We’ve got cash, here’s how you can get some

When the voters of California approved Proposition 14 last November (thanks folks) they gave us $5.5 billion to continue the work we started way back in 2014. It’s a great honor, and a great responsibility.

It’s also a great opportunity to look at what we do and how we do it and try to come up with even better ways of funding groundbreaking research and helping create a new generation of researchers.

In addition to improving on what we already do, Prop 14 introduced some new elements, some new goals for us to add to the mix, and we are in the process of fleshing out how we can best do that.

Because of all these changes we decided it would be a good idea to hold a “Town Hall” meeting and let everyone know what these changes are and how they may impact applications for funding.

The Town Hall, on Tuesday June 29, was a great success with almost 200 participants. But we know that not everyone who wanted to attend could, so here’s the video of the event, and below that are the questions that were posed by people during the meeting, and the answers to those questions.

Having seen the video we would be eternally grateful if you could respond to a short online survey, to help us get a better idea of your research and education needs and to be better able to serve you and identify potential areas of opportunity for CIRM. Here’s a link to that survey: https://www.surveymonkey.com/r/VQMYPDL

We know that there may be issues or questions that are not answered here, so feel free to send those to us at info@cirm.ca.gov and we will make sure you get an answer.

Are there any DISC funding opportunities specific to early-stage investigators?

DISC funding opportunities are open to all investigators.  There aren’t any that are specific to junior investigators.

Are DISC funding opportunities available for early-mid career researchers based out of USA such as Australia?

Sorry, you have to be in California for us to fund your work.

Does tumor immunology/ cancer immunotherapy fall within the scope of the CIRM discovery grants?

Yes, they do.  Here is a link to various CIRM DISC Awards that fall within the cancer category.  https://www.cirm.ca.gov/grants?disease_focus%5B%5D=1427&program_type%5B%5D=1230

Will Disc1 (Inception awards) and/or seed funding mechanisms become available again?

CIRM is anticipating launching a program to meet this need toward the end of this year.

For DISC award is possible to contact a grant advisor for advice before applying?

Please email discovery@cirm.ca.gov to discuss Discovery stage applications before applying

Is co-funding requirement a MUST for clinical trials?

Co-funding requirements vary.  Please refer to the following link for more information: https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CLIN2_Mini_Brochure2.pdf

Hi, when will reviews for DISC 2: CIRM Quest – Discovery Stage Research Projects (deadline March 2021) be available? Thanks!

Review summaries for the March 2021 Discovery submitted applications will be available by mid-August, with final board funding decisions at the August 24th Application Review Subcommittee Meeting

Has CIRM project made it to Phase III or product launch with FDA approval? What is CIRM strategy for start-up biotech companies?

CIRM has funded several late-stage Phase III/potentially pivotal clinical trials. You can view them here: https://www.cirm.ca.gov/our-impact/funding-clinical-trials

CIRM funding supports non-profit academic grantees as well as companies of all sizes.

I am studying stem cells using mouse. Is my research eligible for the CIRM grants?

Yes it is.

Your programs more specifically into stem cell research would be willing to take patients that are not from California?

Yes, we have treated patients who are not in California. Some have come to California for treatment and others have been treated in other states in the US by companies that are based here in California.

Can you elaborate how the preview of the proposals works? Who reviews them and what are the criteria for full review?

The same GWG panel both previews and conducts the full review. The panel first looks through all the applications to identify what each reviewer believes represents the most likely to be impactful and meet the goals of the CIRM Discovery program. Those that are selected by any reviewer moves forward to the next full review step.

If you meet your milestones-How likely is it that a DISC recipient gets a TRAN award?

The milestones are geared toward preparation of the TRAN stage.  However, this is a different application and review that is not guaranteed to result in funding.

Regarding Manufacturing Public Private partnerships – What specific activities is CIRM thinking about enabling these partnerships? For example, are out of state for profit commercial entities able to conduct manufacturing at CA based manufacturing centers even though the clinical program may be primarily based out of CA? If so, what percent of the total program budget must be expended in CA? How will CIRM enable GMP manufacturing centers interact with commercial entities?

We are in the early stages of developing this concept with continued input from various stakeholders. The preliminary vision is to build a network of academic GMP manufacturing centers and industry partners to support the manufacturing needs of CIRM-funded projects in California.

