Month of CIRM: Reviewing Review

Dr. Gil Sambrano, Vice President Portfolio & Review

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we take a look at our Review team.

Many people who have to drive every day don’t really think about what’s going on under the hood of their car. As long as the engine works and gets them from A to B, they’re happy. I think the same is true about CIRM’s Review team. Many people don’t really think about all the moving parts that go into reviewing a promising new stem cell therapy.

But that’s a shame, because they are really missing out on watching a truly impressive engine at work.

Just consider the simple fact that since CIRM started about 4,000 companies, groups and individuals have applied to us for funding. Just take a moment to consider that number. Four thousand. Then consider that at no time have there been more than 5 people working in the review team. That’s right. Just 5 people. And more recently there have been substantially fewer. That’s a lot of projects and not a lot of people to review them. So how do they do it? Easy. They’re brilliant.

First, as applications come in they are scrutinized to make sure they meet specific eligibility requirements; do they involve stem cells, is the application complete, is it the right stage of research, is the budget they are proposing appropriate for the work they want to do etc. If they pass that initial appraisal, they then move on to the second round, the Grants Working Group or GWG.

The GWG consists of independent scientific experts from all over the US, all over the world in fact. However, none are from California because we want to ensure there are no possible conflicts of interest. When I say experts, I do mean experts. These are among the top in their field and are highly sought after to do reviews with the National Institutes of Health etc.

Mark Noble, PhD, the Director of the Stem Cell and Regenerative Medicine Institute at the University of Rochester, is a long-time member of the GWG. He says it’s a unique group of people:

“It’s a wonderful scientific education because you come to these meetings and someone is putting in a grant on diabetes and someone’s putting in a  grant on repairing the damage to the heart or spinal cord injury or they have a device that will allow you to transplant cells better and there are people  in the room that are able to talk knowledgeably about each of these areas and understand how this plays into medicine and how it might work in terms of actual financial development and how it might work in the corporate sphere and how it fits in to unmet medical needs . I don’t know of any comparable review panels like this that have such a broad remit and bring together such a breadth of expertise which means that every review panel you come to you are getting a scientific education on all these different areas, which is great.”

The GWG reviews the projects for scientific merit: does the proposal seem plausible, does the team proposing it have the experience and expertise to do the work etc. The reviewers put in a lot of work ahead of time, not just reviewing the application, but looking at previous studies to see if the new application has evidence to support what this team hope to do, to compare it to other efforts in the same field. There are disagreements, but also a huge amount of respect for each other.

Once the GWG makes its recommendations on which projects to fund and which ones not to, the applications move to the CIRM Board, which has the final say on all funding decisions. The Board is given detailed summaries of each project, along with the recommendations of the GWG and our own CIRM Review team. But the Board is not told the identity of any of the applicants, those are kept secret to avoid even the appearance of any conflict of interest.

The Board is not required to follow the recommendations of the GWG, though they usually do. But the Board is also able to fund projects that the GWG didn’t place in the top tier of applications. They have done this on several occasions, often when the application targeted a disease or disorder that wasn’t currently part of the agency’s portfolio.

So that’s how Review works. The team, led by Dr. Gil Sambrano, does extraordinary work with little fanfare or fuss. But without them CIRM would be a far less effective agency.

The passage of Proposition 14 means we now have a chance to resume full funding of research, which means our Review team is going to be busier than ever. They have already started making changes to the application requirements. To help let researchers know what those changes are we are holding a Zoom webinar tomorrow, Thursday, at noon PST. If you would like to watch you can find it on our YouTube channel. And if you have questions you would like to ask send them to info@cirm.ca.gov

A Month of CIRM: Where we’ve been, where we’re going

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. We kick off this event with a letter from our the Chair of our Board, Jonathan Thomas.

When voters approved Proposition 14 last November, they gave the Stem Cell Agency a new lease on life and a chance to finish the work we began with the approval of Proposition 71 in 2004. It’s a great honor and privilege. It’s also a great responsibility. But I think looking back at what we have achieved over the last 16 years shows we are well positioned to seize the moment and take CIRM and regenerative medicine to the next level and beyond.

When we started, we were told that if we managed to get one project into a clinical trial by the time our money ran out we would have done a good job. As of this moment we have 68 clinical trials that we have funded plus another 31 projects in clinical trials where we helped fund crucial early stage research. That inexorable march to therapies and cures will resume when we take up our first round of Clinical applications under Prop 14 in March.

