CIRM-Funded Clinical Trials Targeting Blood and Immune Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our blood and immune disorders portfolio, specifically focusing on sickle cell disease, HIV/AIDS, severe combined immunodeficiency (SCID, also known as bubble baby disease) and rare disease called chronic granulomatous disease (CGD).

CIRM has funded a total of eight trials targeting these disease areas, all of which are currently active. Check out the infographic below for a list of those trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Advertisements

Stem cell stories that caught our eye: bubble baby therapy a go in UK, in-utero stem cell trial and novel heart disease target

There were lots of CIRM mentions in the news this week. Here are two brief recaps written by Karen Ring to get you up to speed. A third story by Todd Dubnicoff summarizes an promising finding related to heart disease by researchers in Singapore.  

CIRM-funded “bubble baby” disease therapy gets special designation by UK.
Orchard Therapeutics, a company based in the UK and the US, is developing a stem cell-based gene therapy called OTL-101 to treat a primary immune disease called adenosine-deaminase deficient severe combined immunodeficiency (ADA-SCID), also known as “bubble baby disease”. CIRM is funding a Phase 1/2 clinical trial led by Don Kohn of UCLA in collaboration with Orchard and the University College in London.

In July, the US Food and Drug Administration (FDA) awarded OTL-101 Rare Pediatric Disease Designation (read more about it here), which makes the therapy eligible for priority review by the FDA, and could give it a faster route to being made more widely available to children in need.

On Tuesday, Orchard announced further good news that OTL-101 received “Promising Innovative Medicine Designation” by the UK’s Medicines and Healthcare Products Regulatory Agency (MHRA). In a news release, the company explained how this designation bodes well for advancing OTL-101 from clinical trials into patients,

“The designation as Promising Innovative Medicine is the first step of a two-step process under which OTL-101 can benefit from the Early Access to Medicine Scheme (“EAMS”). Nicolas Koebel, Senior Vice President for Business Operations at Orchard, added: “With this PIM designation we can potentially make OTL-101 available to UK patients sooner under the Early Access to Medicine Scheme”.

CIRM funded UCSF clinical trial mentioned in SF Business Times
Ron Leuty, reporter at the San Francisco Business Times, published an article about a CIRM-funded trial out of UCSF that is targeting a rare genetic blood disease called alpha thalassemia major, describing it as, “The world’s first in-utero blood stem cell transplant, soon to be performed at the University of California, San Francisco, could point the way toward pre-birth cures for a range of blood diseases, such as sickle cell disease.”

Alpha Thalassemia affects the ability of red blood cells to carry oxygen because of a reduction in a protein called hemoglobin. The UCSF trial, spearheaded by UCSF Pediatric surgeon Dr. Tippi MacKenzie, is hoping to use stem cells from the mother to treat babies in the womb to give them a better chance at surviving after birth.

In an interview with Leuty, Tippi explained,

“Our goal is to put in enough cells so the baby won’t need another transplant. But even if we fall short, if we can just establish 1 percent maternal cells circulating in the child, it will establish tolerance and then they can get the booster transplant.”

She also emphasized the key role that CIRM funded played in the development and launch of this clinical trial.

“CIRM is about more than funding for studies, MacKenzie said. Agency staff has provided advice about how to translate animal studies into work in humans, she said, as well as hiring an FDA consultant, writing an investigational new drug application and setting up a clinical protocol.”

“I’m a clinician, but running a clinical trial is different,” MacKenzie said. “CIRM’s been incredibly helpful in helping me navigate that.”

Heart, heal thyself: the story of Singheart
When you cut your finger or scrape a knee, a scab forms, allowing the skin underneath to regenerate and repair itself. The heart is not so lucky – it has very limited self-healing abilities. Instead, heart muscle cells damaged after a heart attack form scar tissue, making each heart beat less efficient. This condition can lead to chronic heart disease, the number one killer of both men and women in the US.

A mouse heart cell with 2 nuclei (blue) and Singheart RNA labelled by red fluorescent dyes.
Credit: A*STAR’s Genome Institute of Singapore

Research has shown that newborn mice retain the ability to completely regenerate and repair injuries to the heart because their heart muscle cells, or cardiomyocytes, are still able to divide and replenish damaged cells. But by adulthood, the mouse cardiomyocytes lose the ability to stimulate the necessary cell division processes. A research team in Singapore wondered what was preventing cardiomyocytes cell division in adult mice and if there was some way to lift that block.

This week in Nature Communications, they describe the identification of a molecule they call Singheart that may be the answer to their questions. Using tools that allow the analysis of gene activity in single cells revealed that a rare population of diseased cardiomyocytes are able to crank up genes related to cell division. And further analysis showed Singheart, a specialized genetic molecule called a long non-coding RNA, played a role in blocking this cell division gene.

