It’s official: the state of regenerative medicine is strong

A panel discussion to a packed house at the annual ARM State of the Industry briefing

Calling it a “year of dramatic impact for patients” Janet Lambert, the CEO of the Alliance for Regenerative Medicine (ARM), gave the annual “State of the Industry” briefing today in San Francisco.

The briefing is a traditional kick-off event to mark JP Morgan week in the City, a time when hotel rooms go for $1,000 a night and just reserving a table in the lobby for meetings can set you back hundreds of dollars. Fortunately, the ARM briefing is free. And worth every penny.

Janet Lambert, CEO Alliance for Regenerative Medicine

Lambert ran down the numbers that highlighted how the field is growing and expanding:

  • 987 companies world wide – most of those in the US
  • 1,000 + clinical trials
  • $9.8 billion in revenue/investments

Saying “for many of these patients these therapies don’t just bring improvements, they bring dramatic improvements” Lambert pointed out that when those 1,000 clinical trials are fully enrolled it will mean 60,000 patients getting stem cell and gene therapies. She says it’s estimated that in the coming years around half a million patients in the US alone will get one of those therapies.

More and more of the clinical trials are at advanced stages:

  • 100 Phase 3
  • 591 Phase 2
  • 381 Phase 1

The biggest sector for clinical trials is cancer, but there are also substantial numbers for central nervous system therapies, muscular skeletal and even rare diseases.

Lambert said there are two key issues facing the field in the coming year. One is improving the industry’s manufacturing capability to ensure we are able to produce the cells needed to treat large numbers of patients. As evidence she cited the fact that Pfizer and Novartis are investing hundreds of millions of dollars in in-house manufacturing facilities. 

The second key issue is reimbursement, so that companies can get paid for delivering those treatments to patients.  “There is appetite and interest in this from people around the world, but right now most conversations about reimbursement are taking place one at a time. We haven’t yet evolved to the point where we have standard models to help get products to market and help them be commercially successful.”

The forecast for the year ahead? “Sunny with some clouds. 2019 was a year of significant growth and we enter 2020 with hopes of continued expansion, as we look to grow the impact on patients.” 

Facebook Live: Ask the Stem Cell Team

On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.

What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state. Paul Hartman.  San Leandro, California

Dr. Kelly Shepard

Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1)  our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism.  Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer.  There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.

************************************

STROKE

What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold

Dr. Lila Collins

Dr. Lila Collins: Hi Elvis, this is an evolving story.  I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized.  As you note, some of the treated subjects had promising motor recoveries. 

SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release.  While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI).  In this trial, SanBio saw positive results on motor recovery with their product.  In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well.  SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds. 

Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke.  The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.

*****************************

I am a stroke survivor will stem cell treatment able to restore my motor skills? Ruperto

Dr. Lila Collins:

Hi Ruperto. Restoring motor loss after stroke is a very active area of research.  I’ll touch upon a few ongoing stem cell trials.  I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.

Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier.  UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic).  Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.

There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours.  After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery.  Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.

Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke).  The trial has an accelerated FDA designation, called RMAT and a special protocol assessment.  This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing.  Results from this trial should be available in about two years. 

********************************

Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?

Dr. Lila Collins:

Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.

That said, hemorrhagic strokes are not rare and tend to be more deadly.  These strokes are caused by bleeding into or around the brain which damages neurons.  They can even increase pressure in the skull causing further damage.  Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.

While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.

We are aware of a clinical trial targeting acute hemorrhagic stroke that is being run by the Mayo clinic in Jacksonville Florida.

****************************

I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell

Dr. Lila Collins:

Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision).  The results could be:

  1. Visual loss from damage to the retina
  2. You could have a normal eye with damage to the area of the brain that controls the eye’s movement
  3. You could have damage to the part of the brain that interprets vision.

You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged. 

Replacing lost neurons is an active effort that at the moment is still in the research stages.  As you can imagine, this is complex because the neurons have to make just the right connections to be useful. 

*****************************

VISION

Is there any stem cell therapy for optical nerve damage? Deanna Rice

Dr. Ingrid Caras

Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments.  However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma

****************************

I read an article about ReNeuron’s retinitis pigmentosa clinical trial update.  In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors? Leonard

Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.

****************************

My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen

Dr. Ingrid Caras: The results will be available sometime in 2020.

*****************************

I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors.  My questions are: Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving? Leonard Furber, an RP Patient

Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.

Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye.   The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.

**********************************

DIABETES

What advances have been made using stem cells for the treatment of Type 2 Diabetes? Mary Rizzo

Dr. Ross Okamura

Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells.  The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations. 

Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases.  Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients.  Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns.  However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.

To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin.  While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.

It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.

***********************************

SPINAL CORD INJURY

Is there any news on clinical trials for spinal cord injury? Le Ly

Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.

“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”

Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.

In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.

*********************************

ALS

Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson

Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed.  So we will not expect to see the results probably for another year or two.

***********************************

AUTISM

Are there treatments for autism or fragile x using stem cells? Magda Sedarous

Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail.  CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.

**********************************

PARKINSON’S DISEASE

What is happening with Parkinson’s research? Hanifa Gaphoor

Dr. Kent Fitzgerald

Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research. 

The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.  

This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc.  Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix. 

Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease. 

Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients.   As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced.  The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient. 

One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s.  This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).

Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should. 

The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.   

********************************

HUNTINGTON’S DISEASE

Any plans for Huntington’s? Nikhat Kuchiki

Dr. Lisa Kadyk

Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded.   One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells.   When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons.  Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease.   Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.   

There are other, non-cell-based therapies also being tested in clinical trials now, using  anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein.  Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure, Voyager)

******************************

TRAUMATIC BRAIN INJURY (TBI)

My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:

  • Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
  •  
  • I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
  • Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?

Dr. Kelly Shepard:  TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred  previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.

********************************

We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?

Dr. Stephen Lin

Dr. Stephen Lin:  Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors.  Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes.  At present no regulatory approved clinical therapy has been developed using this approach. 

************************************

PREDATORY STEM CELL CLINICS

What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult? Kathy Jean Schultz

Dr. Geoff Lomax

Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”

In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.

  • First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
  • We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
  • Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.

*****************************************

I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial? Cheri Hicks

Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.

I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:

 1) I wonder on where the typical injection cells are coming from?

  2) I wonder what is the actual cost of the cells?

3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?

*********************************

Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:

  • There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
  • Most of the evidence presented is case reports that individuals have benefited
  • The challenge we face is not know the exact type of injury and cell treatments used.
  • Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
  • Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
  • You are correct that there have not been reports of serious injury for knee injections
  • However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.

*************************************

Do stem cells have benefits for patients going through chemotherapy and radiation therapy? Ruperto

Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.

Dr. Ingrid Caras: That’s an interesting and valid question.  There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries.  In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.

There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”).  It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain.  In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.

*****************************************

Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia?  Don Reed.

Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease.   In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves.  This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system.  For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”.   To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes.   Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.  

A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells.  The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells. 

*****************************************

Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason

Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.

********************************

What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas

Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment.  Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach.  CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations.  Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed.  It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.

CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.

While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or  metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.

**********************************

Explain the differences between gene therapy and stem cell therapy? Renee Konkol

Dr. Stephen Lin:  Gene therapy is the direct modification of cells in a patient to treat a disease.  Most gene therapies use modified, harmless viruses to deliver the gene into the patient.  Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis. 

Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease.  Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy.  Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells.  The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).

Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients.  Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.

***********************************

Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known? James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC

Dr. Stephen Lin:  Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting.  Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial.  CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials.  The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect.   Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.

*****************************************

Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs. Sajid

Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture.  These are quite different than MSCs and offer a new path to be explored for repairing and generating bone. 

Getting the inside scoop on the stem cell agency

There’s a wonderful moment at the end of the movie The Candidate (starring Robert Redford, 87% approval on Rotten Tomatoes!) about a modern political campaign for a US Senate seat. Redford (spoiler alert) plays a come-from-behind candidate and at the end when he wins he turns to his campaign manager and says “Now what?”.

I think that’s how a lot of people associated with Proposition 71 felt when it was approved by California voters in 2004, creating CIRM. Now what? During the campaign you are so focused on crossing the finish line that when the campaign is over you have to pause because you just realized it wasn’t the finishing line, it was actually the starting line.

For us “now what” involved hiring a staff, creating oversight groups of scientists and ethics experts, developing strategies and then mechanisms for funding, and then mechanisms for tracking that funding to make sure it was being used properly. It was creating something from scratch and trying to do something that no state agency had done before.

Fifteen years later we are coming to the end of the funding provided by Prop 71 and that question keeps popping up again, “Now what?” And that’s what we are going to be talking about in our next Facebook Live.

We have three great experts on our panel. They are scientists and researchers and leaders in biotech, but also members of our CIRM Board. We rely on their experience and expertise in making key decisions and you can rely on them to pull back the curtain and talk about the things that matter most to them in helping advance our mission, and in helping secure our legacy.