We are in the process of widely distributing a summary of the manufacturing workshop. Here’s a link to it:

If a center is interested in being a sharing lab or competency hub with CIRM, how would they go about it?

CIRM will be soliciting applications for Shared Labs/Competency hubs in potential future RFAs. The survey asks several questions asking for feedback on these concepts so it would really help us if you could complete the survey.

Would preclinical development of stem cell secretome-derived protein therapies for rare neuromuscular diseases and ultimately, age-related muscle wasting be eligible for CIRM TRAN1 funding? The goal is to complete IND-enabling studies for a protein-based therapy that enhances tissue regeneration to treat a rare degenerative disease. the screening to identify the stem-cell secreted proteins to develop as therapeutics is done by in vitro screening with aged/diseased primary human progenitor cells to identify candidates that enhance their differentiation . In vivo the protein therapeutic signals to several cell types , including precursor cells to improve tissue homeostasis.

I would suggest reaching out to our Translation team to discuss the details as it will depend on several factors. You can email the team at translational@cirm.ca.gov

Here are the slides used in the presentations.

How stem cells play “follow the leader”

Todd McDevitt, PhD., Photo: courtesy Gladstone Institutes

It’s hard enough trying to follow the movements of individuals in a crowd of people but imagine how much harder it is to follow the movements of stem cells, crowded into a tiny petri dish. Well, researchers at the Gladstone Institutes in San Francisco have done just that.

In a CIRM-funded study ($5.85M) Dr. Todd McDevitt and his team created a super smart artificial intelligence way of tracking the movements of hundreds of stem cells growing together in a colony, and even identify “leaders” in the pack.

In our bodies groups of stem cells are able to move in specific ways to form different organs and tissues when exposed to the right environment. Unfortunately, we are still trying to learn what “the right environment” is for different organs.

In a news release, McDevitt, the senior author of the paper published in the journal Stem Cell Reports, says this method of observing cells may help us better understand that.

“If I wanted to make a new human heart right now, I know what types of cells are needed, and I know how to grow them independently in dishes. But we really don’t know how to get those cells to come together to form something as complex as a heart. To accomplish that, we need more insights into how cells work cooperatively to arrange themselves.”

Normally scientists watch cells by tagging them with a fluorescent marker so they can see them under a microscope. But this is slow, painstaking work and not particularly accurate. This new method used a series of what are called “neural networks”, which are artificial intelligence (AI) programs that can detect patterns in the movements of the cells. When combined together the networks proved to be able to track the movement of 95 percent of the cells. Humans by comparison can only manage up to 90 percent. But the nets were not only sharper, they were also faster, much faster, some 500 times faster.

This enhanced ability to watch the cells showed that instead of being static most of the time, as had previously been thought, they were actually on the move a lot of the time. They would move around for 15 minutes and then take a breather for ten minutes (time for the stem cell equivalent of a cup of tea perhaps).  

Some cells moved around a lot in one direction, while others just seemed to shuffle around in the same area. Some cells even seemed to act as “leaders” while other cells appeared to be “followers” and shuffle along behind them.

None of this would have been visible without the power of the AI networks and McDevitt says being able to tap into this could help researchers better understand how to use these complex movements.

“This technique gives us a much more comprehensive view of how cells behave, how they work cooperatively, and how they come together in physical space to form complex organs.

Follow the Leader is not just a kids’ game anymore. Now it’s a scientific undertaking.

Hitting our goals: Making good progress

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #5 was Advance.

A dictionary definition of progression is “The act of moving forward or proceeding in a course.” That’s precisely what we set out to do when we set one of the goals in our 2015 Strategic Plan. We wanted to do all that we could to make sure the work we were funding could advance to the next stage. The goal we set was:

Advance: Increase projects advancing to the next stage of development by 50%.

The first question we faced was what did we mean by progression and how were we going to measure it? The answer basically boiled down to this: when a CIRM award completes one stage of research and gets CIRM funding to move on to the next stage or to develop a second generation of the same device or therapy.

In the pre-2016 days we’d had some success, on average getting around nine progression events every year. But if we were going to increase that by 50 percent we knew we had to step up our game and offer some incentives so that the team behind a successful project had a reason, other than just scientific curiosity, to try and move their research to the next level.