As lead author Dr. Roger Foo, a principal investigator at Genome Institute of Singapore (GIS) and the National University Health System (NUHS), explained in a press release, these findings may lead to new self-healing strategies for heart disease,

“There has always been a suspicion that the heart holds the key to its own healing, regenerative and repair capability. But that ability seems to become blocked as soon as the heart is past its developmental stage. Our findings point to this potential block that when lifted, may allow the heart to heal itself.”

Bye Bye bubble baby disease: promising results from stem cell gene therapy trial for SCID

Evangelina Padilla-Vaccaro
(Front cover of CIRM’s 2016 Annual Report)

You don’t need to analyze any data to know for yourself that Evangelina Vaccaro’s experimental stem cell therapy has cured her of a devastating, often fatal disease of the immune system. All you have to do is look at a photo or video of her to see that she’s now a happy, healthy 5-year-old with a full life ahead of her.

But a casual evaluation of one patient won’t get therapies approved in the U.S. by the Food and Drug Administration (FDA). Instead, a very careful collection of quantitative data from a series of clinical trial studies is a must to prove that a treatment is safe and effective. Each study’s results also provide valuable information on how to tweak the procedures to improve each follow on clinical trial.

A CIRM-funded clinical trial study published this week by a UCLA research team in the Journal of Clinical Investigation did just that. Of the ten participants in the trial, nine including Evangelina were cured of adenosine deaminase-deficient severe combined immunodeficiency, or ADA-SCID, a disease that is usually fatal within the first year of life if left untreated.

In the past, children with SCID were isolated in a germ-free sterile clear plastic bubbles, thus the name “bubble baby disease”. [Credit: Baylor College of Medicine Archives]

ADA-SCID, also referred to as bubble baby disease, is so lethal because it destroys the ability to fight off disease. Affected children have a mutation in the adenosine deaminase gene which, in early development, causes the death of cells that normally would give rise to the immune system. Without those cells, ADA-SCID babies are born without an effective immune system. Even the common cold can be fatal so they must be sheltered in clean environments with limited physical contact with family and friends and certainly no outdoor play.

A few treatments exist but they have limitations. The go-to treatment is a blood stem cell transplant (also known as a bone marrow transplant) from a sibling with matched blood. The problem is that a match isn’t always available and a less than perfect match can lead to serious, life-threatening complications. Another treatment called enzyme replacement therapy (ERT) involves a twice-weekly injection of the missing adenosine deaminase enzyme. This approach is not only expensive but its effectiveness in restoring the immune system varies over a lifetime.

Evangelina being treated by Don Kohn and his team in 2012.  Photo: UCLA

The current study led by Don Kohn, avoids donor cells and enzyme therapy altogether by fixing the mutation in the patient’s own cells. Blood stem cells are isolated from a bone marrow sample and taken back to the lab where a functional copy of the adenosine deaminase gene is inserted into the patient’s cells. When those cells are ready, the patient is subjected to drugs – the same type that are used in cancer therapy – that kill off a portion of the patient’s faulty immune system to provide space in the bone marrow. Then the repaired blood stem cells are transplanted back into the body where they settle into the bone marrow and give rise to a healthy new immune system.

The ten patients were treated between 2009 and 2012 and their health was followed up for at least four years. As of June 2016, nine of the patients in the trial – (all infants except for an eight-year old) – no longer need enzyme injections and have working immune systems that allow them to play outside, attend school and survive colds and other infections that inevitably get passed around the classroom. The tenth patient was fifteen years old at the time of the trial and their treatment was not effective suggesting that early intervention is important. No serious side effects were seen in any of the patients.

Evangelina V

Evangelina Vaccaro (far right), who received Dr. Kohn’s treatment for bubble baby disease in 2012, with her family before her first day of school. Photo: UCLA, courtesy of the Vaccaro family

Now, this isn’t the first ever stem cell gene therapy clinical trial to successfully treat ADA-SCID. Kohn’s team and others have carried out clinical trials over the past few decades, and this current study builds upon the insights of those previous results. In a 2014 press release reporting preliminary results of this week’s published journal article, Kohn described the importance of these follow-on clinical trials for ensuring the therapy’s success:

UCLA Jonsson Comprehensive Cancer Center
160401

Don Kohn

“We were very happy that over the course of several clinical trials and after making refinements and improvements to the treatment protocol, we are now able to provide a cure for babies with this devastating disease using the child’s own cells.”