Anne-Marie Duliege MD, has more than 25 years of experience in the medical world, starting out as a pediatrician and then moving into research. She has experience developing new therapies for auto-immune disorders, lung problems and infectious diseases.

Like Anne-Marie, Joe Panetta, has years of experience working in the research field, and is currently President & CEO of Biocom, the California association that advocates for more than 1,200 companies, universities and research institutes working in biotechnology.

Finally, Dave Martin MD, came to CIRM after stints at the National Institutes of Health (NIH), UC San Francisco, Genentech, Chiron and several other highly-regarded organizations. He is also the co-founder, chairman and CEO of AvidBiotics, a privately held biotechnology company in South San Francisco.

Each brings a different perspective to the work that we do at CIRM, and each enriches it not just with their intelligence and experience, but also with their compassion for the patients and commitment to our mission.

So, join us on Thursday, July 25th from noon till 1pm (PDT) for a special Facebook Live “Ask the Stem Cell Team” to understand how we got where we are, how the rest of the field is doing, and what happens next. It promises to be a fascinating hour.

If you’re into stem cell manufacturing, this is the conference for you!

GMP cells

Manufacturing stem cells: Photo courtesy of Pluristem

Fulfilling CIRM’s mission doesn’t just mean accelerating promising stem cell treatments to patients. It also involves accelerating the whole field of regenerative medicine, which involves not just research, but developing candidate treatments, manufacturing cell therapies, and testing these therapies in clinical trials.

Manufacturing and the pre-clinical safety evaluation of cell therapies are topics that don’t always receive a lot of attention, but they are essential and crucial steps in bringing cell therapies to market. Manufacturing cells that meet the strict standards for use in human trials is often a bottleneck where different methods of making pluripotent stem cells (PSCs) are used and standardization is not readily possible.

Abla-8Abla Creasey, Vice President of Therapeutics and Strategic Infrastructure at CIRM, notes:

“The field of stem cell research and regenerative medicine has matured to the point where there are over 900 clinical trials worldwide. It is critical to develop a system of effective regulation of how these stem cell treatments are developed and manufactured so patients can benefit from future treatments.”

To address this challenge, CIRM has teamed up the International Alliance for Biological Standardization to host the 4th Cell Therapy Conference on Manufacturing and Testing of Pluripotent Stem Cells on June 5-6th in Los Angeles, California.

WHAT

The aim of this conference is twofold. Speakers will discuss how product development programs can be moved forward in a way that will meet regulatory requirements, so treatments can be approved.

The conference will also focus on key unresolved issues that need to be addressed for the manufacturing and safety testing of pluripotent stem cell-based therapies and then make recommendations to inform the future national and international policies. The overall aim is to provide participants with a road map so new treatments can achieve the highest regulatory standards and be made available to patients around the world.

The agenda of the conference will cover four main topics:

  1. Learning from the current pluripotent space and the development of international standards
  2. Bioanalytics and comparability of therapeutic stem cells
  3. Tumorigenicity testing for therapeutic safety
  4. Pluripotent stem cell manufacturing, storage, and shipment Issues

Using this “big tent” approach, speakers will exchange knowledge, experience and expertise to develop consensus recommendations around stem cell manufacturing and testing.  New data in this area will be introduced at the conference for the first time, such as a multi-center study to identify and optimize manufacturing-compatible methods for cell therapy safety.

WHO

The conference will bring together leading experts from industry, academia, health services and therapeutic regulatory bodies around the world, including the US Food and Drug Administration, European Medicines Agency, Japan Pharmaceuticals and Medical Devices Agency, and World Health Organization.

CIRM and IABS encourage individuals and organizations actively pursuing the development of stem cell therapies to attend.

WHY

robert deansIf you’re interested, but not quite sold on this conference, take the word of these experts:
Robert Deans, Chief Technology Officer at BlueRock Therapeutics:

“I believe standardization will be an increasingly crucial element in securing commercial success for regenerative cell therapies.  This applies to all facets of development, from cell characterization and patent protection through safety testing of final product.  Most important is the adherence of players in this sector to harmonized standards and creation of a scientifically credible market to the capital community.”

martin-pera-profileProfessor Martin Pera of the Jackson Laboratory, who directs the International  Stem Cell Initiative Genetics and Epigenetics Study Group:

“Participants at this meeting will survey and discuss the state of the art in the development of definitive assays for assessing the safety of pluripotent stem cell based therapies, a critical issue for the future of the field.  Anyone active in cell therapy should attend this meeting to contribute to a dialogue that will impact on research directions and ultimately help to define best practice in this sector.”

