Celebrating a life that almost didn’t happen

Evie Vaccaro

You can’t look at this photo and not smile. This is Evie Vaccaro, and it’s clear she is just bursting with energy and vitality. Sometimes it feels like I have known Evie all her life. In a way I have. And I feel so fortunate to have done so, and that’s why this photo is so powerful, because it’s a life that almost ended before it had a chance to start.

Evie was born with a rare condition called Severe Combined Immunodeficiency (SCID). Children with this condition lack a functioning immune system so even a simple cold or diaper rash can prove fatal. Imagine how perilous their lives are in a time of COVID-19. These children used to be called “bubble babies” because they were often kept inside sterile plastic bubbles to keep them alive. Many died before their second birthday.

Today there is no need for plastic bubbles. Today, we have a cure. That’s a word we use very cautiously, but in Evie’s case, and the case of more than 40 other children, we use it with pride.

Dr. Don Kohn and a child born with SCID

Dr. Don Kohn at UCLA has developed a method of taking the child’s own blood stem cells and, in the lab, inserting a corrected copy of the gene that caused SCID, and then returning those cells to the child. Because they are stem cells they multiply and renew and replicate themselves, creating a new blood supply, one free of the SCID mutation. The immune system is restored. The children are cured.

This is a story we have told several times before, but we mention it again because, well, it never gets old, and because Evie is on the front and back cover of our upcoming Annual Report. The report is actually a look back on the last 18 months in CIRM’s life, reporting on the progress we have made in advancing stem cell research, in saving and changing lives, and in producing economic benefits for California (billions of dollars in sales revenue and taxes and thousands of jobs).  

Evie’s story, Evie’s photo, is a reminder of what is possible thanks to the voters of California who created CIRM back in 2004. Hers is just one of the stories in the report. I think,  you’ll enjoy reading all of them.

Of course, I might be just a little bit biased.

Living proof science can find a cure

Like many kids, let’s face it, many adults too, Ronav “Ronnie” Kashyap is getting a little bored stuck inside all day during the coronavirus pandemic. This video, shot by his dad Pawash, shows Ronnie trying to amuse himself by pretending to be hard at work.

https://www.instagram.com/p/B_BSQaonFXb/

It’s a lovely moment. It’s also a moment that just a few years ago seemed almost impossible. That’s because Ronnie was born with severe combined immunodeficiency (SCID). SCID kids have no functioning immune system so even a simple infection, such as a cold, can be life-threatening.

Many of those hardest hit by COVID-19 have compromised immune systems. But try fighting the virus if you have no immune system at all. The odds would not be good.

Happily, we don’t have to imagine it because Ronnie is one of around 60 children who have undergone CIRM-supported stem cell/gene therapies that have helped repair their immune system.

In Ronnie’s case he was rushed to UC San Francisco shortly after his birth when a newborn screening test showed he had SCID. He spent the next several months there, in isolation with his parents, preparing for the test. Doctors took his own blood stem cells and, in the lab, corrected the genetic mutation that causes SCID. The cells were then re-infused into Ronnie where they created a new blood supply and repaired his immune system.

How good is his immune system today? Last year his parents, Upasana and Pawash, were concerned about taking Ronnie to a crowded shopping mall for fear he might catch a cold. Their doctor reassured them that he would be fine. So, they went. The doctor was right, Ronnie was fine. However, Upasana and Pawash both caught colds!

Just a few weeks ago Ronnie started pre-school. He loves it. He loves having other kids to play with and his parents love it because it helps him burn off some energy. But they also love it because it showed Ronnie is now leading a normal life, one where they don’t have to worry about everything he does, every person he comes into contact with.

Sounds a bit like how the rest of us are living right now doesn’t it. And the fears that Ronnie’s parents had, that even a casual contact with a friend, a family member or stranger, might prove life-threatening, are ones many of us are experiencing now.

When Ronnie was born he faced long odds. At the time there were only a handful of scientists working to find treatments for SCID. But they succeeded. Now, Ronnie, and all the other children who have been helped by this therapy are living proof that good science can overcome daunting odds to find treatments, and even cures, for the most life-threatening of conditions.

Today there are thousands, probably tens of thousands of scientists around the world searching for treatments and cures for COVID-19. And they will succeed.

Till then the rest of us will have to be like Ronnie. Stay at home, stay safe, and enjoy the luxury of being bored.

