petitions that people could print out and sign and mail in.

It worked. But even after getting all the signatures needed they faced problems such as how do you campaign to get something passed, when the normal channels are not available. The answer is you get very creative very quickly.

Bob Klein

Bob Klein, the driving force behind both Proposition 71 (the 2004 ballot initiative that created CIRM) and Proposition 14, says it was challenging:

“It was a real adventure. It’s always hard, you have a complicated message about stem cells and genetics and therapy and it’s always a challenge to get a million signatures for a ballot initiative but in the middle of a pandemic where we had to shut down the signature gathering at grocery stores and street corners, where we had to go to petitions that had to be sent to voters and get them to fill them out properly and send them back. And of course the state went into an economic recoil because of the pandemic and people were worried about the money.”

Challenging absolutely, but ultimately successful. On November 13, ten days after the election, Prop 14 was declared the winner.

As our President and CEO, Dr. Maria Millan says, we went from an agency getting ready to close its doors to one ramping up for a whole new adventure.

“We faced many challenges in 2020. CIRM’s continued existence was hinging on the passage of a new bond initiative and we began the year uncertain if it would even make it on the ballot.  We had a plan in place to wind down and close operations should additional funding not materialize.  During the unrest and challenges brought by 2020, and functioning in a virtual format, we retained our core group of talented individuals who were able to mobilize our emergency covid research funding round, continue to advance our important research programs and clinical trials and initiate the process of strategic planning in the event that CIRM was reauthorized through a new bond initiative. Fortunately, we planned for success and Proposition 14 passed against all odds!”

“When California said “Yes,” the CIRM team was positioned to launch the next Era of CIRM! We have recruited top talent to grow the team and have developed a new strategic plan and evolved our mission:  Accelerating world-class science to deliver transformative regenerative medicine treatments to a diverse California and worldwide in an equitable manner.” 

And since that close call we have been very busy. In the last year we have hired 16 new employees, everyone from a new General Counsel to the Director of Finance, and more are on the way as we ramp up our ability to turn our new vision into a reality.

We have also been working hard to ensure we could continue to fund groundbreaking research from the early-stage Discovery work, to testing therapies in patients in clinical trials. Altogether our Board has approved almost $250 million in 56 new awards since December 2020. That includes:

Clinical – $84M (9 awards)

Translational – $15M (3 awards)

Discovery – $13M (11 awards)

Education – $138M (33 awards)

We have also enrolled more than 360 new patients in clinical trials that we fund or that are being carried out in the CIRM Alpha Stem Cell Clinic network.

This is a good start, but we know we have a lot more work to do in the coming years.

The last year has flown by and brought more than its fair share of challenges. But the CIRM team has shown that it can rise to those, in person and remotely, and meet them head on. We are already looking forward to 2022. We’ve got a lot of work to do.

Heads or tails? Stem cells help guide the decision

Two cell embryo

There are many unknown elements for what triggers the cells in an embryo to start dividing and multiplying and becoming every single cell in the body. Now researchers at the Gladstone Institutes in San Francisco have uncovered one of those elements, how embryos determine which cells become the head and which the tail.

In this CIRM-funded study the Gladstone team, led by Dr. Todd McDevitt, discovered almost by chance how the cells align in a heads-to-tail arrangement.

Todd McDevitt

They had created an organoid made from brain cells when they noticed that some of the cells were beginning to gather in an elongated fashion, in the same way that spinal cords do in a developing fetus.

In a news article, Nick Elder, a graduate student at Gladstone and the co-author of the study, published in the journal Development, says this was not what they had anticipated would happen: “Organoids don’t typically have head-tail directionality, and we didn’t originally set out to create an elongating organoid, so the fact that we saw this at all was very surprising.”

Further study enabled the team to identify which molecules were involved in signaling specific genes to switch on and off. These were similar to the process previously identified in developing mouse embryos.

“This is such a critical point in the early development of any organism, so having a new model to observe it and study it in the lab is very exciting,” says McDevitt.

This is not just of academic interest either, it could have real world implications in helping understand what causes miscarriages or birth defects.

“We can use this organoid to get at unresolved human developmental questions in a way that doesn’t involve human embryos,” says Dr. Ashley Libby, another member of the team. “For instance, you could add chemicals or toxins that a pregnant woman might be exposed to, and see how they affect the development of the spinal cord.”