But while clinical stage projects are the end game, where we see if therapies really work and are safe in people, there’s so much more that we have achieved since we were created. We have invested $900 million in  basic research, creating a pipeline of the most promising stem cell research programs, as well as investing heavily on so-called “translational” projects, which move projects from basic science to where they’re ready to apply to the Food and Drug Administration (FDA) to begin clinical trials.

We have funded more than 1,000 projects, with each one giving us valuable information to help advance the science. Our funding has helped attract some of the best stem cell scientists in the world to California and, because we only fund research in California, it has persuaded many companies to either move here or open offices here to be eligible for our support. We have helped create the Alpha Stem Cell Clinics, a network of leading medical centers around the state that have the experience and expertise to deliver stem cell therapies to patients. All of those have made California a global center in the field.

That result is producing big benefits for the state. An independent Economic Impact Analysis reported that by the end of 2018 we had already helped generate an extra $10.7 billion in new sales revenue and taxes for California, hundreds of millions more in federal taxes and created more than 56,000 new jobs.

As if that wasn’t enough, we have also:

  • Helped develop the largest iPSC research bank in the world.
  • Created the CIRM Center of Excellence in Stem Cell Genomics to accelerate fundamental understanding of human biology and disease mechanisms.
  • Helped fund the construction of 12 world class stem cell institutes throughout the state.
  • Reached a unique partnership with the National Heart, Lung and Blood Institutes to find a cure for sickle cell disease.
  • Used our support for stem cell research to leverage an additional $12 billion in private funding for the field.
  • Enrolled more than 2700 patients in CIRM funded clinical trials

In many ways our work is just beginning. We have laid the groundwork, helped enable an extraordinary community of researchers and dramatically accelerated the field. Now we want to get those therapies (and many more) over the finish line and get them approved by the FDA so they can become available to many more people around the state, the country and the world.

We also know that we have to make these therapies available to all people, regardless of their background and ability to pay. We have to ensure that underserved communities, who were often left out of research in the past, are an integral part of this work and are included in every aspect of that research, particularly clinical trials. That’s why we now require anyone applying to us for funding to commit to engaging with underserved communities and to have a written plan to show how they are going to do that.

Over the coming month, you will hear more about some of the remarkable things we have managed to achieve so far and get a better sense of what we hope to do in the future. We know there will be challenges ahead and that not everything we do or support will work. But we also know that with the team we have built at CIRM, the brilliant research community in California and the passion and drive of the patient advocate community we will live up to the responsibility the people of California placed in us when they approved Proposition 14.

Stem cell research reveals path to schizophrenia

3d illustration of brain nerve cells – Photo courtesy Science Photo

If you don’t know what’s causing a problem it’s hard to come up with a good way to fix it. Mental health is the perfect example. With a physical illness you can see what the problem is, through blood tests or x-rays, and develop a plan to tackle it. But with the brain, that’s a lot harder. You can’t autopsy a brain while someone is alive, they tend to object, so you often only see the results of a neurological illness when they’re dead.

And, says Consuelo Walss-Bass, PhD, a researcher at the University of Texas Health Science Center at Houston (UTHealth), with mental illness it’s even more complicated.

“Mental health research has lagged behind because we don’t know what is happening biologically. We are diagnosing people based on what they are telling us. Even postmortem, the brain tissue in mental health disorders looks perfectly fine. In Alzheimer’s disease, you can see a difference compared to controls. But not in psychiatric disorders.”

So Wals-Bass and her team came up with a way to see what was going on inside the brain of someone with schizophrenia, in real time, to try and understand what puts someone at increased risk of the disorder.

In the study, published in the journal Neuropsychopharmacology, the researchers took blood samples from a family with a high incidence of schizophrenia. Then, using the iPSC method, they turned those cells into brain neurons and compared them to the neurons of individuals with no family history of schizophrenia. In effect, they did a virtual brain biopsy.

By doing this they were able to identify five genes that had previously been linked to a potential higher risk of schizophrenia and then narrow that down further, highlighting one gene called SGK1 which blocked an important signalling pathway in the brain.

In a news release, Walss-Bass says this findings could have important implications in treating patients.

“There is a new antipsychotic that just received approval from the Food and Drug Administration that directly targets the pathway we identified as dysregulated in neurons from the patients, and several other antipsychotics also target this pathway. This could help pinpoint who may respond better to treatments.”

Finding the right treatment for individual patients is essential in helping them keep their condition under control. A study in the medical journal Lancet estimated that six months after first being prescribed common antipsychotic medication, as many as 50% of patients are either taking the drugs haphazardly or not at all. That’s because they often come with unpleasant side effects such as weight gain, drowsiness and a kind of restless anxiety.