Stem Cell/Gene Therapy combo heals patients battling rare disorder

Brenden Whittaker and his dog: Photo by Colin McGuire

A few years ago, Brenden Whittaker was running out of time. Brenden was born with a rare condition called x-linked chronic granulomatous disease or XCGD. It meant he lacked a critical part of his immune system that protects against bacterial or fungal infections.

Over 22 years Brenden was in and out of the hospital hundreds of times. Twice he almost died. When antibiotics failed to clear up persistent infections surgeons had to remove parts of his lungs and liver.

Brenden felt he was running out of options. Then he signed up for a clinical trial (funded by CIRM) that would use his own stem cells to correct the problem. More than four years later Brenden is doing just fine.

And he’s not the only one. A new study, published in the journal Nature Medicine, shows that six other patients in the clinical trial are now in remission and have stopped taking any other medications.

Dr. Don Kohn: Photo courtesy UCLA

Don Kohn, the lead researcher on the team from UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, says that in the past the only “cure” for people with CGD was a bone marrow transplant, but that was rarely an option for most patients. In a news release he said finding a perfect match for a transplant was difficult, and even then, patients had to take powerful anti-rejection medications to stop their body rejecting the transplant. So, they developed another approach, using genetically re-engineered stem cells from the patient themselves.

“With this gene therapy, you can use a patient’s own stem cells instead of donor cells for a transplant. This means the cells are perfectly matched to the patient and it should be a much safer transplant, without the risks of rejection.”

The team removed blood stem cells from the patients and, in the lab, corrected the genetic mutation that caused CGD. They then returned those cells to the patients which, because they are stem cells, multiplied and created a new blood supply – one free of CGD – and repaired the immune system.

Brenden was the first of five patients treated in the US. Another four were treated in Europe. All were between the ages of 2 and 27 (CGD patients often die in their 20’s because of the impact of repeated infections).

  • Two patients died because of previously incurred infections
  • Six of the seven surviving patients have discontinued previous treatments
  • Four new patients have since been treated and are currently free of infections

Dr. Kohn said the results are really encouraging: “None of the patients had complications that you might normally see from donor cells and the results were as good as you’d get from a donor transplant — or better.”

The next step is for the researchers to work with the US Food and Drug Administration to get permission to carry out a larger trial, with the eventual goal of getting approval to make it available to all patients who need it.  

Regular readers of our blog will remember that Don Kohn also pioneered a similar approach in treating, and curing, children battling another rare immune disorder, severe combined immunodeficiency or SCID. You can read about that here.

As for Brenden, he is now in college and has his sights set on medical school. In 2016 we profiled him in our Annual Report and ran a long interview with him on the blog where he talked about the joys of mowing the lawn and learning to live without a deadly disease stalking him.

Good news for two CIRM-supported therapies

Jake Javier, a patient in the spinal cord injury stem cell therapy clinical trial

It’s always satisfying to see two projects you have supported for a long time do well. That’s particularly true when the projects in question are targeting conditions that have no other effective therapies.

This week we learned that a clinical trial we funded to help people with spinal cord injuries continues to show benefits. This trial holds a special place in our hearts because it is an extension of the first clinical trial we ever funded. Initially it was with Geron, and was later taken up by Asterias Biotherapeutics, which has seen been bought by Lineage Cell Therapeutics Inc.

The therapy involved transplanting oligodendrocyte progenitor cells (OPCs), which are derived from human embryonic stem cells, into people who suffered recent spinal cord injuries that left them paralyzed from the neck down.  OPCs play an important role in supporting and protecting nerve cells in the central nervous system, the area damaged in a spinal cord injury. It’s hoped the cells will help restore some of the connections at the injury site, allowing patients to regain some movement and feeling.

In a news release, Lineage said that its OPC therapy continues to report positive results, “where the overall safety profile of OPC1 has remained excellent with robust motor recovery in upper extremities maintained through Year 2 patient follow-ups available to date.”

Two years in the patients are all continuing to do well, and no serious unexpected side effects have been seen. They also reported:

– Motor level improvements

  1. Five of six Cohort 2 patients achieved at least two motor levels of improvement over baseline on at least one side as of their 24-month follow-up visit.
  2. In addition, one Cohort 2 patient achieved three motor levels of improvement on one side over baseline as of the patient’s 24-month follow-up visit; improvement has been maintained through the patient’s 36-month follow-up visit.

Brian M. Culley, CEO of Lineage Cell Therapeutics called the news “exciting”, saying “To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence.”