Tipping our hat to the good guys (& gals)

A search on Google using the term “stem cell blogs” quickly produces a host of sites offering treatments for everything from ankle, hip and knee problems, to Parkinson’s disease and asthma. Amazingly the therapies for those very different conditions all use the same kind of cells produced in the same way. It’s like magic. Sadly, it’s magic that is less hocus pocus and more bogus bogus.

The good news is there are blogs out there (besides us, of course) that do offer good, accurate, reliable information about stem cells. The people behind them are not in this to make a quick buck selling snake oil. They are in this to educate, inform, engage and enlighten people about what stem cells can, and cannot do.

So, here’s some of our favorites.

The Niche

This blog has just undergone a face lift and is now as colorful and easy to read as it is informative. It bills itself as the longest running stem cell blog around. It’s run by UC Davis stem cell biologist Dr. Paul Knoepfler – full disclosure, we have funded some of Paul’s work – and it’s a constant source of amazement to me how Paul manages to run a busy research lab and post regular updates on his blog.

The power of The Niche is that it’s easy for non-science folk – like me – to read and understand without having to do a deep dive into Google search or Wikipedia. It’s well written, informative and often very witty. If you are looking for a good website to check whether some news about stem cells is real or suspect, this is a great place to start.

Stem Cell Battles

This site is run by another old friend of CIRM’s, Don Reed. Don has written extensively about stem cell research in general, and CIRM in particular. His motivation to do this work is clear. Don says he’s not a doctor or scientist, he’s something much simpler:

“No. I am just a father fighting for his paralyzed son, and the only way to fix him is to advance cures for everyone. Also, my mother died of breast cancer, my sister from leukemia, and I myself am a prostate cancer survivor. So, I have some very personal reasons to support the California Institute for Regenerative Medicine and to want state funding for stem cell and other regenerative medicine research to continue in California!”

The power of Don’s writing is that he always tells human stories, real tales about real people. He makes everything he does accessible, memorable and often very funny. If I’m looking for ways to explain something complex and translate it into everyday English, I’ll often look at Don’s work, he knows how to talk to people about the science without having their eyes cloud over.

A Closer Look at Stem Cells

This is published by the International Society for Stem Cell Research (ISSCR), the leading professional organization for stem cell scientists. You might expect a blog from such a science-focused organization to be heavy going for the ordinary person, but you’d be wrong.

A Closer Look at Stem Cells is specifically designed for people who want to learn more about stem cells but don’t have the time to get a PhD. They have sections explaining what stem cells are, what they can and can’t do, even a glossary explaining different terms used in the field (I used to think the Islets of Langerhans were small islands off the coast of Germany till I went to this site).

One of the best, and most important, parts of the site is the section on clinical trials, helping people understand what’s involved in these trials and the kinds of things you need to consider before signing up for one.

Signals

Of course, the US doesn’t have a monopoly on stem cell research and that’s reflected in the next two choices. One is the Signals Blog from our friends to the north in Canada. This is an easy-to-read site that describes itself as the “Insiders perspective on the world of stem cells and regenerative medicine.” The ‘Categories ‘dropdown menu allows you to choose what you want to read, and it gives you lots of options from the latest news to a special section for patients, even a section on ethical and legal issues. 

EuroStemCell

As you may have guessed from the title this is by our chums across the pond in Europe. They lay out their mission on page one saying they want to help people make sense of stem cells:

“As a network of scientists and academics, we provide independent, expert-reviewed information and road-tested educational resources on stem cells and their impact on society. We also work with people affected by conditions, educators, regulators, media, healthcare professionals and policymakers to foster engagement and develop material that meets their needs.”

True to their word they have great information on the latest research, broken down by different types of disease, different types of stem cell etc. And like CIRM they also have some great educational resources for teachers to use in the classroom.

Ask the Stem Cell Team About Autism

On March 19th we held a special Facebook Live “Ask the Stem Cell Team About Autism” event. We were fortunate enough to have two great experts – Dr. Alysson Muotri from UC San Diego, and CIRM’s own Dr. Kelly Shepard. As always there is a lot of ground to cover in under one hour and there are inevitably questions we didn’t get a chance to respond to. So, Dr. Shepard has kindly agreed to provide answers to all the key questions we got on the day.