When and Where

The conference will be held in Los Angeles Airport Marriott on June 5-6th, 2018. Registration is now open on the IABS website and you can take advantage of discounted early bird registration before April 24th.

How CIRM funding creates additional financial support for stem cell research in California

CIRM’s 2017 Annual Report will be going live online very soon. In anticipation of that we are highlighting some of the key elements from the report here on the Stem Cellar.

Two businessman shaking hands

Partnerships that help advance stem cell research

CIRM funds stem cell research.  We all know that.  What you may not know is that CIRM funds also help bring in additional funding and investments to these projects, and as a result, to the state of California.  CIRM’s investment can also be seen as helping validate the credibility of a particular project, taking some of the risk out of investing in it.

We call this second wave of support “Leveraged Funding”. Since we were created in 2004 we have brought in $1.5 billion in Leveraged Funds.

We break that down into three main categories:

  1. Co-Funding– This is funding that was specifically committed to help co-fund a CIRM project. For example, if we fund a for-profit company to do a Phase 1 clinical trial we expect them to co-fund 30% of the cost of the trial. If it’s a Phase 3 clinical trial the co-funding amount rises to 50%.  To date we have received $911 million in co-funding.
  2. Partnership Funding– Partnership Funding – This is non-CIRM funding committed by partners, not already captured by Co-Funding. For example, our Board’s decision to invest in a project can sometimes be seen as a kind of “Good Housekeeping Seal of Approval” because it shows this project has been reviewed by experts and recommended for funding.  Our funding allows investigators to do the early work and get data that helps attract funding from outside investors. These funds can be committed or spent at the same time as CIRM funds or to further the project after the CIRM award expires. Since 2004, we have helped generate $528 million in partnership funding.
  3. Additional Leverage– This is everything not covered by the first two categories but is mainly non-CIRM funding reported in the “Outcomes Survey”, which the lead investigator on the project completes at the end of the award. This lets us know about any non-CIRM funding they received as a result of their CIRM project (such as money from the National Institutes of Health or other agency grants). More than $395 million in additional leverage funding has been raised because of CIRM.

In 2017, we saw eight projects that we support attract additional support, almost $390 million, from outside investors.

  Disease Area  Industry Partner 2017 Funding
1. Adenosine deaminase-deficient Severe Combined Immunodeficiency Orchard Therapeutics $110,000,000
2. X-Linked Chronic Granulomatous Disease Orchard Therapeutics Not disclosed
3. Acute Myeloid Leukemia Forty Seven, Inc. $75,000,000
4. Pediatrics Genetic Disorder AVROBIO, Inc. Not disclosed
5. HIV/AIDS CSL Behring $91,000,000
6. Chronic Lymphocytic Leukemia Oncternal, Inc. $18,400,000
7. Brain Cancer Mustang Bio, Inc. $94,500,000
8. Age-related Macular Degeneration Santen Pharmaceutical Not disclosed
  Total   $388,900,000

Our goal is to do all we can to support the best science and move it out of the lab and into clinical trials in people. Obviously, providing funding is a key step, but it’s far from the only step. For us, it’s really just the first step.

On Wednesday, we’ll profile one of the CIRM-funded researchers whose work is attracting support from outside investors, work that is taking a whole new approach to fighting a deadly brain cancer.

Creating partnerships to help get stem cell therapies over the finish line

Lewis, Clark, Sacagawea

Lewis & Clark & Sacagawea:

Trying to go it alone is never easy. Imagine how far Lewis would have got without Clark, or the two of them without Sacagawea. Would Batman have succeeded without Robin; Mickey without Minnie Mouse? Having a partner whose skills and expertise complements yours just makes things easier.

That’s why some recent news about two CIRM-funded companies running clinical trials was so encouraging.

Viacyte Gore

First ViaCyte, which is developing an implantable device to help people with type 1 diabetes, announced a collaborative research agreement with W. L. Gore & Associates, a global materials science company. On every level it seems like a natural fit.

ViaCyte has developed a way of maturing embryonic stem cells into an early form of the cells that produce insulin. They then insert those cells into a permeable device that can be implanted under the skin. Inside the device, the cells mature into insulin-producing cells. While ViaCyte has experience developing the cells, Gore has experience in the research, development and manufacturing of implantable devices.

Gore-tex-fabricWhat they hope to do is develop a kind of high-tech version of what Gore already does with its Gore-Tex fabrics. Gore-Tex keeps the rain out but allows your skin to breathe. To treat diabetes they need a device that keeps the immune system out, so it won’t attack the cells inside, but allows those cells to secrete insulin into the body.

