Partners in health

From left to right: Heather Dahlenburg, Jan Nolta, Jeannine Logan White, Sheng Yang
From left to right: Heather Dahlenburg, staff research associate; Jan Nolta, director of the Stem Cell Program; Jeannine Logan White, advanced cell therapy project manager; Sheng Yang, graduate student, Bridges Program, Humboldt State University, October 18, 2019. (AJ Cheline/UC Davis)

At CIRM we are modest enough to know that we can’t do everything by ourselves. To succeed we need partners. And in UC Davis we have a terrific partner. The work they do in advancing stem cell research is exciting and really promising. But it’s not just the science that makes them so special. It’s also their compassion and commitment to caring for patients.

What follows is an excerpt from an article by Lisa Howard on the work they do at UC Davis. When you read it you’ll see why we are honored to be a part of this research.

Gene therapy research at UC Davis

UC Davis’ commitment to stem cell and gene therapy research dates back more than a decade.

In 2010, with major support from the California Institute for Regenerative Medicine (CIRM), UC Davis launched the UC Davis Institute for Regenerative Cures, which includes research facilities as well as a Good Manufacturing Practice (GMP) facility.

In 2016, led by Fred Meyers, a professor in the School of Medicine, UC Davis launched the Center for Precision Medicine and Data Sciences, bringing together innovations such as genomics and biomedical data sciences to create individualized treatments for patients.

Last year, the university launched the Gene Therapy Center, part of the IMPACT Center program.

Led by Jan Nolta, a professor of cell biology and human anatomy and the director of the UC Davis Institute for Regenerative Cures, the new center leverages UC Davis’ network of expert researchers, facilities and equipment to establish a center of excellence aimed at developing lifelong cures for diseases.

Nolta began her career at the University of Southern California working with Donald B. Kohn on a cure for bubble baby disease, a condition in which babies are born without an immune system. The blood stem cell gene therapy has cured more than 50 babies to date.

Work at the UC Davis Gene Therapy Center targets disorders that potentially can be treated through gene replacement, editing or augmentation.

“The sectors that make up the core of our center stretch out across campus,” said Nolta. “We work with the MIND Institute a lot. We work with the bioengineering and genetics departments, and with the Cancer Center and the Center for Precision Medicine and Data Sciences.”

A recent UC Davis stem cell study shows a potential breakthrough for healing diabetic foot ulcers with a bioengineered scaffold made up of human mesenchymal stem cells (MSCs). Another recent study revealed that blocking an enzyme linked with inflammation enables stem cells to repair damaged heart tissue. A cell gene therapy study demonstrated restored enzyme activity in Tay-Sachs disease affected cells in humanized mouse models.

Several cell and gene therapies have progressed to the point that ongoing clinical trials are being conducted at UC Davis for diseases, including sickle-cell anemia, retinopathy, muscle injury, dysphasia, advanced cancer, and Duchenne muscular dystrophy, among others.

“Some promising and exciting research right now at the Gene Therapy Center comes from work with hematopoietic stem cells and with viral vector delivery,” said Nolta.

Hematopoietic stem cells give rise to other blood cells. A multi-institutional Phase I clinical trial using hematopoietic stem cells to treat HIV-lymphoma patients is currently underway at UC Davis.

.Joseph Anderson

Joseph Anderson

“We are genetically engineering a patient’s own blood stem cells with genes that block HIV infection,” said Joseph Anderson, an associate professor in the UC Davis Department of Internal Medicine. The clinical trial is a collaboration with Mehrdad Abedi, the lead principal investigator.

“When the patients receive the modified stem cells, any new immune system cell, like T-cell or macrophage, that is derived from one of these stem cells, will contain the HIV-resistant genes and block further infection,” said Anderson.

He explained that an added benefit with the unique therapy is that it contains an additional gene that “tags” the stem cells. “We are able to purify the HIV-resistant cells prior to transplantation, thus enriching for a more protective cell population.

Kyle David Fink

Kyle David Fink

Kyle David Fink, an assistant professor of neurology at UC Davis, is affiliated with the Stem Cell Program and Institute for Regenerative Cures. His lab is focused on leveraging institutional expertise to bring curative therapies to rare, genetically linked neurological disorders.

“We are developing novel therapeutics targeted to the underlying genetic condition for diseases such as CDKL5 deficiency disorder, Angelman, Jordan and Rett syndromes, and Juvenile Huntington’s disease,” said Fink.

The lab is developing therapies to target the underlying genetic condition using DNA-binding domains to modify gene expression in therapeutically relevant ways. They are also creating novel delivery platforms to allow these therapeutics to reach their intended target: the brain.

“The hope is that these highly innovative methods will speed up the progress of bringing therapies to these rare neurodegenerative disease communities,” said Fink.Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program.

Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program, October 18, 2019. (AJ Cheline/UC Davis)

Developing potential lifetime cures

Among Nolta’s concerns is how expensive gene therapy treatments can be.