If you didn’t get a chance to see the event you can watch the video here. And feel free to share the link, and this blog, with anyone you think might be interested in the material.

Dr. Kelly Shepard

Can umbilical cord blood stem cells help reduce some of the symptoms?

This question was addressed by Dr. Muotri in the live presentation. To recap, a couple of clinical studies have been reported from scientists at Duke University and Sutter Health, but the results are not universally viewed as conclusive.  The Duke study, which focused on very young children, reported some improvements in behavior for some of the children after treatment, but it is important to note that this trial had no placebo control, so it is not clear that those patients would not have improved on their own. The Duke team has moved forward with larger trial and placebo control.

Does it have to be the child’s own cord blood or could donated blood work too?

In theory, a donated cord product could be used for similar purposes as a child’s own cord, but there is a caveat- the donated cord tissues must have some level of immune matching with the host in order to not be rejected or lead to other complications, which under certain circumstances, could be serious.

Some clinics claim that the use of fetal stem cells can help stimulate improved blood and oxygen flow to the brain. Could that help children with autism?

Fetal stem cells have been tested in FDA approved/sanctioned clinical trials for certain brain conditions such as stroke and Parkinson Disease, where there is clearer understanding of how and which parts of the brains are affected, which nerve cells have been lost or damaged, and where there is a compelling biological rationale for how certain properties the transplanted cells, such as their anti-inflammatory properties, could provide benefit.

Alysson Muotri in his lab and office at Sanford Consortium in La Jolla, California; Photograph by David Ahntholz http://www.twopointpictures.com http://www.davidahntholz.com

In his presentation, Dr. Muotri noted that neurons are not lost in autistic brains, so there is nothing that would be “replaced” by such a treatment. And although some forms of autism might include inflammation that could potentially be mitigated, it is unlikely that  the degree of benefit that might come from reducing inflammation would be worth the risks of the treatment, which includes intracranial injection of donated material.  Unfortunately, we still do not know enough about the specific causes and features of autism to determine if and to what extent stem cell treatments could prove helpful. But we are learning more every day, especially with some of the new technologies and discoveries that have been enabled by stem cell technology. 

Some therapies even use tissue from sheep claiming that a pill containing sheep pancreas can migrate to and cure a human pancreas, pills containing sheep brains can help heal human brains. What are your thoughts on those?

For some conditions, there may be a scientific rationale for how a specific drug or treatment could be delivered orally, but this really depends on the underlying biology of the condition, the means by which the drug exerts its effect, and how quickly that drug or substance will be digested, metabolized, or cleared from the body’s circulation. Many drugs that are delivered orally do not reach the brain because of the blood-brain barrier, which serves to isolate and protect the brain from potentially harmful substances in the blood circulation. For such a drug to be effective, it would have to be stable within the body for a period of time, and be something that could exert its effects on the brain either directly or indirectly.

Sheep brain or pancreas (or any other animal tissue consumed) in a pill form would be broken down into basic components immediately by digestion, i.e. amino acids, sugars, much like any other meat or food. Often complex treatments designed to be specifically targeted to the brain are delivered by intra-cranial/intrathecal injection, or by developing special strategies to evade the blood brain barrier, a challenge that is easier said than done. For autism, there is still a lot to be learned regarding how a therapeutic intervention might work to help people, so for now, I would caution against the use of dietary supplements or pills that are not prescribed or recommended by your doctor. 

What are the questions parents should ask before signing up for any stem cell therapy

There is some very good advice about this on the both the CIRM and ISSCR websites, including a handbook for patients that includes questions to ask anyone offering you a stem cell treatment, and also some fundamental facts that everyone should know about stem cells. https://www.closerlookatstemcells.org/patient-resources/

What kinds of techniques do we have now that we didn’t have in the past that can help us better understand what is happening in the brain of a child with autism.

We covered this in the online presentation. Some of the technologies discussed include:

– “disease in a dish” models from patient derived stem cells for studying causes of autism

–  new ways to make human neurons and other cell types for study

– organoid technology, to create more realistic brain tissues for studying autism

– advances in genomics and sequencing technologies to identify “signatures” of autism to help identify the underlying differences that could lead to a diagnosis

Alysson, you work with things called “brain organoids” explain what those are and could they help us in uncovering clues to the cause of autism and even possible therapies?