As Edward Gunzel, Technical Leader for Gore PharmBIO Products, said in a news release, each side brings experience and expertise that complements the other:

“We have a proven track record of developing and commercializing innovative new materials and products to address challenging implantable medical device applications and solving difficult problems for biologics manufacturers.  Gore and ViaCyte began exploring a collaboration in 2016 with early encouraging progress leading to this agreement, and it was clear to us that teaming up with ViaCyte provided a synergistic opportunity for both companies.  We look forward to working with ViaCyte to develop novel implantable delivery technologies for cell therapies.”

AMD2

How macular degeneration destroys central vision

Then last week Regenerative Patch Technologies (RPT), which is running a CIRM-funded clinical trial targeting age-related macular degeneration (AMD), announced an investment from Santen Pharmaceutical, a Japanese company specializing in ophthalmology research and treatment.

The investment will help with the development of RPT’s therapy for AMD, a condition that affects millions of people around the world. It’s caused by the deterioration of the macula, the central portion of the retina which is responsible for our ability to focus, read, drive a car and see objects like faces in fine details.

RPE

RPT is using embryonic stem cells to produce the support cells, or RPE cells, needed to replace those lost in AMD. Because these cells exist in a thin sheet in the back of the eye, the company is assembling these sheets in the lab by growing the RPE cells on synthetic scaffolds. These sheets are then surgically implanted into the eye.

In a news release, RPT’s co-founder Dennis Clegg says partnerships like this are essential for small companies like RPT:

“The ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

These partnerships are not just good news for those involved, they are encouraging for the field as a whole. When big companies like Gore and Santen are willing to invest their own money in a project it suggests growing confidence in the likelihood that this work will be successful, and that it will be profitable.

As the current blockbuster movie ‘Beauty and the Beast’ is proving; with the right partner you can not only make magic, you can also make a lot of money. For potential investors those are both wonderfully attractive qualities. We’re hoping these two new partnerships will help RPT and ViaCyte advance their research. And that these are just the first of many more to come.

Stem cell and gene therapy research gets a good report card from industry leader

arm

Panel discussion at ARM State of the industry briefing: left to Right Robert Preti, Chair ARM; Jeff Walsh, bluebird bio; Manfred Rudiger, Kiadis Pharma; Barbara Sasu, Pfizer;  Thomas Farrell, Bellicum Pharmaceuticals. Photo courtesy ARM.

The state of the regenerative medicine field is strong and getting stronger. That was the bottom line verdict at the 2017 Cell and Gene Therapies State of the Industry briefing in San Francisco.

The briefing, an annual update on the field presented by the Alliance for Regenerative Medicine (ARM), gave a “by the numbers” look at the field and apart from one negative spot everything is moving in the right direction.

Robert Preti, Chair of ARM’s Board, said worldwide there are more than 750 regenerative companies working in the stem cell and gene therapy space. And those companies are increasingly moving the research out of the lab and into clinical trials in people.

For example, at the end of 2016 there were 802 clinical trials underway. That is a 21 percent growth over 2015. Those breakdown as follows:

Phase 1 – 271 (compared to 192 in 2015)

Phase 2 – 465 (compared to 376 in 2015)

Phase 3 – 66 (compared to 63 in 2015)

The bulk of these clinical trials, 45 percent, are focused on cancer. The second largest target, 11 percent, is on heart disease. The number of trials for neurological disorders and rare diseases are also growing in number.

Preti says the industry is at an important inflection point right now and that this growth is presenting new problems:

“The pipeline of products is robust and the technologies supporting that pipeline is even more robust. The technologies that are fueling the growth in clinical activity have accelerated so fast that we on the manufacturing side are playing catchup. We are at a point where we have to get serious about large scale commercial production.”

Preti also talked about “harmonization” of the regulatory process and the need to have a system that makes it easier for products approved for clinical trials in one country, to get approval for clinical trials in other countries.

Michael Werner, the executive director of ARM, said the organization has played a key role in helping promote the field and cited the recently passed 21st Century Cures Act as “a major win and a powerful statement of ARM’s leadership in this sector.”

But there was one area where the news wasn’t all positive, the ability of companies to raise capital. In 2015 companies raised $11 billion for research. In 2016 it was less than half of that, $5.3 billion.

With that somber note in mind it was appropriate that the panel discussion that followed the briefing was focused on the near-term and long-term challenges facing the field if it was to be commercially successful.