Evie, cured of SCID by a therapy licensed to Orchard Therapeutics

The other good news came from Orchard Therapeutics, a company we have partnered with on a therapy for Severe Combined Immunodeficiency (SCID) also known as “bubble baby diseases” (we have blogged about this a lot including here).

In a news release Orchard announced that the European Medicines Agency (EMA) has granted an accelerated assessment for their gene therapy for metachromatic leukodystrophy (MLD). This is a rare and often fatal condition that results in the build-up of sulfatides in the brain, liver, kidneys and other organs. Over time this makes it harder and harder for the person to walk, talk, swallow or eat.

Anne Dupraz-Poiseau, chief regulatory officer of Orchard Therapeutics, says this is testimony to the encouraging early results of this therapy. “We look forward to working with the EMA to ensure this potentially transformative new treatment, if approved, reaches patients in the EU as quickly as possible, and continuing our efforts to expand patient access outside the EU.”

The accelerated assessment potentially provides a reduced review timeline from 210 to 150 days, meaning it could be available to a wider group of patients sooner.  

New Report Says CIRM Produces Big Economic Boost for California

An independent Economic Impact Report says the California Institute for Regenerative Medicine (CIRM) has had a major impact on California’s economy, creating tens of thousands of new jobs, generating hundreds of millions of dollars in new taxes, and producing billions of dollars in additional revenue for the state.

The report, done by Dan Wei and Adam Rose at the Price School of Public Policy at the University of Southern California, looked at the impacts of CIRM funding on both the state and national economy from the start of the Stem Cell Agency in 2004 to the end of 2018.

The total impacts on the California economy are estimated to be:

  • $10.7 billion of additional gross output (sales revenue)
  • $641.3 million of additional state/local tax revenues
  • $726.6 million of additional federal tax revenues
  • 56,549 additional full-time equivalent (FTE) jobs, half of which offer salaries considerably higher than the state average

Maria Millan, M.D., CIRM’s President and CEO, says the report reflects the Agency’s role in building an ecosystem to accelerate the translation of important stem cell science to solutions for patients with unmet medical needs. “CIRM’s mission on behalf of patients has been the priority from day one, but this report shows that CIRM funding brings additional benefits to the state. This report reflects how CIRM is promoting economic growth in California by attracting scientific talent and additional capital, and by creating an environment that supports the development of businesses and commercial enterprises in the state”

In addition to the benefits to California, the impacts outside of California on the US economy are estimated to be:

  • $4.7 billion of additional gross output (sales revenue)
  • $198.7 million of additional state (non-Californian) & local tax revenue
  • $208.6 million of additional federal tax revenues
  • 25,816 additional full-time equivalent (FTE) jobs

The researchers summarize their findings, saying: “In terms of economic impacts, the state’s investment in CIRM has paid handsome dividends in terms of output, employment, and tax revenues for California.”

The estimates in the report are based on the economic stimulus created by CIRM funding and by the co-funding that researchers and companies were required to provide for clinical and late-stage preclinical projects. The estimates also include:

  • Investments in CIRM-supported projects from private funders such as equity investments, public offerings and mergers and acquisitions,
  • Follow-on funding from the National Institutes of Health and other organizations due to data generated in CIRM-funded projects
  • Funding generated by clinical trials held at CIRM’s Alpha Stem Cell Clinics network

The researchers state “Nearly half of these impacts emanate from the $2.67 billion CIRM grants themselves.”

“The economic impact of California’s investment in stem and regenerative cell research is reflective of significant progress in this field that was just being born at the time of CIRM’s creation,” says Dr. Millan. “We fund the most promising projects based on rigorous science from basic research into clinical trials. We partnered with researchers and companies to increase the likelihood of success and created specialized infrastructure such as the Alpha Clinics Network to support the highest quality of clinical care and research standards for these novel approaches.  The ecosystem created by CIRM has attracted scientists, companies and capital from outside the state to California. By supporting promising science projects early on, long before most investors were ready to come aboard, we enabled our scientists to make progress that positioned them to attract significant commercial investments into their programs and into California.”

These partnerships have helped move promising therapies out of the lab and into clinical trials for companies like Orchard Therapeutics’ successful treatment for Severe Combined Immunodeficiency and Forty Seven Inc.’s innovative approach to treating cancer.