We blogged about this work when it was first published and you can read about it on our blog here.

Dashed Dreams and New Hope: A Quest to Cure Thymic Deficiency

By Kelly Shepard, PhD., CIRM’s Associate Director, Discovery & Translation

CIRM has previously blogged about advances in treating certain forms of  “bubble baby” disease”, where a person is born with a defect in their blood forming stem cells that results in a deficient immune system, rendering them vulnerable to lethal infections by all manner of bacteria, virus or germ.

If a suitable donor can be found, or if the patient’s own defective cells can be corrected through gene therapy approaches, it is now possible to treat or cure such disorders through a bone marrow transplant. In this procedure, healthy blood stem cells are infused into the patient, taking up residence in his or her bone marrow and dividing to give rise to functioning immune cells such as T cells and B cells.

Unfortunately, there is another type of “bubble baby” disease that cannot be treated by providing healthy blood stem cells, because the defective immune system is caused by a different culprit altogether- a missing or dysfunctional thymus.

Created for the National Cancer Institute, http://www.cancer.gov

T Cells Go to School

What is a thymus?  Most of us give little thought to this leaf-shaped organ, which is large and important in our early childhoods, but becomes small and inconspicuous as we age. This transformation belies the critical role a thymus plays in the development of our adaptive immune systems, which takes place in our youth: to prepare our bodies to fight infections for the rest of our lives.

One might think of the thymus as a “school”, where immature T cells go to “learn” how to recognize and attack foreign antigens (surface markers), such as those found on microorganisms or tissues from other individuals. The thymus also “teaches” our immune system to distinguish “self” from “other” by eliminating any T cells that attack our own tissues. Without this critical function, our immune system could inadvertently turn against us, causing serious autoimmune disorders such as ulcerative colitis and myasthenia gravis.

Many children with a severely deficient or absent thymus, referred to as athymia, have inherited a chromosome that is missing a key stretch of genes on a region called 22q11. Doctors believe perhaps 1/2000-1/4000 babies are born with some type of deletion in this region, which leads to a variable spectrum of disorders called 22q11 syndrome that can affect just about any part of the body, and can even cause learning disabilities and mental illness.

Individuals with one form of 22q11, called DiGeorge Syndrome, are particularly affected in the heart, thymus, and parathyroid glands. In the United States, about 20 infants are born per year with the “complete” and most severe form of DiGeorge Syndrome, who lack a thymus altogether, and have severely depressed numbers of T cells for fighting infections. Without medical intervention, this condition is usually fatal by 24 months of age.

Optimism and Setback                                                                  

Although there are no therapies approved by the Food and Drug Administration (FDA) for pediatric athymia, Dr. Mary Louise Markert at Duke University and Enzyvant, Inc. have been pioneering an experimental approach to treat children with complete DiGeorge syndrome.

In this procedure, discarded thymic tissues are collected from infants undergoing cardiac surgery, where some of the thymus needs to be removed in order for the surgeon to gain access to the heart. These tissues are processed to remove potentially harmful donor T cells and then transplanted into the thigh of an athymic DiGeorge patient.

Results from early clinical trials seemed promising, with more than 70% of patients surviving, including several who are now ten years post-transplant. Based on those results, in June of 2019 Enzyvant applied to the FDA for a Biologics License Application (BLA), which is needed to be able to sell the therapy in the US. Unfortunately, only a few months later, Enzyvant announced that the FDA had declined to approve the BLA due to manufacturing concerns.

While it may be possible to address these issues in time, the need to step back to the drawing board was a devastating blow to the DiGeorge Community, who have waited decades for a promising treatment to emerge on the horizon.

New Opportunities

Despite the setback, there is reason to hope. In early 2019, CIRM granted a “Quest” Award to team of investigators at Stanford University to develop a novel stem cell based approach for treating thymic deficiency. Co-led by Katja Weinacht, a pediatric hematologist/oncologist, and Vittorio Sebastiano, a stem cell expert and developmental biologist, the team’s strategy is to coax induced pluripotent stem cells (iPS) in the laboratory to differentiate into thymic tissue, which could then be transplanted into patients using the route pioneered by Duke and Enzyvant.