One of the big challenges was the issue of regulatory approval, and here the panel seemed to be more optimistic than in previous years.

Manfred Rüdiger of Kiadis Pharma said he was pleasantly surprised at how easy it was to work with different regulatory agencies in the US, Canada and Europe.

“We used them as a kind of free consultancy service, listening to their advice and making the changes they suggested so that we were able to use the same manufacturing process in Europe and Canada and the US.”

Jeff Walsh of bluebird bio, said the key to having a good working relationship with regulatory agencies like the Food and Drug Administration (FDA) is simple:

“Trust and transparency between you and the regulatory agencies is essential, it’s a critical factor in advancing your work. The agencies respond well when you have that trust. One thing we can’t be is afraid to ask. The agencies will tell you where their line is, but don’t be afraid to ask or to push the boundaries. This is new for everyone, companies and regulators, so if you are pushing it helps create the environment that allows you to work together to develop safe therapies that benefit patients.”

Another big issue was scalability in manufacturing; that it’s one thing to produce enough of a product to carry out a clinical trial but completely different if you are hoping to use that same product to treat millions of people spread out all over the US or the world.

And of course cost is always something that is front and center in people’s minds. How do you develop therapies that are not just safe and effective, but also affordable? How do companies ensure they will get reimbursed by health insurers for the treatments? No one had any simple answer to what are clearly very complex problems. But all recognized the need to start thinking about these now, long before the treatments themselves are even ready.

Walsh ended by saying:

“This is not just about what can you charge but what should you charge. We have a responsibility to engage with the agencies and ultimately the payers that make these decisions, in the same way we engage with regulatory agencies; with a sense of openness, trust and transparency. Too often companies wait too long, too late before turning to the payers and trying to decide what is appropriate to charge.”

 

 

Why Goldilocks could provide the answer to changing the way FDA regulates stem cells

img_1077

Panel on FDA regulation at World Stem Cell Summit

One of the hottest topics of the past year in regenerative medicine has been the discussion about the need for regulatory reform at the Food and Drug Administration (FDA) so it’s no surprise that topic was the subject of the first main panel discussion at the 2016 World Stem Cell Summit in West Palm Beach, Florida.

The panel, titled ‘FDA Oversight in Regenerative Medicine: What are the Options to Accelerating Translation’, kicked off with Celia Witten, Deputy Director of the Center for Biologics Evaluation and Research at the FDA. She laid out all the new steps that the agency is implementing to try and be more responsive to the needs of researchers and patients.

Perils facing pioneers

Martin McGlynn, the former CEO of StemCells Inc. was up next and he wasted little time listing the companies that had once been considered pioneers in the field only to fail for a variety of reasons. He said one of the big problems is that translational efforts, moving from a good idea to a clinical trial, take too long, saying 15 – 20 years is not unusual and that Big Pharma and strategic investors won’t invest until they see strong Phase 2 study results.

“We need to do great science and design and conduct great clinical trials to advance this field but we also have to come up with a sustainable business model to make this happen.”

A good start

He called the 21st Century Cures Act, which the US Senate approved yesterday, a good start but says many of the challenges won’t be helped by some of the new provisions:

“Many sponsors and companies don’t make it out of open label early studies, so the existence of an accelerated pathway or some of the other enabling tools included in the act will come too late for these groups.”

McGlynn warned that if we don’t take further steps, we risk falling behind the rest of the world where companies are buying up struggling US ventures:

“Many non-USA companies in Japan and China and Australia are quicker to recognize the value of many of the products and approaches that struggle here in the US.”

Too much, too little, just right

Marc Scheineson was the final speaker. He heads the food and drug law practice at Washington, DC law firm Alston & Bird and is a former Associate Commissioner for Legislative Affairs at the FDA. He began his presentation with what he said are the scariest words in the English language: “I‘m a lawyer from Washington D.C. and I’m here to help you.”

Scheineson says part of the problem is that the FDA was created long before cell therapy was possible and so it is struggling to fit its more traditional drug approval framework around stem cell therapies. As a result, this has led to completely separate regulatory processes for the transplantation of human organs and blood vessels, or for the use of whole blood or blood components.

He says it’s like the fable of Goldilocks and the Three Bears. Some of the regulation is too hard- resulting in a lengthy regulatory process that takes years to complete and costs billions of dollars – and some of the regulation is too soft allowing clinics to open up around the US offering unproven therapies. He says we need a Goldilocks approach that blends the two into regulations that are just right.