Dr. Don Kohn: Photo courtesy UCLA Jonsson Comprehensive Cancer Center

“I think one of the greatest strengths of CIRM has been their focus on development of new stem cell therapies that can become real medicines,” says UCLA and Orchard Therapeutics’ Don Kohn, M.D. “This has meant guiding academic investigators to do the things that may be second nature in industry/pharmaceutical companies but are not standard for basic or clinical research.  The support from CIRM to perform the studies and regulatory activities needed to navigate therapies through the FDA and to form alliances with biotech and pharma companies has allowed the stem cell gene therapy we developed to treat SCID babies to be advanced and licensed to Orchard Therapeutics who can make it available to patients across the country.”

Dr. Mark Chao: Photo courtesy Forty Seven Inc.

“CIRM’s support has been instrumental to our early successes and our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach with magrolimab,” says Mark Chao, M.D., Ph.D., Founder and Vice President of Clinical Development at Forty Seven Inc. “ CIRM was an early collaborator in our clinical programs, and will continue to be a valued partner as we move forward with our MDS/AML clinical trials.”

The researchers say the money generated by partnerships and investments, what is called “deal-flow funding”, is still growing and that the economic benefits created by them are likely to continue for some time: “Deal-flow funding usually involves several waves or rounds of capital infusion over many years, and thus is it expected that CIRM’s past and current funding will attract increasing amounts of industry investment and lead to additional spending injections into the California economy in the years to come.”

They conclude their report by saying: “CIRM has led to California stem cell research and development activities becoming a leader among the states.”

One family’s fight to save their son’s life, and how stem cells made it possible

CIRM’s mission is very simple: to accelerate stem cell treatments to patients with unmet medical needs. Anne Klein’s son, Everett, was a poster boy for that statement. Born with a fatal immune disorder Everett faced a bleak future. But Anne and husband Brian were not about to give up. The following story is one Anne wrote for Parents magazine. It’s testament to the power of stem cells to save lives, but even more importantly to the power of love and the determination of a family to save their son.

My Son Was Born With ‘Bubble Boy’ Disease—But A Gene Therapy Trial Saved His Life

Everett Schmitt. Photo: Meg Kumin

I wish more than anything that my son Everett had not been born with severe combined immunodeficiency (SCID). But I know he is actually one of the lucky unlucky ones. By Anne Klein

As a child in the ’80s, I watched a news story about David Vetter. David was known as “the boy in the bubble” because he was born with severe combined immunodeficiency (SCID), a rare genetic disease that leaves babies with very little or no immune system. To protect him, David lived his entire life in a plastic bubble that kept him separated from a world filled with germs and illnesses that would have taken his life—likely before his first birthday.

I was struck by David’s story. It was heartbreaking and seemed so otherworldly. What would it be like to spend your childhood in an isolation chamber with family, doctors, reporters, and the world looking in on you? I found it devastating that an experimental bone marrow transplant didn’t end up saving his life; instead it led to fatal complications. His mother, Carol Ann Demaret, touched his bare hand for the first and last time when he was 12 years old.

I couldn’t have known that almost 30 years later, my own son, Everett, would be born with SCID too.

Everett’s SCID diagnosis

At birth, Everett was big, beautiful, and looked perfectly healthy. My husband Brian and I already had a 2-and-a-half-year-old son, Alden, so we were less anxious as parents when we brought Everett home. I didn’t run errands with Alden until he was at least a month old, but Everett was out and about with us within a few days of being born. After all, we thought we knew what to expect.

But two weeks after Everett’s birth, a doctor called to discuss Everett’s newborn screening test results. I listened in disbelief as he explained that Everett’s blood sample indicated he may have an immune deficiency.

“He may need a bone marrow transplant,” the doctor told me.

I was shocked. Everett’s checkup with his pediatrician just two days earlier went swimmingly. I hung up and held on to the doctor’s assurance that there was a 40 percent chance Everett’s test result was a false positive.

After five grueling days of waiting for additional test results and answers, I received the call: Everett had virtually no immune system. He needed to be quickly admitted to UCSF Benioff Children’s Hospital in California so they could keep him isolated and prepare to give him a stem cell transplant. UCSF diagnosed him specifically with SCID-X1, the same form David battled.

Beginning SCID treatment

The hospital was 90 miles and more than two hours away from home. Our family of four had to be split into two, with me staying in the hospital primarily with Everett and Brian and Alden remaining at home, except for short visits. The sudden upheaval left Alden confused, shaken, and sad. Brian and I quickly transformed into helicopter parents, neurotically focused on every imaginable contact with germs, even the mildest of which could be life-threatening to Everett.