So, we created a series of linkages between the different stages of research, so the product of each successful investment was the prerequisite for the next stage of development for the research or technology.

We changed the way we funded projects, going from offering awards on an irregular basis to having them happen according to a pre-defined schedule with each program type offered multiple times a year. This meant potential applicants knew when the next opportunity to apply would come, enabling them to prepare and file at the time that was best for them and not just because we said so. We also timed these schedules so that programs could progress from one stage to the next without interruption.

But that’s not all. We recognized that some people may be great scientists at one level but didn’t have the experience or expertise to carry their project forward. So, we created both an Accelerating Center and Translating Center to help them do that. The Translating Center helped projects do the work necessary to get ready to apply to the US Food and Drug Administration (FDA) for permission to start a clinical trial. The Accelerating Center helped the team prepare that application for the trial and then plan how that trial would be carried out.

Creating these two centers had an additional benefit; it meant the work that did progress did so faster and was of a higher quality than it might otherwise have been.

Putting all those new building blocks in place meant a lot of work for the CIRM team, on top of their normal duties. But, as always, the team rose to the challenge. By the end of December 2020, a total of 74 projects had advanced or progressed to the next level, an increase of 100 percent on our pre-2016 days.

When we were laying out the goals we said that “The full implementation of these programs will create the chassis of a machine that provides a continuous, predictable, and timely pathway for the discovery and development of promising stem cell treatments.” Thanks to the voter approved Proposition 14 we now have the fund to help those treatments realize that promise.

Hitting our Goals: Let’s start at the beginning shall we

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #3 was Discover.

When journalists write about science a lot of the attention is often focused on clinical trials. It’s not too surprising, that’s the stage where you see if treatments really work in people and not just in the lab. But long before you get to the clinical trial stage there’s a huge amount of work that has to be done. The starting point for that work is in the Discovery stage, if it works there it moves to the Translational stage, and only after that, assuming it’s still looking promising, does it start thinking about moving into the clinic.

The Discovery, or basic, stage of research is where ideas are tested to see if they have any promise and have the potential to lead to the development of a therapy or device that could ultimately help patients. In many ways the goal of Discovery research is to gain a better understanding of how, in our case, stem cells work, and how to harness that power to treat particular diseases or disorders.

Without a rigorous Discovery research program you can’t begin to create a pipeline of promising projects that you can advance towards patients. And of course having a strong Discovery program is not much use if you don’t have somewhere for those projects to advance to, namely Translational and ultimately clinical.

So, when we were laying out our Strategic Plan goals back in 2015 we wanted to create a pipeline for all three programs, moving the most promising ones forward. So we set an ambitious goal.

Introduce 50 new therapeutic or device candidates into development.

Now this doesn’t mean just fund 50 projects hoping to develop a new therapy or device. A lot of studies that are funded, particularly at the earliest stages, have a good idea that just doesn’t pan out. In fact one quite common definition of early research – in this case from Translational Medicine Communications – is “the earliest stage of research, conducted for the advancement of knowledge, often without any concern for its practical applications.

That’s not what we wanted. We aren’t in this to do research just for its own sake. We fund research because we want it to lead somewhere, we want it to have a practical application. We want to fund projects that actually ended up with something much more promising, a candidate that might actually work and was ready to move into the next level of research to test it further.

And we almost, almost made it to the 50-candidate goal. We got to 46 and almost certainly would have made it to 50 if we hadn’t run out of money. Even so, that’s pretty impressive. There are now 46 projects ready to move on, or are already moving on, to the next level of research.

Of course, there’s no guarantee that these will ultimately end up as an FDA-approved therapy or device. But if you don’t set goals, you’ll never score. And now, thanks to the passage of Proposition 14, we have a chance to support those projects as they move forward.

Month of CIRM: Making sure stem cell therapies don’t get lost in Translation

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a blog written by two of our fabulous Discovery and Translation team Science Officers, Dr. Kent Fitzgerald and Dr. Ross Okamura.

Dr. Ross Okamura

If you believe that you can know a person by their deeds, the partnership opportunities offered by CIRM illustrate what we, as an agency, believe is the most effective way to deliver on our mission statement, accelerating regenerative medicine treatments to patients with unmet medical needs.