Time to take a second step

Scheineson agreed with McGlynn that the 21st Century Cures Act is a good start but it’s not enough.  He says it still relies heavily on the use of traditional criteria to regulate stem cells, and also leaves much of the interpretation of the Act to the discretion of the FDA.

“It’s a first step, an experiment to see if we can break the logjam and see if we can move things to an affordable BLA (The Biologics License Application is needed to be able to market a product once it’s approved by the FDA). But make no mistake, a cell therapy revolution is underway and I believe the FDA should seize the opportunity to promote innovation and not defensively protect the “status quo”.

 

 

BIO 2016: IMAGINE Curing Disease and Saving Lives Part 2

As promised, here is Part 2 of our blog coverage on the BIO International Convention currently ongoing in San Francisco. Here are a few more insights on the talks we attended and highlights of other coverage from top biotech journalists and media outlets.

Keynote with Dr. Bennet Omalu and Will Smith on “Concussion”

If you haven’t seen the movie Concussion, add it to your watch list right now. It’s certainly at the top of mine after listening to Nigerian-American doctor Bennet Omalu share his story about how he single-handedly changed the way the National Football League (NFL) and the world views concussions and brain science.

Will Smith and Dr. Bennet Omalu at #BIO2016

Will Smith and Dr. Bennet Omalu at #BIO2016

In this keynote address, Dr. Omalu sat down with actor Will Smith, who portrays Dr. Omalu in the movie, to discuss how knowledge and truth precipitates evolution. Because of his passion for seeking the truth, Omalu’s autopsy of former NFL player Mike Webster led to the first diagnosis of chronic traumatic encephalopathy (CTE). Omalu’s main message was that faith and science go hand in hand. “Faith searches for truth and science searches for truth. There is no end to truth.” He also emphasized that while the truth can be inconvenient, it’s worth pursuing because truth is empowering.

For Will Smith, portraying Dr. Omalu in Concussion, was both an honor and a duty. As a parent of a son who plays football, he was compelled to tell this story and share this knowledge with parents around the world. Smith was so motivated to take on Omalu’s character that he even watched Omalu conduct four autopsies so he could really understand both the man and the science behind CTE.

This dynamic conversation was the highlight of BIO, and you can read more details about it in this article by Eleena Korban of BIOtechNOW. 

Fireside chat with US FDA Commissioner Robert Califf

Robert Califf and Steve Usdin

Robert Califf and Steve Usdin

Robert Califf, the Commissioner of the US Food and Drug Administration, sat down with Steve Usdin, the Senior Editor with BioCentury, to discuss the most important topics facing the FDA right now. Here are some of his main points:

  • FDA will focus more on patient engagement. Califf said that patients should be involved from the beginning and not just be the recipients of the end product. He also touched on risk tolerance for patients and that it can vary based on disease. The FDA wants to engage patients, advocacy groups, and industry on this topic so that patients can make more educated decisions about their treatment options.
  • The cost of clinical trials is going up 3-4 times the consumer price index which is not sustainable. Califf suggested that we can use integrated health systems and already available data from electronic medical records and patient registries to reduce the costs of large clinical trials. He commented, “The question is, can you create a different playing field that would radically reduce the cost of clinical trials while actually getting us better data about what people really care about and solve their problems related to the use of our products. I think we are close to that point now.”
  • Califf mentioned the FDA’s role in President Obama’s Precision Medicine Initiative as a step towards radically accelerating the rate of drug development. The FDA is partnering with the NIH to create a cloud-based workspace where genetic information on disease can be stored, shared, and studied.
  • Lastly, Califf mentioned how the FDA is creating a virtual center of excellence for cancer research as part of the Cancer Moonshot Initiative. He said that the FDA needs to do a better job of collaborating across its different product centers and that drug devices and biologics will be brought together starting first in the oncology space, and then eventually rolled out to other disease areas. On the clinical side, they will focus on patient involvement and the needs of cancer patients.

More coverage on the FDA fireside chat from BIOtechNOW

 Final Thoughts

While BIO ends today, the partnerships, conversations, and innovation certainly will not. In just four short days, the vibrant and eager atmosphere of BIO has transformed this year’s theme of Imagination into one of hopeful reality. Curing disease and saving lives might not be in the immediate future, but after what I’ve seen at BIO, I’m confident that the groundwork has been laid out to accelerate us down this path.


Other #BIO2016 coverage

Get your BIO on: Sneak Peak of the June 2016 BIO Convention in SF

Screen Shot 2016-06-01 at 8.43.36 AM

Summer is almost here and for scientists around the world, that means it’s time to flock to one of the world’s biggest biotech meetings, the BIO International Convention.