When he was 7 weeks old, Everett received a stem cell transplant with me as his donor, but the transplant failed because my immune cells began attacking his body. Over his short life, Everett has also spent more than six months collectively in the hospital and more than three years in semi-isolation at home. He’s endured countless biopsies, ultrasounds, CT scans, infusions, blood draws, trips to the emergency department, and medical transports via ambulance or helicopter.

Gene therapy to treat SCID

At age 2, his liver almost failed and a case of pneumonia required breathing support with sedation. That’s when a doctor came into the pediatric intensive care unit and said, “When Everett gets through this, we need to do something else for him.” He recommended a gene therapy clinical trial at the National Institutes of Health (NIH) that was finally showing success in patients over age 2 whose transplants had failed. This was the first group of SCID-X1 patients to receive gene therapy using a lentiviral vector combined with a light dose of chemotherapy.

After the complications from our son’s initial stem cell transplant, Brian and I didn’t want to do another stem cell transplant using donor cells. My donor cells were at war with his body and cells from another donor could do the same. Also, the odds of Everett having a suitable donor on the bone marrow registry were extremely small since he didn’t have one as a newborn. At the NIH, he would receive a transplant with his own, perfectly matched, gene-corrected cells. They would be right at home.

Other treatment options would likely only partially restore his immunity and require him to receive infusions of donor antibodies for life, as was the case with his first transplant. Prior gene therapy trials produced similarly incomplete results and several participants developed leukemia. The NIH trial was the first one showing promise in fully restoring immunity, without a risk of cancer. Brian and I felt it was Everett’s best option. Without hesitation, we flew across the country for his treatment. Everett received the gene therapy in September 2016 when he was 3, becoming the youngest patient NIH’s clinical trial has treated.

Everett’s recovery

It’s been more than two years since Everett received gene therapy and now more than ever, he has the best hope of developing a fully functioning immune system. He just received his first vaccine to test his ability to mount a response. Now 6 years old, he’s completed kindergarten and has been to Disney World. He plays in the dirt and loves shows and movies from the ’80s (maybe some of the same ones David enjoyed).

Everett knows he has been through a lot and that his doctors “fixed his DNA,” but he’s focused largely on other things. He’s vocal when confronted with medical pain or trauma, but seems to block out the experiences shortly afterwards. It’s sad for Brian and me that Everett developed these coping skills at such a young age, but we’re so grateful he is otherwise expressive and enjoys engaging with others. Once in the middle of the night, he woke us up as he stood in the hallway, exclaiming, “I’m going back to bed, but I just want you to know that I love you with all my heart!”

I wish more than anything that Everett had not been born with such a terrible disease and I could erase all the trauma, isolation, and pain. But I know that he is actually one of the lucky unlucky ones. Everett is fortunate his disease was caught early by SCID newborn screening, which became available in California not long before his birth. Without this test, we would not have known he had SCID until he became dangerously ill. His prognosis would have been much worse, even under the care of his truly brilliant and remarkable doctors, some of whom cared for David decades earlier.

Carol-Ann-mother-of-David-Vetter-meeting-Everett-Schmitt
Everett Schmitt meeting David Vetter’s mom Carol Ann Demaret. Photo – Brian Schmitt

When Everett was 4, soon after the gene therapy gave him the immunity he desperately needed, our family was fortunate enough to cross paths with David’s mom, Carol Ann, at an Immune Deficiency Foundation event. Throughout my life, I had seen her in pictures and on television with David. In person, she was warm, gracious, and humble. When I introduced her to Everett and explained that he had SCID just like David, she looked at Everett with loving eyes and asked if she could touch him. As she touched Everett’s shoulder and they locked eyes, Brian and I looked on with profound gratitude.

Anne Klein is a parent, scientist, and a patient advocate for two gene therapy trials funded by the California Institute for Regenerative Medicine. She is passionate about helping parents of children with SCID navigate treatment options for their child.

You can read about the clinical trials we are funding for SCID here, here, here and here.

From bench to bedside: a Q&A with stem cell expert Jan Nolta

At CIRM we are privileged to work with many remarkable people who combine brilliance, compassion and commitment to their search for new therapies to help people in need. One of those who certainly fits that description is UC Davis’ Jan Nolta.

This week the UC Davis Newsroom posted a great interview with Jan. Rather than try and summarize what she says I thought it would be better to let her talk for herself.