Dr. Kent Fitzgerald

 In our past, we have offered awards covering basic biology projects which in turn provided the foundation to produce promising therapies  to ease human suffering.  But those are only the first steps in an elaborate process.

In order to bring these potential therapies to the clinic, selected drug candidates must next go through a set of activities designed to prepare them for review by the Food and Drug Administration (FDA). For cell therapies, the first formal review is often the Pre- Investigational New Drug Application Consultation or pre-IND.  This stage of drug development is commonly referred to as Translational, bridging the gap between our Discovery or early stage research and Clinical Trial programs.

One of our goals at CIRM is to prepare Translational projects we fund for that  pre-IND meeting with the FDA, to help them gather data that support the hope this approach will be both safe and effective in patients.  Holding this meeting with the FDA is the first step in the often lengthy process of conducting FDA regulated clinical trials and hopefully bringing an approved therapy to patients.

What type of work is required for a promising candidate to move from the Discovery stage into FDA regulated development?  To address the needs of Translational science, CIRM offers the Translational Research Project funding opportunity.  Activities that CIRM supports at the Translational stage include:

  • Process Development to allow manufacturing of the candidate therapy under Good Manufacturing Practices (GMP). This is to show that they can manufacture  at a large enough scale to treat patients.
  • Assay development and qualification of measurements to determine whether the drug is being manufactured safely while retaining its curative properties.
  • Studies to determine the optimal dose and the best way to deliver that dose.
  • Pilot safety studies looking how the patient might respond after treatment with the drug.
  • The development of a clinical plan indicating under what rules and conditions the drug might be prescribed to a patient. 

These, and other activities supported under our Translational funding program, all help to inform the FDA when they consider what pivotal studies they will require prior to approving an Investigational New Drug (IND) application, the next step in the regulatory approval process.

Since CIRM first offered programs specifically aimed at addressing the Translational stage of therapeutic candidates we have made 41 awards totaling approximately $150 million in funding.  To date, 13 have successfully completed and achieved their program goals, while 19 others are still actively working towards meeting their objective.  Additionally, three (treating Spina Bifida, Osteonecrosis, and Sickle Cell Disease) of the 13 programs have gone on to receive further CIRM support through our Clinical Stage programs.

During our time administering these awards, CIRM has actively partnered with our grantees to navigate what is required to bring a therapy from the bench to the bedside.  CIRM operationalizes this by setting milestones that provide clear definitions of success, specific goals the researchers have to meet to advance the project and also by providing resources for a dedicated project manager to help ensure the project can keep the big picture in mind while executing on their scientific progress. 

Throughout all this we partner with the researchers to support them in every possible way. For example, CIRM provides the project teams with Translational Advisory Panels (TAPs, modeled after the CIRM’s Clinical Advisory Panels) which bring in outside subject matter experts as well as patient advocates to help provide additional scientific, regulatory and clinical expertise to guide the development of the program at no additional cost to the grantees.  One of the enduring benefits that we hope to provide to researchers and organizations is a practical mastery of translational drug development so that they may continue to advance new and exciting therapies to all patients.

Through CIRM’s strong and continued support of this difficult stage of development, CIRM has developed an internal practical expertise in advancing projects through Translation.  We employ our experience to guide our awardees so they can avoid common pitfalls in the development of cell and gene therapies. The end goal is simple, helping to accelerate their path to the clinic and fulfilling the mission of CIRM that has been twice given to us by the voters of California, bringing treatments to patients suffering from unmet medical needs.

Much to be Thankful for

It’s traditional this time of year to send messages of gratitude to friends and family and colleagues. And we certainly have much to be thankful for.

Thanks to the voters of California, who passed Proposition 14, we have a bright, and busy, future. We have $5.5 billion to continue our mission of accelerating stem cell treatments to patients with unmet medical needs.

That means the pipeline of promising projects that we have supported from an early stage can now apply to us to help take that work out of the lab and into people.

It means research areas, particularly early-stage work, where we had to reduce our funding as we ran out of money can now look forward to increased support.

It means we can do more to bring this research, and it’s potential benefits, to communities that in the past were overlooked.