This year, BIO is hosted in the lovely city of San Francisco. From June 6-9th, over 15,000 biotechnology and pharma leaders, as well as other professionals, academics, and patients will congregate to learn, educate, and network.

There’s something for everyone at this convention. If you check out the BIO agenda, you’ll find a plethora of talks, events, education sessions, and fire side chats on almost any topic related to science and biotechnology that you can imagine. The hard part will be deciding what to attend in only four short days.

For those going to BIO this year, make sure to check out the myBIO event planning tool that’s free for attendees and allows you to browse events and create a personalized agenda. You can also set up a professional profile that will share your background and networking interests with others at BIO. With this nifty tool, you can search for scientists, companies, and speakers you might want to connect with during the convention. Think of all the potential networking opportunities right at your fingertips!

Will Smith (source)

Will Smith (source)

For those who can’t make it to BIO, don’t worry, we have you covered. CIRM will be at the convention blogging and live tweeting. Because our mission is to bring stem cell treatments to patients with unmet medical needs, the majority of our coverage will be on talks and sessions related to regenerative medicine and patient advocacy. However, there are definitely some sessions outside these areas that we won’t want to miss such as the Tuesday Keynote talk by Dr. Bennet Omalu – who helped reveal the extent of brain damage in the NFL – and actor Will Smith – who plays Dr. Omalu in the movie ‘Concussion’. Their join talk is called “Knowledge Precipitates Evolution.”

Here’s a sneak peak of some of the other talks and events that we think will be especially interesting:


Monday June 6th

Education Sessions on Brain Health and Mitochondrial Disease

Moving Out of Stealth Mode: Biotech Journalists Offer Real-World Advice on Working with Media to Tell Your Story

“In this interactive panel discussion, well-known biotech reporters from print and online outlets will share their insights on how to successfully work with the media. Session attendees will learn critical needs of the media from what makes a story newsworthy to how to “pitch” a reporter to strategies for translating complicated science into a story for a broad audience.”

The Bioethics of Drug Development: You Decide

A discussion of the critical bioethical issues innovative manufacturers face in today’s healthcare ecosystem. Panelists will provide insights from a diverse set of perspectives, including investors, the patient advocacy community, bioethicists and federal regulators.”


Tuesday June 7th

Fireside Chat with Robert Califf, Commissioner of the US Food and Drug Administration (FDA)

Fireside Chat with Janet Napolitano, President of the University of California

Casting a Wider Net in Alzheimer’s Research: The Diversity of Today’s Approaches and Signs of Progress

Hear clinical researchers, biotech CEOs, and patient advocates explain how the field is pivoting from the failures of past approaches to make use of the latest generation of beta-amyloid research results as well as pursue alternative therapeutic angles to improve brain health.”

From Ebola to Zika: How Can We Go Faster in a Global Emergency?

This interactive panel of public health and industry leaders will discuss what has been learned through our global response to Ebola and what is and is not applicable to Zika or other pathogens of pandemic potential.”


Wednesday June 8th

Curative Therapies: Aligning Policy with Science to Ensure Patient Access

“The promise of curative treatments creates an urgent need to ensure access for patients, promote an environment conducive to developing new treatments, and manage the concentration of healthcare expenses in a sustainable manner.  A diverse set of panelists will tackle the tough questions around curative therapies and discern what changes are necessary for our health care delivery system to meet the challenges they pose.”

An Evolving Paradigm: Advancing the Science of Patient Input in the Drug Development and Regulatory Processes

This panel will explore advances in the field of assessing patient views and perspectives, and highlight how the patient voice is being incorporated into development programs and informing FDA review and approval decisions.”

A Media Perspective

“Any press is good press or so they say. You want your story known at the right time and in the right light, but how do you get industry journalist to notice you? What peaks their interest and how do they go about story discovery? What will they be looking to write about in the next 3 to 12 months? Three top journalists will discuss their approaches to keeping current and what makes a story newsworthy.”
Patient Advocacy Meetup

Over 40 patient advocacy organizations will be discussing their latest partnerships and developments in the areas of advancing disease research and drug development.


Thursday June 9th

Novel Advances in Cancer R&D: Meeting the Needs of the Patient

This panel will feature the views of patients and advocates, regulators, and companies who are working to change the way in which we diagnose and evaluate patients with cancer by better understanding the underlying biology of their disease.”


 To follow our coverage of BIO, visit our Stem Cellar Blog or follow us on Twitter at @CIRMNews.