Jan Nolta
Jan Nolta

Talking research, unscrupulous clinics, and sustaining the momentum

(SACRAMENTO) —

In 2007, Jan Nolta returned to Northern California from St. Louis to lead what was at the time UC Davis’ brand-new stem cell program. As director of the UC Davis Stem Cell Program and the Institute for Regenerative Cures, she has overseen the opening of the institute, more than $140 million in research grants, and dozens upon dozens of research studies. She recently sat down to answer some questions about regenerative medicine and all the work taking place at UC Davis Health.

Q: Turning stem cells into cures has been your mission and mantra since you founded the program. Can you give us some examples of the most promising research?

I am so excited about our research. We have about 20 different disease-focused teams. That includes physicians, nurses, health care staff, researchers and faculty members, all working to go from the laboratory bench to patient’s bedside with therapies.

Perhaps the most promising and exciting research right now comes from combining blood-forming

stem cells with gene therapy. We’re working in about eight areas right now, and the first cure, something that we definitely can call a stem cell “cure,” is coming from this combined approach.

Soon, doctors will be able to prescribe this type of stem cell therapy. Patients will use their own bone marrow or umbilical cord stem cells. Teams such as ours, working in good manufacturing practice facilities, will make vectors, essentially “biological delivery vehicles,” carrying a good copy of the broken gene. They will be reinserted into a patient’s cells and then infused back into the patient, much like a bone marrow transplant.

“Perhaps the most promising and exciting research right now comes from combining blood-forming stem cells with gene therapy.”

Along with treating the famous bubble baby disease, where I had started my career, this approach looks very promising for sickle cell anemia. We’re hoping to use it to treat several different inherited metabolic diseases. These are conditions characterized by an abnormal build-up of toxic materials in the body’s cells. They interfere with organ and brain function. It’s caused by just a single enzyme. Using the combined stem cell gene therapy, we can effectively put a good copy of the gene for that enzyme back into a patient’s bone marrow stem cells. Then we do a bone marrow transplantation and bring back a person’s normal functioning cells.

The beauty of this therapy is that it can work for the lifetime of a patient. All of the blood cells circulating in a person’s system would be repaired. It’s the number one stem cell cure happening right now. Plus, it’s a therapy that won’t be rejected. These are a patient’s own stem cells. It is just one type of stem cell, and the first that’s being commercialized to change cells throughout the body.

Q: Let’s step back for a moment. In 2004, voters approved Proposition 71. It has funded a majority of the stem cell research here at UC Davis and throughout California. What’s been the impact of that ballot measure and how is it benefiting patients?

We have learned so much about different types of stem cells, and which stem cell will be most appropriate to treat each type of disease. That’s huge. We had to first do that before being able to start actual stem cell therapies. CIRM [California Institute for Regenerative Medicine] has funded Alpha Stem Cell Clinics. We have one of them here at UC Davis and there are only five in the entire state. These are clinics where the patients can go for high-quality clinical stem cell trials approved by the FDA [U.S. Food and Drug Administration]. They don’t need to go to “unapproved clinics” and spend a lot of money. And they actually shouldn’t.

“By the end of this year, we’ll have 50 clinical trials.”

By the end of this year, we’ll have 50 clinical trials [here at UC Davis Health]. There are that many in the works.

Our Alpha Clinic is right next to the hospital. It’s where we’ll be delivering a lot of the immunotherapies, gene therapies and other treatments. In fact, I might even get to personally deliver stem cells to the operating room for a patient. It will be for a clinical trial involving people who have broken their hip. It’s exciting because it feels full circle, from working in the laboratory to bringing stem cells right to the patient’s bedside.

We have ongoing clinical trials for critical limb ischemia, leukemia and, as I mentioned, sickle cell disease. Our disease teams are conducting stem cell clinical trials targeting sarcoma, cellular carcinoma, and treatments for dysphasia [a swallowing disorder], retinopathy [eye condition], Duchenne muscular dystrophy and HIV. It’s all in the works here at UC Davis Health.

There’s also great potential for therapies to help with renal disease and kidney transplants. The latter is really exciting because it’s like a mini bone marrow transplant. A kidney recipient would also get some blood-forming stem cells from the kidney donor so that they can better accept the organ and not reject it. It’s a type of stem cell therapy that could help address the burden of being on a lifelong regime of immunosuppressant drugs after transplantation.