“Some of the therapies cost half a million dollars and that’s simply not available to everyone. If you are someone with no insurance or someone on Medicare, which reimburses about 65 percent, it’s harder for you to get these life-saving therapies,” said Nolta.

To help address that for cancer patients at UC Davis, Nolta has set up a team known as the “CAR T Team.”

Chimeric antigen receptor (CAR) T-cell therapy is a type of immunotherapy in which a patient’s own immune cells are reprogrammed to attack a specific protein found in cancer cells.

“We can develop our own homegrown CAR T-cells,” said Nolta. “We can use our own good manufacturing facility to genetically engineer treatments specifically for our UC Davis patients.”

Although safely developing stem cell treatments can be painfully slow for patients and their families hoping for cures, Nolta sees progress every day. She envisions a time when gene therapy treatments are no longer considered experimental and doctors will simply be able to prescribe them to their patients.

“And the beauty of the therapy is that it can work for the lifetime of a patient,” said Nolta.

First patient in CIRM funded X-CGD trial gives back by working in patient care

Brenden Whittaker

Brenden Whittaker was born with a rare genetic disorder called X-linked chronic granulomatous disease (X-CGD). This condition affects the immune system’s ability to fight off common germs, specifically bacteria and fungi, and can result in infections that would only be mild for healthy people. Unfortunately for Brenden, he has suffered life-threatening infections that have required him to be hospitalized hundreds of times throughout most of his childhood. At only 16 years old, he got a very bad case of pneumonia that resulted in having tissue from his right lung removed. By age 22, the treatments he had received to fight off infections had stopped working entirely.

His prognosis looked grim, but fortunately he was informed of a CIRM-funded clinical trial conducted by Dr. Don Kohn to treat his condition. He would go on to become the first participant in this trial, which involved taking his blood stem cells, using gene therapy to correct the X-CGD mutation, and reintroducing these modified cells back into his body. Following his treatment, blood tests confirmed that the treatment produced enough corrected cells for Brenden to now be protected from severe infection.

Before the CIRM-funded treatment, the chances of severe infection were virtually everywhere, something many of us might better understand given everything going on with COVID-19. But now with a new lease on life, Brenden is giving back to the very community that helped him in his time of need. He is currently working as a patient care associate at his local hospital in Ohio. Considered an essential worker, Brenden’s responsibilities include taking patients’ vital signs, helping them eat and get cleaned up, and going for walks around the unit with those who are able to do so. He also plans to attend nursing school in the future.

In a news release, Brenden talks about wanting to give back to those in similar situations as him and demonstrates true selflessness.

“My job entails doing anything I can to make a patient’s time in the hospital a little bit easier while at the same time helping the doctors and nurses monitor for any new health developments. From the nurses who sat with me holding my hand and telling me about their lives when I was up in the middle of the night with a fever, to the patient transporters who remembered my name and talked with me the whole way to surgery, to the doctors who wouldn’t give up until they found an option that worked for me, these people are the reason the hospital setting is the only place I want to work. If I can help even one person the way these people have helped me, I will be happy.”

In addition to Brenden, five additional patients who received the same treatment for X-CGD are also doing well. This same gene therapy approach for blood stem cells was used in another CIRM-funded trial for SCID, another kind of genetic immune disorder. The SCID trial resulted in over 50 babies being cured of the condition, including little Evie, who is featured on the cover of CIRM’s 18-month report.

Celebrating a life that almost didn’t happen

Evie Vaccaro

You can’t look at this photo and not smile. This is Evie Vaccaro, and it’s clear she is just bursting with energy and vitality. Sometimes it feels like I have known Evie all her life. In a way I have. And I feel so fortunate to have done so, and that’s why this photo is so powerful, because it’s a life that almost ended before it had a chance to start.

Evie was born with a rare condition called Severe Combined Immunodeficiency (SCID). Children with this condition lack a functioning immune system so even a simple cold or diaper rash can prove fatal. Imagine how perilous their lives are in a time of COVID-19. These children used to be called “bubble babies” because they were often kept inside sterile plastic bubbles to keep them alive. Many died before their second birthday.

Today there is no need for plastic bubbles. Today, we have a cure. That’s a word we use very cautiously, but in Evie’s case, and the case of more than 40 other children, we use it with pride.

Dr. Don Kohn and a child born with SCID

Dr. Don Kohn at UCLA has developed a method of taking the child’s own blood stem cells and, in the lab, inserting a corrected copy of the gene that caused SCID, and then returning those cells to the child. Because they are stem cells they multiply and renew and replicate themselves, creating a new blood supply, one free of the SCID mutation. The immune system is restored. The children are cured.