We have so many people to thank for all this. The scientists who do the work and championed our cause at the ballot box. The voters of California who once again showed their support for and faith in science. And the patients and patient advocates, the reason we were created and the reason we come to work every day.

As Dr. Maria Millan, our President & CEO, said in a letter to our team; “We are continually faced by great opportunities brilliantly disguised as insoluble problems.”  Here’s to the opportunities made possible by CIRM and for its continuation made possible by Prop 14!”

And none of this would be possible without the support of all of you. And for that we are truly Thankful.

From everyone at CIRM, we wish you a happy, peaceful and safe Thanksgiving.

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

Driving Innovation While Addressing Health Disparities Among People of Color

Image courtesy of Science Photo Library

One of the wonders of regenerative medicine is its broad applicability, which provides us with the opportunity to build upon existing knowledge and concepts.  In the midst of a global pandemic, researchers have responded to the needs of patients severely afflicted with COVID-19 by repurposing existing therapies being developed to treat patients.  The California Institute for Regenerative Medicine (CIRM) responded immediately to the pandemic and to researchers wanting to help by providing $5 million in emergency funding for COVID-19 related projects.  In a short time span, this funding has driven innovation in the form of 17 new projects targeting COVID-19, many of which are based on previously developed concepts being repurposed to deal with the novel coronavirus.

One such example is a clinical trial funded by CIRM that uses natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, which are administered to patients with COVID-19. NK cells play an important role in defense against cancer and in fighting off viral infections.  In fact, this exact same therapy was previously used in a clinical trial for patients with Acute Myeloid Leukemia, a type of blood cancer.

Another clinical trial funded by CIRM uses mesenchymal stromal cells (MSCs), a type of stem cell, to treat acute respiratory distress syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs.  As a result of ARDS, oxygen cannot get into the body and patients have difficulty breathing.  ARDS is one of the most serious and lethal consequences of COVID-19, which is why this trial was expanded after the coronavirus pandemic to include COVID-19 positive patients.   

Despite these great strides in driving innovation of therapies, one challenge that still needs to be tackled is providing patients access to these therapies, particularly people from underrepresented and underserved communities.  In California alone, there have been over 621,000 positive cases as of August 2020, with more cases every day.  However, the impact of the pandemic is disproportionately affecting the Latinx and African American communities more than others. An analysis by the Los Angeles Times found that the Latinx and African American communities have double the mortality rate from the coronavirus in Los Angeles County.  Additionally, a surge in cases is being seen in poorer communities in comparison to wealthier ones.

Until a vaccine can be successfully developed and implemented to obtain herd immunity, the number of cases will continue to climb.  There is also the challenge of the long term health effects of COVID-19, which can consist of neurological, breathing, and heart problems according to an article in Science.  Unfortunately, a study published in the New England Journal of Medicine found that despite disproportionately higher rates of COVID-19 infection, hospitalization and death among people of color, they are significantly underrepresented in COVID-19 clinical trials.

The challenge of underrepresentation in clinical trials and research needs to be addressed by creating a more diverse population of study participants, so as to better generalize results to the U.S. population as a whole.  CIRM Board Member Ysabel Duron, a leading figure in cancer education in the Latinx community, has advocated for more inclusion and outreach efforts directed towards underserved and underrepresented communities.  By communicating with patients in underserved and underrepresented communities, building relationships established on a foundation of trust, and connecting patients with potential trial matches, underrepresentation can be alleviated.

To help in addressing these disparities, CIRM has taken action by changing the requirements for its discovery stage research projects, which promote promising new technologies that could be translated to enable broad use and improve patient care, and clinical trial stage projects.

For clinical trials, all proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard. For discovery projects, all proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.  Additionally, all proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.  There is still much more work that needs to be done to address health disparities, but steps such as these can help steer progress in the right direction.

Driving innovation while addressing health disparities among people of color is just one of many opportunities and challenges of regenerative medicine in a post pandemic world.  This blog post is part of Signal’s fifth annual blog carnival. Please click here to read what other bloggers think about this topic.

Stem Cell Agency Board Approves Three More Projects Targeting COVID-19

Dr. Jianhua Yu (left), Dr. Helen Blau (center), and Dr. Albert Wong (right)

The COVID-19 virus targets many different parts of the body, often with deadly or life-threatening consequences. This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investments in three early-stage research programs taking different approaches to battling the virus.