Katja Weinacht: Photo courtesy Stanford Children’s Health

The beauty of this new approach is that pluripotent stem cells are essentially immortal in culture, providing an inexhaustible supply of fresh thymic cells for transplant, thereby allowing greater control over the quality and consistency of donor tissues. A second major advantage is the possibility of using pluripotent cells from the patient him/herself as the source, which should be perfectly immune-matched and alleviate the risk of rejection and autoimmunity that comes with use of donated tissues.

Vittorio Sebastiano: Photo courtesy Stanford

Sounds easy, so what are the challenges? As with many regenerative medicine approaches, the key is getting a pluripotent stem cell to differentiate into the right type of cells in the lab, which is a very different environment than what cells experience naturally when they develop in the context of an embryo and womb, where many cells are interacting and providing complex, instructive cues to one another. The precise factors and timing all need to be worked out and in most cases, this is done with an incomplete knowledge of human development.

A second challenge relates to using cells from DiGeorge patients to produce thymic tissue, which are missing several genes on their 22nd chromosome and will likely require sophisticated genetic engineering to restore this ability.

Fortunately, Drs. Weinacht and Sebastiano are up to the challenge, and have already made progress in differentiating human induced pluripotent stem cells (iPS) into thymic lineage intermediates that appear to be expressing the right proteins at the right time. They plan to combine these cells with engineered materials to create a three-dimensional (3D) tissue that more closely resembles an authentic organ, and which can be tested for functionality in athymic mice.

There is more work to be done, but these advances, along with continued technological improvements and renewed efforts from Enzyvant, could forge a path to the clinic and  lead to a brighter future for patients suffering from congenital athymia and other forms of thymic dysfunction.

 

Join us December 12th for our Facebook Live Event – Ask the Stem Cell Experts

Several weeks ago, we asked all of you to submit questions related to stem cell research in order to get them answered by experts in the field right here in our office.

Your responses have been remarkable and we have gotten some really great questions we are excited to answer in live time. These questions ranged from the impact stem cell research has had on various disease areas to differentiating legitimate clinical trials from sham treatments being offered by predatory stem cell clinics.

For those of you that might have missed the previous announcement, this is all happening in a special Facebook Live “Ask the Stem Cell Team” event on Thursday, December 12th from 10.30am to 11.30am PDT. Just tune in to our Facebook page at that date and time listed for a live video streaming!

We will do our best to answer all the questions that were submitted to us. Additionally, for those who did not get a chance to email us, you can also submit questions in the comments section of the Facebook live event in real time. If we do not get to your question, don’t worry! We will answer it in a blog at a later date.

As a preview of this event, we wanted to showcase some of the questions submitted to us that will be answered in live time. You’ll have to wait until next week to get the answers so be sure to tune in!

Question

1. What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state?

2. What’s going on with Stanford’s stem cell trials for stroke?

3. I am a stroke survivor; will stem cell treatment able to restore my motor skills?

4. Could stem cells help hemorrhagic stroke patients as well?

5. Can stem cells possibly help with my vision issues?

6. Is there any stem cell therapy for optical nerve damage?

7. When will jCyte publish their Phase IIb clinical trial results?

8. What advances have been made using stem cells for the treatment of Type 2 Diabetes?

9. Is there any news on clinical trials for spinal cord injury?

10. Now that the Brainstorm ALS trial is finished looking for new patients, do you have any idea how it’s going and when can we expect to see results?

11. Are there treatments for Autism or Fragile X Syndrome using stem cells?

12. What is happening with Parkinson’s research?

13. Any plans for Huntington’s?

14. What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?

15. I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?

16. Do stem cells have benefits for patients going through chemotherapy and radiation therapy?

17. Is it possible to use a technique developed to fight one disease to also fight another?

18. Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages?

19. What is the future of the use of CRISPR/Cas9 in clinical trials in California and globally?

20. Explain the differences between gene therapy and stem cell therapy?

21. Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?

22. Is there any research on using stem cells to increase the length of long bones in people?

Researchers create a better way to grow blood stem cells

UCLA’s Dr. Hanna Mikkola and Vincenzo Calvanese, lead scientists on the study. Photo courtesy UCLA

Blood stem cells are a vital part of us. They create all the other kinds of blood cells in our body and are used in bone marrow transplants to help people battling leukemia or other blood cancers. The problem is growing these blood stem cells outside the body has always proved challenging. Up till now.