This is a story we have told several times before, but we mention it again because, well, it never gets old, and because Evie is on the front and back cover of our upcoming Annual Report. The report is actually a look back on the last 18 months in CIRM’s life, reporting on the progress we have made in advancing stem cell research, in saving and changing lives, and in producing economic benefits for California (billions of dollars in sales revenue and taxes and thousands of jobs).  

Evie’s story, Evie’s photo, is a reminder of what is possible thanks to the voters of California who created CIRM back in 2004. Hers is just one of the stories in the report. I think,  you’ll enjoy reading all of them.

Of course, I might be just a little bit biased.

Living proof science can find a cure

Like many kids, let’s face it, many adults too, Ronav “Ronnie” Kashyap is getting a little bored stuck inside all day during the coronavirus pandemic. This video, shot by his dad Pawash, shows Ronnie trying to amuse himself by pretending to be hard at work.

https://www.instagram.com/p/B_BSQaonFXb/

It’s a lovely moment. It’s also a moment that just a few years ago seemed almost impossible. That’s because Ronnie was born with severe combined immunodeficiency (SCID). SCID kids have no functioning immune system so even a simple infection, such as a cold, can be life-threatening.

Many of those hardest hit by COVID-19 have compromised immune systems. But try fighting the virus if you have no immune system at all. The odds would not be good.

Happily, we don’t have to imagine it because Ronnie is one of around 60 children who have undergone CIRM-supported stem cell/gene therapies that have helped repair their immune system.

In Ronnie’s case he was rushed to UC San Francisco shortly after his birth when a newborn screening test showed he had SCID. He spent the next several months there, in isolation with his parents, preparing for the test. Doctors took his own blood stem cells and, in the lab, corrected the genetic mutation that causes SCID. The cells were then re-infused into Ronnie where they created a new blood supply and repaired his immune system.

How good is his immune system today? Last year his parents, Upasana and Pawash, were concerned about taking Ronnie to a crowded shopping mall for fear he might catch a cold. Their doctor reassured them that he would be fine. So, they went. The doctor was right, Ronnie was fine. However, Upasana and Pawash both caught colds!

Just a few weeks ago Ronnie started pre-school. He loves it. He loves having other kids to play with and his parents love it because it helps him burn off some energy. But they also love it because it showed Ronnie is now leading a normal life, one where they don’t have to worry about everything he does, every person he comes into contact with.

Sounds a bit like how the rest of us are living right now doesn’t it. And the fears that Ronnie’s parents had, that even a casual contact with a friend, a family member or stranger, might prove life-threatening, are ones many of us are experiencing now.

When Ronnie was born he faced long odds. At the time there were only a handful of scientists working to find treatments for SCID. But they succeeded. Now, Ronnie, and all the other children who have been helped by this therapy are living proof that good science can overcome daunting odds to find treatments, and even cures, for the most life-threatening of conditions.

Today there are thousands, probably tens of thousands of scientists around the world searching for treatments and cures for COVID-19. And they will succeed.

Till then the rest of us will have to be like Ronnie. Stay at home, stay safe, and enjoy the luxury of being bored.

Stem Cell/Gene Therapy combo heals patients battling rare disorder

Brenden Whittaker and his dog: Photo by Colin McGuire

A few years ago, Brenden Whittaker was running out of time. Brenden was born with a rare condition called x-linked chronic granulomatous disease or XCGD. It meant he lacked a critical part of his immune system that protects against bacterial or fungal infections.

Over 22 years Brenden was in and out of the hospital hundreds of times. Twice he almost died. When antibiotics failed to clear up persistent infections surgeons had to remove parts of his lungs and liver.

Brenden felt he was running out of options. Then he signed up for a clinical trial (funded by CIRM) that would use his own stem cells to correct the problem. More than four years later Brenden is doing just fine.

And he’s not the only one. A new study, published in the journal Nature Medicine, shows that six other patients in the clinical trial are now in remission and have stopped taking any other medications.

Dr. Don Kohn: Photo courtesy UCLA

Don Kohn, the lead researcher on the team from UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, says that in the past the only “cure” for people with CGD was a bone marrow transplant, but that was rarely an option for most patients. In a news release he said finding a perfect match for a transplant was difficult, and even then, patients had to take powerful anti-rejection medications to stop their body rejecting the transplant. So, they developed another approach, using genetically re-engineered stem cells from the patient themselves.

“With this gene therapy, you can use a patient’s own stem cells instead of donor cells for a transplant. This means the cells are perfectly matched to the patient and it should be a much safer transplant, without the risks of rejection.”

The team removed blood stem cells from the patients and, in the lab, corrected the genetic mutation that caused CGD. They then returned those cells to the patients which, because they are stem cells, multiplied and created a new blood supply – one free of CGD – and repaired the immune system.

Brenden was the first of five patients treated in the US. Another four were treated in Europe. All were between the ages of 2 and 27 (CGD patients often die in their 20’s because of the impact of repeated infections).