The team’s next step is getting FDA approval to use this treatment in all children with ADA-SCID. To reach this aim, the team is carrying out another clinical trial which will test a frozen preparation of the repaired blood stem cells. Being able to freeze the therapy product buys researchers more time to do a thorough set of safety tests on the cells before transplanting them into the patient. A frozen product is also much easier to transport for treating children who live far from the laboratories that perform the gene therapy. In November of last year, CIRM’s governing Board awarded Kohn’s team $20 million to support this project.

If everything goes as planned, this treatment will be the first stem cell gene therapy ever approved in the U.S. We look forward to adding many new photos next to Evangelina’s as more and more children are cured of ADA-SCID.

Stem Cell Profiles in Courage: Brenden Whittaker

brenden-and-dog

Brenden Whittaker: Photo Colin McGuire

It’s not often you meet someone who says one of their favorite things in the world is mowing the lawn. But then, there aren’t many people in the world like Brenden Whittaker. In fact, as of this writing, he may be unique.

Brenden was born with severe chronic granulomatous disease (x-CGD), a rare genetic disorder that left him with an impaired immune system that was vulnerable to repeated bacterial and fungal infections. Over 22 years Brenden was in and out of the hospital hundreds of times, he almost died a couple of times, and lost parts of his lungs and liver.

Then he became the first person to take part in a clinical trial to treat x-CGD. UCLA researcher Don Kohn had developed a technique that removed Brenden’s blood stem cells, genetically re-engineered them to correct the mutation that caused the disease, and then returned those stem cells to Brenden. Over time they created a new blood system, and restored Brenden’s immune system.

He was cured.

We profiled Brenden for our 2016 Annual Report. Here’s an extended version of the interview we did with him, talking about his life before and after he was cured.

brenden_stories_of_hope

Brenden with a CIRM Game Ball – signed by everyone at CIRM

Brenden’s story:

I still think about it, my disease, every few days or so and it’s weird because in the past I was sick so often; before this year, I was sick consistently for about 5 years and going to doctor’s appointments 2 or 3 times a week and being in the hospital. So, it’s weird having a cough and not having to be rushed to the ER, not having to call someone every time the smallest thing pops up, and not having to worry about what it means.

It’s been good but it’s been weird to not have to do that.  It’s a nice problem to have.

What are you doing now that you didn’t do before?

Cutting the grass is something I couldn’t do before, that I’ve taken up now. Most people look at me as if I’m crazy when I say it, but I love cutting grass, and I wasn’t able to do it for 22 years of my life.

People will complain about having to pick up after their dog goes to the bathroom and now I can follow my dog outside and can pick up after her. It really is just the little things that people don’t think of. I find enjoyment in the small things, things I couldn’t do before but now I can and not have to worry about them.

The future

I was in the boy scouts growing up so I love camping, building fires, just being outdoors. I hiked on the Appalachian Trail. Now I’ll be able to do more of that.

I have a part time job at a golf course and I’m actually getting ready to go back to school full time in January. I want to get into pre-med, go to medical school and become a doctor. All the experience I’ve had has just made me more interested in being a doctor, I just want to be in a position where I can help people going through similar things, and going through all this just made me more interested in it.

Before the last few months I couldn’t schedule my work more than a week in advance because I didn’t know if I was going to be in the hospital or what was going on. Now my boss jokes that I’m giving him plans for the next month or two. It’s amazing how far ahead you can plan when you aren’t worried about being sick or having to go to the hospital.

I’d love to do some traveling. Right now most of my traveling consists of going to and from Boston (for medical check-ups), but I would love to go to Europe, go through France and Italy. That would be a real cool trip. I don’t need to see everything in the world but just going to other countries, seeing cities like London, Paris and Rome, seeing how people live in other cultures, that would be great.

Advice for others

I do think about the fact that when I was born one in a million kids were diagnosed with this disease and there weren’t any treatments. Many people only lived a few years. But to be diagnosed now you can have a normal life. That’s something all on its own. It’s almost impossible for me to fathom it’s happening, after all the years and doctor’s appointments and illnesses.

So, for people going through anything like this, I’d say just don’t give up. There are new advances being made every day and you have to keep fighting and keep getting through it, and some day it will all work out.