By identifying people who have specific gene pathways linked to schizophrenia could help us better tailor medications to those who will benefit most by them.

Persistence pays off in search for clue to heart defects

A team of scientists led by Benoit Bruneau (left), including Irfan Kathiriya (center) and Kavitha Rao (right), make inroads into understanding what genes are improperly deployed in some cases of congenital heart disease.  Photo courtesy Gladstone Institute

For more than 20 years Dr. Benoit Bruneau has been trying to identify the causes of congenital heart disease, the most common form of birth defect in the U.S. It turns out that it’s not one cause, but many.

Congenital heart disease covers a broad range of defects, some relatively minor and others life-threatening and even fatal. It’s been known that a mutation in a gene called TBX5 is responsible for some of these defects, so, in a CIRM-funded study ($1.56 million), Bruneau zeroed in on this mutation to see if it could help provide some answers.

In the past Bruneau, the director of the Gladstone Institute of Cardiovascular Disease, had worked with a mouse model of TBX5, but this time he used human induced pluripotent stem cells (iPSCs). These are cells that can be manipulated in the lab to become any kind of cell in the human body. In a news release Bruneau says this was an important step forward.

“This is really the first time we’ve been able to study this genetic mutation in a human context. The mouse heart is a good proxy for the human heart, but it’s not exactly the same, so it’s important to be able to carry out these experiments in human cells.”

The team took some iPSCs, changed them into heart cells, and used a gene editing tool called CRISPR-Cas9 to create the kinds of mutations in TBX5 that are seen in people with congenital heart disease. What they found was some genes were affected a lot, some not so much. Which is what you might expect in a condition that causes so many different forms of problems.

“It makes sense that some are more affected than others, but this is the first experimental data in human cells to show that diversity,” says Bruneau.

But they didn’t stop there. Oh no. Then they did a deep dive analysis to understand how the different ways that different cells were impacted related to each other. They found some cells were directly affected by the TBX5 mutation but others were indirectly affected.

The study doesn’t point to a simple way of treating congenital heart disease but Bruneau says it does give us a much better understanding of what’s going wrong, and perhaps will give us better ideas on how to stop that.

“Our new data reveal that the genes are really all part of one network—complex but singular—which needs to stay balanced during heart development. That means if we can figure out a balancing factor that keeps this network functioning, we might be able to help prevent congenital heart defects.”

The study is published in the journal Developmental Cell.

A guide to healing

Dr. Evan Snyder

Having grown up in an era where to find your way around you had to use paper maps, a compass and a knowledge of the stars (OK, I’m not actually that old!) I’m forever grateful to whoever invented the GPS. It’s a lifesaver, and I daresay has also saved more than a few marriages!

Having a way to guide people where they need to be is amazing. Now researchers at Sanford Burnham Prebys Medical Discovery Institute have come up with a similar tool for stem cells. It’s a drug that can help guide stem cells to go where they need to go, to repair damaged tissue and improve the healing process.

In a news release Evan Snyder, MD, PhD, the senior author of the study, explained in wonderfully simply terms what they have done:

“The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine. Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.”

More than a decade ago Snyder and his team discovered that when our body suffers an injury the result is often inflammation and that this then sends out signals for stem cells to come and help repair the damage. This is fine when the problem is a cut or sprain, short term issues in need of a quick fix. But what happens if it’s something more complex, such as a heart attack or stroke where the need is more long term.

In the study, funded in part by CIRM, the team took a molecule, called CXCL12, known to help guide stem cells to damaged tissue, and used it to create a drug called SDV1a. Snyder says this new drug has several key properties.

“Since inflammation can be dangerous, we modified CXCL12 by stripping away the risky bit and maximizing the good bit. Now we have a drug that draws stem cells to a region of pathology, but without creating or worsening unwanted inflammation.”

To test the drug to see how well it worked the team implanted SDV1a and some human brain stem cells into mice with Sandhoff disease, a condition that progressively destroys cells in the brain and spinal cord. They were able to demonstrate that the drug helped the stem cells migrate to where they were needed and to help in repairing the damage. The treated mice had a longer lifespan and better motor function, as well as developing symptoms later than untreated mice.

The team is now testing this drug to see if it has any impact on ALS, also known as Lou Gehrig’s disease. And Snyder says there are other areas where it could prove effective.

“We are optimistic that this drug’s mechanism of action may potentially benefit a variety of neurodegenerative disorders, as well as non-neurological conditions such as heart disease, arthritis and even brain cancer. Interestingly, because CXCL12 and its receptor are implicated in the cytokine storm that characterizes severe COVID-19, some of our insights into how to selectively inhibit inflammation without suppressing other normal processes may be useful in that arena as well.”