  • Two patients died because of previously incurred infections
  • Six of the seven surviving patients have discontinued previous treatments
  • Four new patients have since been treated and are currently free of infections

Dr. Kohn said the results are really encouraging: “None of the patients had complications that you might normally see from donor cells and the results were as good as you’d get from a donor transplant — or better.”

The next step is for the researchers to work with the US Food and Drug Administration to get permission to carry out a larger trial, with the eventual goal of getting approval to make it available to all patients who need it.  

Regular readers of our blog will remember that Don Kohn also pioneered a similar approach in treating, and curing, children battling another rare immune disorder, severe combined immunodeficiency or SCID. You can read about that here.

As for Brenden, he is now in college and has his sights set on medical school. In 2016 we profiled him in our Annual Report and ran a long interview with him on the blog where he talked about the joys of mowing the lawn and learning to live without a deadly disease stalking him.

Good news for two CIRM-supported therapies

Jake Javier, a patient in the spinal cord injury stem cell therapy clinical trial

It’s always satisfying to see two projects you have supported for a long time do well. That’s particularly true when the projects in question are targeting conditions that have no other effective therapies.

This week we learned that a clinical trial we funded to help people with spinal cord injuries continues to show benefits. This trial holds a special place in our hearts because it is an extension of the first clinical trial we ever funded. Initially it was with Geron, and was later taken up by Asterias Biotherapeutics, which has seen been bought by Lineage Cell Therapeutics Inc.

The therapy involved transplanting oligodendrocyte progenitor cells (OPCs), which are derived from human embryonic stem cells, into people who suffered recent spinal cord injuries that left them paralyzed from the neck down.  OPCs play an important role in supporting and protecting nerve cells in the central nervous system, the area damaged in a spinal cord injury. It’s hoped the cells will help restore some of the connections at the injury site, allowing patients to regain some movement and feeling.

In a news release, Lineage said that its OPC therapy continues to report positive results, “where the overall safety profile of OPC1 has remained excellent with robust motor recovery in upper extremities maintained through Year 2 patient follow-ups available to date.”

Two years in the patients are all continuing to do well, and no serious unexpected side effects have been seen. They also reported:

– Motor level improvements

  1. Five of six Cohort 2 patients achieved at least two motor levels of improvement over baseline on at least one side as of their 24-month follow-up visit.
  2. In addition, one Cohort 2 patient achieved three motor levels of improvement on one side over baseline as of the patient’s 24-month follow-up visit; improvement has been maintained through the patient’s 36-month follow-up visit.

Brian M. Culley, CEO of Lineage Cell Therapeutics called the news “exciting”, saying “To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence.”

Evie, cured of SCID by a therapy licensed to Orchard Therapeutics

The other good news came from Orchard Therapeutics, a company we have partnered with on a therapy for Severe Combined Immunodeficiency (SCID) also known as “bubble baby diseases” (we have blogged about this a lot including here).

In a news release Orchard announced that the European Medicines Agency (EMA) has granted an accelerated assessment for their gene therapy for metachromatic leukodystrophy (MLD). This is a rare and often fatal condition that results in the build-up of sulfatides in the brain, liver, kidneys and other organs. Over time this makes it harder and harder for the person to walk, talk, swallow or eat.

Anne Dupraz-Poiseau, chief regulatory officer of Orchard Therapeutics, says this is testimony to the encouraging early results of this therapy. “We look forward to working with the EMA to ensure this potentially transformative new treatment, if approved, reaches patients in the EU as quickly as possible, and continuing our efforts to expand patient access outside the EU.”

The accelerated assessment potentially provides a reduced review timeline from 210 to 150 days, meaning it could be available to a wider group of patients sooner.  

New Report Says CIRM Produces Big Economic Boost for California

An independent Economic Impact Report says the California Institute for Regenerative Medicine (CIRM) has had a major impact on California’s economy, creating tens of thousands of new jobs, generating hundreds of millions of dollars in new taxes, and producing billions of dollars in additional revenue for the state.

The report, done by Dan Wei and Adam Rose at the Price School of Public Policy at the University of Southern California, looked at the impacts of CIRM funding on both the state and national economy from the start of the Stem Cell Agency in 2004 to the end of 2018.

The total impacts on the California economy are estimated to be:

  • $10.7 billion of additional gross output (sales revenue)
  • $641.3 million of additional state/local tax revenues
  • $726.6 million of additional federal tax revenues
  • 56,549 additional full-time equivalent (FTE) jobs, half of which offer salaries considerably higher than the state average

Maria Millan, M.D., CIRM’s President and CEO, says the report reflects the Agency’s role in building an ecosystem to accelerate the translation of important stem cell science to solutions for patients with unmet medical needs. “CIRM’s mission on behalf of patients has been the priority from day one, but this report shows that CIRM funding brings additional benefits to the state. This report reflects how CIRM is promoting economic growth in California by attracting scientific talent and additional capital, and by creating an environment that supports the development of businesses and commercial enterprises in the state”

In addition to the benefits to California, the impacts outside of California on the US economy are estimated to be:

  • $4.7 billion of additional gross output (sales revenue)
  • $198.7 million of additional state (non-Californian) & local tax revenue
  • $208.6 million of additional federal tax revenues
  • 25,816 additional full-time equivalent (FTE) jobs

The researchers summarize their findings, saying: “In terms of economic impacts, the state’s investment in CIRM has paid handsome dividends in terms of output, employment, and tax revenues for California.”