Q: You and your colleagues get calls from family members and patients all the time. They frequently ask about stem cell “miracle” cures. What should people know about unproven treatments and unregulated stem cell clinics?

That’s a great question.The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.

When it comes to advertised therapies: “The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.”

Unfortunately, there are unscrupulous people out there in “unapproved clinics” who prey on desperate people. What they are delivering are probably not even stem cells. They might inject you with your own fat cells, which contain very few stem cells. Or they might use treatments that are not matched to the patient and will be immediately rejected. That’s dangerous. The FDA is shutting these unregulated clinics down one at a time. But it’s like “whack-a-mole”: shut one down and another one pops right up.

On the other hand, the Alpha Clinic is part of our mission is to help the public get to the right therapy, treatment or clinical trial. The big difference between those who make patients pay huge sums of money for unregulated and unproven treatments and UC Davis is that we’re actually using stem cells. We produce them in rigorously regulated cleanroom facilities. They are certified to contain at least 99% stem cells.

Patients and family members can always call us here. We can refer them to a genuine and approved clinical trial. If you don’t get stem cells at the beginning [of the clinical trial] because you’re part of the placebo group, you can get them later. So it’s not risky. The placebo is just saline. I know people are very, very desperate. But there are no miracle cures…yet. Clinical trials, approved by the FDA, are the only way we’re going to develop effective treatments and cures.

Q: Scientific breakthroughs take a lot of patience and time. How do you and your colleagues measure progress and stay motivated?   

Motivation?  “It’s all for the patients.”

It’s all for the patients. There are not good therapies yet for many disorders. But we’re developing them. Every day brings a triumph. Measuring progress means treating a patient in a clinical trial, or developing something in the laboratory, or getting FDA approval. The big one will be getting biological license approval from the FDA, which means a doctor can prescribe a stem cell or gene therapy treatment. Then it can be covered by a patient’s health insurance.

I’m a cancer survivor myself, and I’m also a heart patient. Our amazing team here at UC Davis has kept me alive and in great health. So I understand it from both sides. I understand the desperation of “Where do I go?” and “What do I do right now?” questions. I also understand the science side of things. Progress can feel very, very slow. But everything we do here at the Institute for Regenerative Cures is done with patients in mind, and safety.

We know that each day is so important when you’re watching a loved one suffer. We attend patient events and are part of things like Facebook groups, where people really pour their hearts out. We say to ourselves, “Okay, we must work harder and faster.” That’s our motivation: It’s all the patients and families that we’re going to help who keep us working hard.

Taking the message to the people: fighting for the future of stem cell research in California

Stem cells have been in the news a lot this week, and not necessarily for the right reason.

First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to crack down on clinics offering bogus, unproven and unapproved stem cell therapies.

But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.

It’s a reminder that for every step forward we take in trying to educate the public about the dangers of clinics offering unproven therapies, we often take another step back when a celebrity essentially endorses the idea.

So that’s why we are taking our message directly to the people, as often as we can and wherever we can.

In June we are going to be holding a free, public event in Los Angeles to coincide with the opening of the International Society for Stem Cell Research’s Annual Conference, the biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune system disorder called severe combined immunodeficiency, also known as “bubble baby disease”. And we’ll hear from the family of one of those children whose life he helped save.

And because CIRM is due to run out of money to fund new projects by the end of this year you’ll also learn about the very real concerns we have about the future of stem cell research in California and what can be done to address those concerns. It promises to be a fascinating evening.

But that’s not all. Our partners at USC will be holding another public event on stem cell research, on Wednesday June 26th from 6.30p to 8pm. This one is focused on treatments for age-related blindness. This features some of the top stem cell scientists in the field who are making encouraging progress in not just slowing down vision loss, but in some cases even reversing it.

You can find out more about that event here.

We know that we face some serious challenges in trying to educate people about the risks of going to a clinic offering unproven therapies. But we also know we have a great story to tell, one that shows how we are already changing lives and saving lives, and that with the support of the people of California we’ll do even more in the years to come.

CIRM-funded therapy helps “bubble babies” lead a normal life

Ja’Ceon Golden; ‘cured” of SCID

At CIRM we are very cautious about using the “c” word. Saying someone has been “cured” is a powerful statement but one that loses its meaning when over used or used inappropriately. However, in the case of a new study from U.C. San Francisco and St. Jude Children’s Research Hospital in Memphis, saying “cure” is not just accurate, it’s a celebration of something that would have seemed impossible just a few years ago.