Dr. Jianhua Yu at the Beckman Research Institute of City of Hope was awarded $150,000 to use stem cells from umbilical cord blood to attack the virus. Dr. Yu and his team have many years of experience in taking cord blood cells and turning them into what are called chimeric antigen receptor (CAR) natural killer (NK) cells. The goal is to deploy these CAR NK cells to specifically target cells infected with COVID-19. This leverages the body of work at the City of Hope to develop this technology for cancer.

Dr. Helen Blau of Stanford University was awarded $149,996 to target recovery of muscle stem cells of the diaphragm in COVID-19 patients who have an extended period on a ventilator.

Patients with severe coronavirus often suffer respiratory failure and end up on mechanical ventilation that takes over the work of breathing. Over time, the diaphragm, the main muscle responsible for inhaling and exhaling, weakens and atrophies. There is no treatment for this kind of localized muscle wasting and it is anticipated that some of these patients will take months, if not years, to fully recover. Dr. Blau’s team proposes to develop a therapy with Prostaglandin E2 and Bupivacaine based on data generated by Dr. Blau’s group that these drugs, already approved by the FDA for other indications, have the potential to stimulate muscle stem cell recovery.

Dr. Albert Wong, also from Stanford University, was awarded $149,999 to develop vaccine candidates against COVID-19.

Most vaccine candidates are focused on getting the body to produce an antibody response to block the virus. However, Dr. Wong thinks that to be truly effective, a vaccine also needs to produce a CD8+ T cell response to augment an effective immune response to remove the COVID-19 infected cells that are hijacked by the virus to spread and cause illness.  This team will use the experience it gained using CIRM funds to vaccine against glioblastoma, a deadly brain cancer, to advance a similar approach to produce an effective cellular immune response to combat COVID-19.  

“CIRM is committed to supporting novel, multi-pronged approaches to battle this COVID-19 crisis that leverage solid science and knowledge gained in other areas.” says Dr. Maria T. Millan, the President & CEO of CIRM. “These three projects highlight three very different approaches to combatting the acute devastating health manifestations of COVID-19 as well as the debilitating sequelae that impact the ability to recover from the acute illness. Through this COVID funding opportunity, CIRM is enabling researchers to re-direct work they have already done, often with CIRM support, to quickly develop new approaches to COVID-19.”

Two UCLA scientists receive CIRM funding for discovery research for COVID-19

Dr. Brigitte Gomperts (left) and Dr. Gay Crooks (right), UCLA
Image Credit: UCLA Broad Stem Cell Center

This past Friday, the CIRM Board approved funding for its first clinical study for COVID-19. In addition to this, the Board also approved two discovery stage research projects, which support promising new technologies that could be translated to enable broad use and improve patient care. Before we go into more detail, the two awards are summarized in the table below:

The discovery grant for $150,000 was given to Dr. Gay Crooks at UCLA to study how specific immune cells called T cells respond to COVID-19. The goal of this is to inform the development of vaccines and therapies that harness T cells to fight the virus. Typically, vaccine research involves studying the immune response using cells taken from infected people. However, Dr. Crooks and her team are taking T cells from healthy people and using them to mount strong immune responses to parts of the virus in the lab. They will then study the T cells’ responses in order to better understand how T cells recognize and eliminate the virus.

This method uses blood forming stem cells and then converts them into specialized immune cells called dendritic cells, which are able to devour proteins from viruses and chop them into fragments, triggering an immune response to the virus.

In a press release from UCLA, Dr. Crooks says that, “The dendritic cells we are able to make using this process are really good at chopping up the virus, and therefore eliciting a strong immune response”

The discovery grant for $149,998 was given to Dr. Brigitte Gomberts at UCLA to study a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19. Dr. Gomberts will be testing drugs that have been approved by the U.S. Food and Drug Administration (FDA) for other purposes or have been found to be safe in humans in early clinical trials. This increases the likelihood that if a successful drug is found, it can be approved more rapidly for widespread use.

In the same press release from UCLA, Dr. Gomberts discusses the potential drugs they are evaluating.

“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible.”