The estimates in the report are based on the economic stimulus created by CIRM funding and by the co-funding that researchers and companies were required to provide for clinical and late-stage preclinical projects. The estimates also include:

  • Investments in CIRM-supported projects from private funders such as equity investments, public offerings and mergers and acquisitions,
  • Follow-on funding from the National Institutes of Health and other organizations due to data generated in CIRM-funded projects
  • Funding generated by clinical trials held at CIRM’s Alpha Stem Cell Clinics network

The researchers state “Nearly half of these impacts emanate from the $2.67 billion CIRM grants themselves.”

“The economic impact of California’s investment in stem and regenerative cell research is reflective of significant progress in this field that was just being born at the time of CIRM’s creation,” says Dr. Millan. “We fund the most promising projects based on rigorous science from basic research into clinical trials. We partnered with researchers and companies to increase the likelihood of success and created specialized infrastructure such as the Alpha Clinics Network to support the highest quality of clinical care and research standards for these novel approaches.  The ecosystem created by CIRM has attracted scientists, companies and capital from outside the state to California. By supporting promising science projects early on, long before most investors were ready to come aboard, we enabled our scientists to make progress that positioned them to attract significant commercial investments into their programs and into California.”

These partnerships have helped move promising therapies out of the lab and into clinical trials for companies like Orchard Therapeutics’ successful treatment for Severe Combined Immunodeficiency and Forty Seven Inc.’s innovative approach to treating cancer.

Dr. Don Kohn: Photo courtesy UCLA Jonsson Comprehensive Cancer Center

“I think one of the greatest strengths of CIRM has been their focus on development of new stem cell therapies that can become real medicines,” says UCLA and Orchard Therapeutics’ Don Kohn, M.D. “This has meant guiding academic investigators to do the things that may be second nature in industry/pharmaceutical companies but are not standard for basic or clinical research.  The support from CIRM to perform the studies and regulatory activities needed to navigate therapies through the FDA and to form alliances with biotech and pharma companies has allowed the stem cell gene therapy we developed to treat SCID babies to be advanced and licensed to Orchard Therapeutics who can make it available to patients across the country.”

Dr. Mark Chao: Photo courtesy Forty Seven Inc.

“CIRM’s support has been instrumental to our early successes and our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach with magrolimab,” says Mark Chao, M.D., Ph.D., Founder and Vice President of Clinical Development at Forty Seven Inc. “ CIRM was an early collaborator in our clinical programs, and will continue to be a valued partner as we move forward with our MDS/AML clinical trials.”

The researchers say the money generated by partnerships and investments, what is called “deal-flow funding”, is still growing and that the economic benefits created by them are likely to continue for some time: “Deal-flow funding usually involves several waves or rounds of capital infusion over many years, and thus is it expected that CIRM’s past and current funding will attract increasing amounts of industry investment and lead to additional spending injections into the California economy in the years to come.”

They conclude their report by saying: “CIRM has led to California stem cell research and development activities becoming a leader among the states.”

One family’s fight to save their son’s life, and how stem cells made it possible

CIRM’s mission is very simple: to accelerate stem cell treatments to patients with unmet medical needs. Anne Klein’s son, Everett, was a poster boy for that statement. Born with a fatal immune disorder Everett faced a bleak future. But Anne and husband Brian were not about to give up. The following story is one Anne wrote for Parents magazine. It’s testament to the power of stem cells to save lives, but even more importantly to the power of love and the determination of a family to save their son.

My Son Was Born With ‘Bubble Boy’ Disease—But A Gene Therapy Trial Saved His Life

Everett Schmitt. Photo: Meg Kumin

I wish more than anything that my son Everett had not been born with severe combined immunodeficiency (SCID). But I know he is actually one of the lucky unlucky ones. By Anne Klein

As a child in the ’80s, I watched a news story about David Vetter. David was known as “the boy in the bubble” because he was born with severe combined immunodeficiency (SCID), a rare genetic disease that leaves babies with very little or no immune system. To protect him, David lived his entire life in a plastic bubble that kept him separated from a world filled with germs and illnesses that would have taken his life—likely before his first birthday.