The research focuses on children with a specific form of Severe Combined Immunodeficiency (SCID) called X-Linked SCID. It’s also known as “bubble baby” disease because children born with this condition lack a functioning immune system, so even a simple infection could be fatal and in the past they were kept inside sterile plastic bubbles to protect them.

In this study, published in the New England Journal of Medicine, researchers took blood stem cells from the child and, in the lab, genetically re-engineered them to correct the defective gene, and then infused them back into the child. Over time they multiplied and created a new blood supply, one free of the defect, which helped repair the immune system.

In a news release Dr. Ewelina Mamcarz, the lead author of the study, announced that ten children have been treated with this method.

“These patients are toddlers now, who are responding to vaccinations and have immune systems to make all immune cells they need for protection from infections as they explore the world and live normal lives. This is a first for patients with SCID-X1.”

The ten children were treated at both St. Jude and at UCSF and CIRM funded the UCSF arm of the clinical trial.

The story, not surprisingly, got a lot of attention in the media including this fine piece by CNN.

Oh, and by the way we are also funding three other clinical trials targeting different forms of SCID. One with UCLA’s Don Kohn,  one with Stanford’s Judy Shizuru, and one with UCSF’s Mort Cowan

Stanford scientist uses CRISPR-Cas9 and stem cells to develop potential “bubble baby” therapy

Dr. Matthew Porteus, professor of pediatrics at Stanford University.
Photo courtesy of Stanford Medicine.

Our immune system is an important and essential part of everyday life. It is crucial for fighting off colds and, with the help of vaccinations, gives us immunity to potentially lethal diseases. Unfortunately, for some infants, this innate bodily defense mechanism is not present or is severely lacking in function.

This condition is known as severe combined immunodeficiency (SCID), commonly nicknamed “bubble baby” disease because of the sterile plastic bubble these infants used to be placed in to prevent exposure to bacteria, viruses, and fungi that can cause infection. There are several forms of SCID, one of which involves a single genetic mutation on the X chromosome and is known as SCID-X1

Many infants with SCID-X1 develop chronic diarrhea, a fungal infection called thrush, and skin rashes. Additionally, these infants grow slowly in comparison to other children. Without treatment, many infants with SCID-X1 do not live beyond infancy.

SCID-X1 occurs almost predominantly in males since they only carry one X chromosome, with at least 1 in 50,000 baby boys born with this condition. Since females carry two X chromosomes, one inherited from each parent, they are unlikely to inherit two X chromosomes with the mutation present since it would require the father to have SCID-X1.

What if there was a way to address this condition by correcting the single gene mutation? Dr. Matthew Porteus at Stanford University is leading a study that has developed an approach to treat SCID-X1 that utilizes this concept.

By using CRISPR-Cas9 technology, which we have discussed in detail in a previous blog post, it is possible to delete a problematic gene and insert a corrected gene. Dr. Porteus and his team are using CRISPR-Cas9 to edit blood stem cells, which give rise to immune cells, which are the foundation of the body’s defense mechanism. In a study published in Nature, Dr. Porteus and his team have demonstrated proof of concept of this approach in an animal model.

The Stanford team was able to take blood stem cells from six infants with SCID-X1 and corrected them with CRISPR-Cas9. These corrected stem cells were then introduced into mice modeled to have SCID-X1. It was found that these mice were not only able to make immune cells, but many of the edited stem cells maintained their ability to continuously create new blood cells.

In a press release, Dr. Mara Pavel-Dinu, a member of the research team, said:

“To our knowledge, it’s the first time that human SCID-X1 cells edited with CRISPR-Cas9 have been successfully used to make human immune cells in an animal model.”

CIRM has previously awarded Dr. Porteus with a preclinical development award aimed at developing gene correction therapy for blood stem cells for SCID-X1. In addition to this, CIRM has funded two other projects conducted by Dr. Porteus related to CRISPR-Cas9. One of these projects used CRISPR-Cas 9 to develop a treatment for chronic sinusitis due to cystic fibrosis and the second project used the technology to develop an approach for treating sickle cell disease.

CIRM has also funded four clinical trials related to SCID. Two of these trials are related to SCID-X1, one being conducted at St. Jude Children’s Research Hospital and the other at Stanford University. The third trial is related to a different form of SCID known as ADA-SCID and is being conducted at UCLA in partnership with Orchard Therapeutics. Finally, the last of the four trials is related to an additional form of SCID known as ART-SCID and is being conducted at UCSF.