Researchers at UCLA, with CIRM funding, have identified a protein that seems to play a key role in helping blood stem cells renew themselves in the lab. Why is this important? Because being able to create a big supply of these cells could help researchers develop new approaches to treating a wide array of life-threatening diseases.

One of the most important elements that a stem cell has is its ability to self-renew itself over long periods of time. The problem with blood stem cells has been that when they are removed from the body they quickly lose their ability to self-renew and die off.

To discover why this is the case the team at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA analyzed blood stem cells to see which genes turn on and off as those cells turn into other kinds of blood cells – red, white and platelets. They identified one gene, called MLLT3, which seemed to play a key role in helping blood stem cells self-renew.

To test this finding, the researchers took blood stem cells and, in the lab, inserted copies of the MLLT3 gene into them. The modified cells were then able to self-renew at least 12 times; a number far greater than in the past.

Dr. Hanna Mikkola, a senior author of the study says this finding could help advance the field:

“If we think about the amount of blood stem cells needed to treat a patient, that’s a significant number. But we’re not just focusing on quantity; we also need to ensure that the lab-created blood stem cells can continue to function properly by making all blood cell types when transplanted.”

Happily, that seemed to be the case. When they subjected the MLLT3-enhanced blood stem cells to further analysis they found that they appeared to self-renew at a safe rate and didn’t multiply too much or mutate in ways that could lead to leukemia or other blood cancers.

The next steps are to find more efficient and effective ways of keeping the MLLT3 gene active in blood stem cells, so they can develop ways of using this finding in a clinical setting with patients.

Their findings are published in the journal Nature.

Breaking bad news to stem cell researchers

It’s never easy to tell someone that they are too late, that they missed the deadline. It’s particularly hard when you know that the person you are telling that to has spent years working on a project and now needs money to take it to the next level. But in science, as in life, it’s always better to tell people what they need to know rather than what they would like to hear.

And so, we have posted a notice on our website for researchers thinking about applying for funding that, except in a very few cases, they are too late, that there is no money available for new projects, whether it’s Discovery, Translational or Clinical.

Here’s that notice:

CIRM anticipates that the budget allocation of funds for new awards under the CIRM clinical program (CLIN1, CLIN2 and CLIN3) may be depleted within the next two to three months. CIRM will accept applications for the monthly deadline on June 28, 2019 but will suspend application submissions after that date until further notice. All applicants should note that the review of submitted applications may be halted at any point in the process if funds are depleted prior to completion of the 3-month review cycle. CIRM will notify applicants of such an occurrence. Therefore, submission and acceptance of an application to CIRM does not guarantee the availability of funds or completion of a review cycle.

The submission of applications for the CIRM/NHLBI Cure Sickle Cell Initiative (CLIN1 SCD, CLIN2 SCD) are unaffected and application submissions for this program will remain open.

We do, of course, have enough money set aside to continue funding all the projects our Board has already approved, but we don’t have money for new projects (except for some sickle cell disease projects).

In truth our funding has lasted a lot longer than anyone anticipated. When Proposition 71 was approved the plan was to give CIRM $300 million a year for ten years. That was back in 2004. So what happened?

Well, in the early years stem cell science was still very much in its infancy with most of the work being done at a basic or Discovery level. Those typically don’t require very large sums so we were able to fund many projects without hitting our $300m target. As the field progressed, however, more and more projects were at the clinical trial stage and those need multiple millions of dollars to be completed. So, the money went out faster.

To date we have funded 55 clinical trials and our early support has helped more than a dozen other projects get into clinical trials. This includes everything from cancer and stroke, to vision loss and diabetes. It’s a good start, but we feel there is so much more to do.

Followers of news about CIRM know there is talk about a possible ballot initiative next year that would provide another $5.5 billion in funding for us to help complete the mission we have started.

Over the years we have built a pipeline of promising projects and without continued support many of those projects face a difficult future. Funding at the federal level is under threat and without CIRM there will be a limited number of funding alternatives for them to turn to.

Telling researchers we don’t have any money to support their work is hard. Telling patients we don’t have any money to support work that could lead to new treatments for them, that’s hardest of all.