I was struck by David’s story. It was heartbreaking and seemed so otherworldly. What would it be like to spend your childhood in an isolation chamber with family, doctors, reporters, and the world looking in on you? I found it devastating that an experimental bone marrow transplant didn’t end up saving his life; instead it led to fatal complications. His mother, Carol Ann Demaret, touched his bare hand for the first and last time when he was 12 years old.

I couldn’t have known that almost 30 years later, my own son, Everett, would be born with SCID too.

Everett’s SCID diagnosis

At birth, Everett was big, beautiful, and looked perfectly healthy. My husband Brian and I already had a 2-and-a-half-year-old son, Alden, so we were less anxious as parents when we brought Everett home. I didn’t run errands with Alden until he was at least a month old, but Everett was out and about with us within a few days of being born. After all, we thought we knew what to expect.

But two weeks after Everett’s birth, a doctor called to discuss Everett’s newborn screening test results. I listened in disbelief as he explained that Everett’s blood sample indicated he may have an immune deficiency.

“He may need a bone marrow transplant,” the doctor told me.

I was shocked. Everett’s checkup with his pediatrician just two days earlier went swimmingly. I hung up and held on to the doctor’s assurance that there was a 40 percent chance Everett’s test result was a false positive.

After five grueling days of waiting for additional test results and answers, I received the call: Everett had virtually no immune system. He needed to be quickly admitted to UCSF Benioff Children’s Hospital in California so they could keep him isolated and prepare to give him a stem cell transplant. UCSF diagnosed him specifically with SCID-X1, the same form David battled.

Beginning SCID treatment

The hospital was 90 miles and more than two hours away from home. Our family of four had to be split into two, with me staying in the hospital primarily with Everett and Brian and Alden remaining at home, except for short visits. The sudden upheaval left Alden confused, shaken, and sad. Brian and I quickly transformed into helicopter parents, neurotically focused on every imaginable contact with germs, even the mildest of which could be life-threatening to Everett.

When he was 7 weeks old, Everett received a stem cell transplant with me as his donor, but the transplant failed because my immune cells began attacking his body. Over his short life, Everett has also spent more than six months collectively in the hospital and more than three years in semi-isolation at home. He’s endured countless biopsies, ultrasounds, CT scans, infusions, blood draws, trips to the emergency department, and medical transports via ambulance or helicopter.

Gene therapy to treat SCID

At age 2, his liver almost failed and a case of pneumonia required breathing support with sedation. That’s when a doctor came into the pediatric intensive care unit and said, “When Everett gets through this, we need to do something else for him.” He recommended a gene therapy clinical trial at the National Institutes of Health (NIH) that was finally showing success in patients over age 2 whose transplants had failed. This was the first group of SCID-X1 patients to receive gene therapy using a lentiviral vector combined with a light dose of chemotherapy.

After the complications from our son’s initial stem cell transplant, Brian and I didn’t want to do another stem cell transplant using donor cells. My donor cells were at war with his body and cells from another donor could do the same. Also, the odds of Everett having a suitable donor on the bone marrow registry were extremely small since he didn’t have one as a newborn. At the NIH, he would receive a transplant with his own, perfectly matched, gene-corrected cells. They would be right at home.

Other treatment options would likely only partially restore his immunity and require him to receive infusions of donor antibodies for life, as was the case with his first transplant. Prior gene therapy trials produced similarly incomplete results and several participants developed leukemia. The NIH trial was the first one showing promise in fully restoring immunity, without a risk of cancer. Brian and I felt it was Everett’s best option. Without hesitation, we flew across the country for his treatment. Everett received the gene therapy in September 2016 when he was 3, becoming the youngest patient NIH’s clinical trial has treated.

Everett’s recovery

It’s been more than two years since Everett received gene therapy and now more than ever, he has the best hope of developing a fully functioning immune system. He just received his first vaccine to test his ability to mount a response. Now 6 years old, he’s completed kindergarten and has been to Disney World. He plays in the dirt and loves shows and movies from the ’80s (maybe some of the same ones David enjoyed).

Everett knows he has been through a lot and that his doctors “fixed his DNA,” but he’s focused largely on other things. He’s vocal when confronted with medical pain or trauma, but seems to block out the experiences shortly afterwards. It’s sad for Brian and me that Everett developed these coping skills at such a young age, but we’re so grateful he is otherwise expressive and enjoys engaging with others. Once in the middle of the night, he woke us up as he stood in the hallway, exclaiming, “I’m going back to bed, but I just want you to know that I love you with all my heart!”

I wish more than anything that Everett had not been born with such a terrible disease and I could erase all the trauma, isolation, and pain. But I know that he is actually one of the lucky unlucky ones. Everett is fortunate his disease was caught early by SCID newborn screening, which became available in California not long before his birth. Without this test, we would not have known he had SCID until he became dangerously ill. His prognosis would have been much worse, even under the care of his truly brilliant and remarkable doctors, some of whom cared for David decades earlier.