Related Links:

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Stem cell stories that caught our eye: improving heart care, fixing sickle cell disease, stem cells & sugar

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Using “disease in a dish” model to improve heart care
Medications we take to improve our quality of life might actually be putting our lives in danger. For example, some studies have shown that high doses of pain killers like ibuprofen can increase our risk of heart problems or stroke. Now a new study has found a way of using a person’s own cells, to make sure the drugs they are given help, and don’t hinder their recovery.

cardiacdisea

Cardiac muscle cells from boy with inherited heart arrhythmia.
Image: Emory University

Researchers at Emory University in Atlanta took skin cells from a teenage boy with an inherited heart arrhythmia, and turned them into induced pluripotent stem (iPS) cells – a kind of cell that can then be turned into any other cell in the body. They then turned the iPS cells into heart muscle cells and used those cells to test different medications to see which were most effective at treating the arrhythmia, without causing any toxic or dangerous side effects.

The study was published in Disease Models & Mechanisms. In a news release co-author Peter Fischbach, said the work enables them to study the impact on a heart cell, without taking any heart cells from patients:

“We were able to recapitulate in a petri dish what we had seen in the patient. The hope is that in the future, we will be able to do that in reverse order.”

Switching a gene “off” to ease sickle cell disease pain:
Sickle cell disease (SCD) is a nasty, inherited condition that not only leaves people in debilitating pain, but also shortens their lives. Now researchers at Dana-Farber and Boston Children’s Cancer and Blood Disorders Center have found a way that could help ease that pain in some patients.

SCD is caused by a mutation in hemoglobin, which helps carry oxygen around in our blood. The mutation causes normally soft, round blood cells to become stiff and sickle-shaped. These often stick together, blocking blood flow, causing intense pain, organ damage and even strokes.

In this study, published in the Journal of Clinical Investigation, researchers took advantage of the fact that SCD is milder in people whose red blood cells have a fetal form of hemoglobin, something which for most of us tails off after we are born. They found that by “switching off” a gene called BCL11A they could restart that fetal form of hemoglobin.

They did this in mice successfully. Senior author David Williams, in a story picked up by Health Medicine Network, says they now hope to try this in people:

“BCL11A represses fetal hemoglobin, which does not lead to sickling, and also activates beta hemoglobin, which is affected by the sickle-cell mutation. So when you knock BCL11A down, you simultaneously increase fetal hemoglobin and repress sickling hemoglobin, which is why we think this is the best approach to gene therapy in sickle cell disease.”

CIRM already has a similar approach in clinical trials. UCLA’s Don Kohn is using a genetic editing technique to add a novel therapeutic hemoglobin gene that blocks sickling of the red blood cells and hopefully cure the patient altogether. This fun video gives a quick summary of the clinical trial:


How a stem cell’s sugar metabolism controls its transformation potential
While CIRM makes its push to fund 50 more stem cell-based clinical trials by 2020, we also continue to fund research that helps us better understand stem cells. Case in point, this week a UCLA research team funded in part by CIRM reported that an embryonic stem cell’s sugar metabolism changes as its develops and that this difference has big implications on cell fate.

glucose

Glucose

The study, published in Cell Stem Cell, compared so-called “naïve” and “primed” human embryonic stem cells (ESCs). The naïve cells represent a very early stage of embryo development and the primed cells represent a slightly later stage. All cells use the sugar, glucose, to provide energy, though the researchers discovered that the naive stem cells “ate up” glucose four times faster than the primed stem cells (A fascinating side note is they also found the exact opposite behavior in mice: naïve mouse ESCs metabolize glucose slower than primed mouse ESCs. This is a nice example of why it’s important to study human cells to understand human biology). It turns out this difference effects each cells ability to differentiate, or specialize, into a mature cell type. When the researchers added a drug that inhibits glucose metabolism to the naïve cells and stimulated them down a brain cell fate, three times more of the cells specialized into nerve cells.

Their next steps are to understand exactly how the change in glucose metabolism affects differentiation. As Heather Christofk mentioned in a university press release, these findings could ultimately help researchers who are manipulating stem cells to develop cell therapy products:

“Our study proves that if you carefully alter the sugar metabolism of pluripotent stem cells, you can affect their fate. This could be very useful for regenerative medicine.”

Multi-Talented Stem Cells: The Many Ways to Use Them in the Clinic

CIRM kicked off the 2016 International Society for Stem Cell Research (ISSCR) Conference in San Francisco with a public stem cell event yesterday that brought scientists, patients, patient advocates and members of the general public together to discuss the many ways stem cells are being used in the clinic to develop treatments for patients with unmet medical needs.

Bruce Conklin, Gladstone Institutes & UCSF

Bruce Conklin, Gladstone Institutes & UCSF

Bruce Conklin, an Investigator at the Gladstone Institutes and UCSF Professor, moderated the panel of four scientists and three patient advocates. He immediately captured the audience’s attention by showing a stunning video of human heart cells, beating in synchrony in a petri dish. Conklin explained that scientists now have the skills and technology to generate human stem cell models of cardiomyopathy (heart disease) and many other diseases in a dish.