Carol-Ann-mother-of-David-Vetter-meeting-Everett-Schmitt
Everett Schmitt meeting David Vetter’s mom Carol Ann Demaret. Photo – Brian Schmitt

When Everett was 4, soon after the gene therapy gave him the immunity he desperately needed, our family was fortunate enough to cross paths with David’s mom, Carol Ann, at an Immune Deficiency Foundation event. Throughout my life, I had seen her in pictures and on television with David. In person, she was warm, gracious, and humble. When I introduced her to Everett and explained that he had SCID just like David, she looked at Everett with loving eyes and asked if she could touch him. As she touched Everett’s shoulder and they locked eyes, Brian and I looked on with profound gratitude.

Anne Klein is a parent, scientist, and a patient advocate for two gene therapy trials funded by the California Institute for Regenerative Medicine. She is passionate about helping parents of children with SCID navigate treatment options for their child.

You can read about the clinical trials we are funding for SCID here, here, here and here.

From bench to bedside: a Q&A with stem cell expert Jan Nolta

At CIRM we are privileged to work with many remarkable people who combine brilliance, compassion and commitment to their search for new therapies to help people in need. One of those who certainly fits that description is UC Davis’ Jan Nolta.

This week the UC Davis Newsroom posted a great interview with Jan. Rather than try and summarize what she says I thought it would be better to let her talk for herself.

Jan Nolta
Jan Nolta

Talking research, unscrupulous clinics, and sustaining the momentum

(SACRAMENTO) —

In 2007, Jan Nolta returned to Northern California from St. Louis to lead what was at the time UC Davis’ brand-new stem cell program. As director of the UC Davis Stem Cell Program and the Institute for Regenerative Cures, she has overseen the opening of the institute, more than $140 million in research grants, and dozens upon dozens of research studies. She recently sat down to answer some questions about regenerative medicine and all the work taking place at UC Davis Health.

Q: Turning stem cells into cures has been your mission and mantra since you founded the program. Can you give us some examples of the most promising research?

I am so excited about our research. We have about 20 different disease-focused teams. That includes physicians, nurses, health care staff, researchers and faculty members, all working to go from the laboratory bench to patient’s bedside with therapies.

Perhaps the most promising and exciting research right now comes from combining blood-forming

stem cells with gene therapy. We’re working in about eight areas right now, and the first cure, something that we definitely can call a stem cell “cure,” is coming from this combined approach.

Soon, doctors will be able to prescribe this type of stem cell therapy. Patients will use their own bone marrow or umbilical cord stem cells. Teams such as ours, working in good manufacturing practice facilities, will make vectors, essentially “biological delivery vehicles,” carrying a good copy of the broken gene. They will be reinserted into a patient’s cells and then infused back into the patient, much like a bone marrow transplant.

“Perhaps the most promising and exciting research right now comes from combining blood-forming stem cells with gene therapy.”

Along with treating the famous bubble baby disease, where I had started my career, this approach looks very promising for sickle cell anemia. We’re hoping to use it to treat several different inherited metabolic diseases. These are conditions characterized by an abnormal build-up of toxic materials in the body’s cells. They interfere with organ and brain function. It’s caused by just a single enzyme. Using the combined stem cell gene therapy, we can effectively put a good copy of the gene for that enzyme back into a patient’s bone marrow stem cells. Then we do a bone marrow transplantation and bring back a person’s normal functioning cells.

The beauty of this therapy is that it can work for the lifetime of a patient. All of the blood cells circulating in a person’s system would be repaired. It’s the number one stem cell cure happening right now. Plus, it’s a therapy that won’t be rejected. These are a patient’s own stem cells. It is just one type of stem cell, and the first that’s being commercialized to change cells throughout the body.

Q: Let’s step back for a moment. In 2004, voters approved Proposition 71. It has funded a majority of the stem cell research here at UC Davis and throughout California. What’s been the impact of that ballot measure and how is it benefiting patients?

We have learned so much about different types of stem cells, and which stem cell will be most appropriate to treat each type of disease. That’s huge. We had to first do that before being able to start actual stem cell therapies. CIRM [California Institute for Regenerative Medicine] has funded Alpha Stem Cell Clinics. We have one of them here at UC Davis and there are only five in the entire state. These are clinics where the patients can go for high-quality clinical stem cell trials approved by the FDA [U.S. Food and Drug Administration]. They don’t need to go to “unapproved clinics” and spend a lot of money. And they actually shouldn’t.

“By the end of this year, we’ll have 50 clinical trials.”

By the end of this year, we’ll have 50 clinical trials [here at UC Davis Health]. There are that many in the works.

Our Alpha Clinic is right next to the hospital. It’s where we’ll be delivering a lot of the immunotherapies, gene therapies and other treatments. In fact, I might even get to personally deliver stem cells to the operating room for a patient. It will be for a clinical trial involving people who have broken their hip. It’s exciting because it feels full circle, from working in the laboratory to bringing stem cells right to the patient’s bedside.

We have ongoing clinical trials for critical limb ischemia, leukemia and, as I mentioned, sickle cell disease. Our disease teams are conducting stem cell clinical trials targeting sarcoma, cellular carcinoma, and treatments for dysphasia [a swallowing disorder], retinopathy [eye condition], Duchenne muscular dystrophy and HIV. It’s all in the works here at UC Davis Health.

There’s also great potential for therapies to help with renal disease and kidney transplants. The latter is really exciting because it’s like a mini bone marrow transplant. A kidney recipient would also get some blood-forming stem cells from the kidney donor so that they can better accept the organ and not reject it. It’s a type of stem cell therapy that could help address the burden of being on a lifelong regime of immunosuppressant drugs after transplantation.

Q: You and your colleagues get calls from family members and patients all the time. They frequently ask about stem cell “miracle” cures. What should people know about unproven treatments and unregulated stem cell clinics?

That’s a great question.The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.

When it comes to advertised therapies: “The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.”

Unfortunately, there are unscrupulous people out there in “unapproved clinics” who prey on desperate people. What they are delivering are probably not even stem cells. They might inject you with your own fat cells, which contain very few stem cells. Or they might use treatments that are not matched to the patient and will be immediately rejected. That’s dangerous. The FDA is shutting these unregulated clinics down one at a time. But it’s like “whack-a-mole”: shut one down and another one pops right up.

On the other hand, the Alpha Clinic is part of our mission is to help the public get to the right therapy, treatment or clinical trial. The big difference between those who make patients pay huge sums of money for unregulated and unproven treatments and UC Davis is that we’re actually using stem cells. We produce them in rigorously regulated cleanroom facilities. They are certified to contain at least 99% stem cells.

Patients and family members can always call us here. We can refer them to a genuine and approved clinical trial. If you don’t get stem cells at the beginning [of the clinical trial] because you’re part of the placebo group, you can get them later. So it’s not risky. The placebo is just saline. I know people are very, very desperate. But there are no miracle cures…yet. Clinical trials, approved by the FDA, are the only way we’re going to develop effective treatments and cures.

Q: Scientific breakthroughs take a lot of patience and time. How do you and your colleagues measure progress and stay motivated?   

Motivation?  “It’s all for the patients.”

It’s all for the patients. There are not good therapies yet for many disorders. But we’re developing them. Every day brings a triumph. Measuring progress means treating a patient in a clinical trial, or developing something in the laboratory, or getting FDA approval. The big one will be getting biological license approval from the FDA, which means a doctor can prescribe a stem cell or gene therapy treatment. Then it can be covered by a patient’s health insurance.

I’m a cancer survivor myself, and I’m also a heart patient. Our amazing team here at UC Davis has kept me alive and in great health. So I understand it from both sides. I understand the desperation of “Where do I go?” and “What do I do right now?” questions. I also understand the science side of things. Progress can feel very, very slow. But everything we do here at the Institute for Regenerative Cures is done with patients in mind, and safety.

We know that each day is so important when you’re watching a loved one suffer. We attend patient events and are part of things like Facebook groups, where people really pour their hearts out. We say to ourselves, “Okay, we must work harder and faster.” That’s our motivation: It’s all the patients and families that we’re going to help who keep us working hard.

Taking the message to the people: fighting for the future of stem cell research in California

Stem cells have been in the news a lot this week, and not necessarily for the right reason.

First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to crack down on clinics offering bogus, unproven and unapproved stem cell therapies.

But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.

It’s a reminder that for every step forward we take in trying to educate the public about the dangers of clinics offering unproven therapies, we often take another step back when a celebrity essentially endorses the idea.

So that’s why we are taking our message directly to the people, as often as we can and wherever we can.

In June we are going to be holding a free, public event in Los Angeles to coincide with the opening of the International Society for Stem Cell Research’s Annual Conference, the biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune system disorder called severe combined immunodeficiency, also known as “bubble baby disease”. And we’ll hear from the family of one of those children whose life he helped save.

And because CIRM is due to run out of money to fund new projects by the end of this year you’ll also learn about the very real concerns we have about the future of stem cell research in California and what can be done to address those concerns. It promises to be a fascinating evening.

But that’s not all. Our partners at USC will be holding another public event on stem cell research, on Wednesday June 26th from 6.30p to 8pm. This one is focused on treatments for age-related blindness. This features some of the top stem cell scientists in the field who are making encouraging progress in not just slowing down vision loss, but in some cases even reversing it.

You can find out more about that event here.

We know that we face some serious challenges in trying to educate people about the risks of going to a clinic offering unproven therapies. But we also know we have a great story to tell, one that shows how we are already changing lives and saving lives, and that with the support of the people of California we’ll do even more in the years to come.