Conklin went on to highlight four main ways that stem cells are contributing to human therapy. First is using stem cells to model diseases whose causes are still largely unknown (like with Parkinson’s disease). Second, genome editing of stem cells is a new technology that has the potential to offer cures to patients with genetic disorders like sickle cell anemia. Third, stem cells are known to secrete healing factors, and transplanting them into humans could be beneficial. Lastly, stem cells can be engineered to attack cancer cells and overcome cancer’s normal way of evading the immune system.

Before introducing the other panelists, Conklin made the final point that stem cell models are powerful because scientists can use them to screen and develop new drugs for diseases that have no treatments or cures. His lab is already working on identifying new drugs for heart disease using human induced pluripotent stem cells derived from patients with cardiomyopathy.

Scientists and Patient Advocates Speak Out

Malin Parmar, Lund University

Malin Parmar, Lund University

The first scientist to speak was Malin Parmar, a Professor at Lund University. She discussed the history of stem cell development for clinical trials in Parkinson’s disease (PD). Her team is launching the first in-human trial for Parkinson’s using cells derived from human pluripotent stem cells in 2016. After Parmar’s talk, John Lipp, a PD patient advocate. He explained that while he might look normal standing in front of the crowd, his PD symptoms vary wildly throughout the day and make it hard for him to live a normal life. He believes in the work that scientists like Parmar are doing and confidently said, “In my lifetime, we will find a stem cell cure for Parkinson’s disease.”

Adrienne Shapiro, Patient Advocate

Adrienne Shapiro, Patient Advocate

The next scientist to speak was UCLA Professor Donald Kohn. He discussed his lab’s latest efforts to develop stem cell treatments for different blood disorder diseases. His team is using gene therapy to modify blood stem cells in bone marrow to treat and cure babies with SCID, also known as “bubble-boy disease”. Kohn also mentioned their work in sickle cell disease (SCD) and in chronic granulomatous disease, both of which are now in CIRM-funded clinical trials. He was followed by Adrienne Shapiro, a patient advocate and mother of a child with SCD. Adrienne gave a passionate and moving speech about her family history of SCD and her battle to help find a cure for her daughter. She said “nobody plans to be a patient advocate. It is a calling born of necessity and pain. I just wanted my daughter to outlive me.”

Henry Klassen (UC Irvine)

Henry Klassen, UC Irvine

Henry Klassen, a professor at UC Irvine, next spoke about blinding eye diseases, specifically retinitis pigmentosa (RP). This disease damages the photo receptors in the back of the eye and eventually causes blindness. There is no cure for RP, but Klassen and his team are testing the safety of transplanting human retinal progenitor cells in to the eyes of RP patients in a CIRM-funded Phase 1/2 clinical trial.

Kristen MacDonald, RP patient

Kristen MacDonald, RP patient

RP patient, Kristen MacDonald, was the trial’s first patient to be treated. She bravely spoke about her experience with losing her vision. She didn’t realize she was going blind until she had a series of accidents that left her with two broken arms. She had to reinvent herself both physically and emotionally, but now has hope that she might see again after participating in this clinical trial. She said that after the transplant she can now finally see light in her bad eye and her hope is that in her lifetime she can say, “One day, people used to go blind.”

Lastly, Catriona Jamieson, a professor and Alpha Stem Cell Clinic director at UCSD, discussed how she is trying to develop new treatments for blood cancers by eradicating cancer stem cells. Her team is conducting a Phase 1 CIRM-funded clinical trial that’s testing the safety of an antibody drug called Cirmtuzumab in patients with chronic lymphocytic leukemia (CLL).

Scientists and Patients need to work together

Don Kohn, Catriona Jamieson, Malin Parmar

Don Kohn, Catriona Jamieson, Malin Parmar

At the end of the night, the scientists and patient advocates took the stage to answer questions from the audience. A patient advocate in the audience asked, “How can we help scientists develop treatments for patients more quickly?”

The scientists responded that stem cell research needs more funding and that agencies like CIRM are making this possible. However, we need to keep the momentum going and to do that both the physicians, scientists and patient advocates need to work together to advocate for more support. The patient advocates in the panel couldn’t have agreed more and voiced their enthusiasm for working together with scientists and clinicians to make their hopes for cures a reality.

The CIRM public event was a huge success and brought in more than 150 people, many of whom stayed after the event to ask the panelists more questions. It was a great kick off for the ISSCR conference, which starts today. For coverage, you can follow the Stem Cellar Blog for updates on interesting stem cell stories that catch our eye.

CIRM Public Stem Cell Event

CIRM Public Stem Cell Event