CIRM’s President & CEO, Dr. Maria Millan, says this kind of work highlights the important role the stem cell agency plays, in providing long-term support for promising but early stage research.

“Thanks to decades of investment in stem cell science, we are making tremendous progress in our understanding of how these cells work and how they can be harnessed to help reverse injury or disease. Dr. Snyder’s group has identified a drug that could boost the ability of neural stem cells to home to sites of injury and initiate repair. This candidate could help speed the development of stem cell treatments for conditions such as spinal cord injury and Alzheimer’s disease.”

The discovery is published in the Proceedings of the National Academy of Sciences (PNAS)

Much to be Thankful for

It’s traditional this time of year to send messages of gratitude to friends and family and colleagues. And we certainly have much to be thankful for.

Thanks to the voters of California, who passed Proposition 14, we have a bright, and busy, future. We have $5.5 billion to continue our mission of accelerating stem cell treatments to patients with unmet medical needs.

That means the pipeline of promising projects that we have supported from an early stage can now apply to us to help take that work out of the lab and into people.

It means research areas, particularly early-stage work, where we had to reduce our funding as we ran out of money can now look forward to increased support.

It means we can do more to bring this research, and it’s potential benefits, to communities that in the past were overlooked.

We have so many people to thank for all this. The scientists who do the work and championed our cause at the ballot box. The voters of California who once again showed their support for and faith in science. And the patients and patient advocates, the reason we were created and the reason we come to work every day.

As Dr. Maria Millan, our President & CEO, said in a letter to our team; “We are continually faced by great opportunities brilliantly disguised as insoluble problems.”  Here’s to the opportunities made possible by CIRM and for its continuation made possible by Prop 14!”

And none of this would be possible without the support of all of you. And for that we are truly Thankful.

From everyone at CIRM, we wish you a happy, peaceful and safe Thanksgiving.

One shot, two benefits!

Doctor preparing an influenza vaccine for a patient.

To try and boost sales during the pandemic many businesses are offering two-for-one deals; buy one product get another free. Well, that might also be the case with a flu shot; get one jab and get protection from two viruses.

A new study offers an intriguing – though not yet certain – suggestion that getting a flu shot could not only reduce your risk of getting the flu, but also help reduce your risk of contracting the coronavirus. If it’s true it would be a wonderful tool for health professionals hoping to head of a twindemic of flu and COVID-19 this winter. It would also be a pretty sweet deal for the rest of us.

Researchers at Radboud University Medical Center in the Netherlands looked through their hospital’s database and compared people who got a flu shot during the previous year with people who didn’t. They found that people who got the vaccine were 39 percent less likely to have tested positive for the coronavirus than people who didn’t get the vaccine.

Now, there are a bunch of caveats about this study (published in the preprint journal MedRxiv) one of which is that it wasn’t peer reviewed. Another is that people who get flu shots might just be more health conscious than people who don’t, which means they might also be more aware of the need to wear a mask, social distance, wash their hands etc.

But that doesn’t mean this study is wrong. Two recent studies (in the journal Vaccines and the Journal of Medical Virology) also found similar findings, that people over the age of 65 who got a flu shot had a lower risk of getting COVID-19. That’s particularly important for that age group as they are the ones most likely to experience life-threatening complications from COVID-19.

But what could explain getting a two-fer from one vaccine? Well, there’s a growing body of research that points to something called “trained innate immunity”. Our bodies have two different kinds of immune system, adaptive and innate. Vaccines activate the adaptive system, causing it to develop antibodies to attack and kill a virus. But there’s also evidence these same vaccines could trigger our innate immune system to help fight off infections. So, a flu vaccine could boost your adaptive immunity against the flu, but also kick in the innate immunity against the coronavirus.

In an article in Scientific American, Ellen Foxman, an immunobiologist and clinical pathologist at the Yale School of Medicine, says that might be the case here: “There is evidence from the literature that trained immunity does exist and can offer broad protection, in unexpected ways, against other pathogens besides what the vaccine was designed against.”

The researchers in the Netherlands wanted to see if there was any evidence that what they saw in their hospital had any basis in fact. So, they devised a simple experiment. They took blood cells from healthy individuals and exposed some of the cells to the flu vaccine. After six days they exposed all the cells to the SARS-CoV-2, the virus that causes COVID-19.

Compared to the untreated cells, the cells that had been exposed to the flu vaccine produced more virus-fighting immune molecules called cytokines. These can attack the virus and help protect people early on, resulting in a milder, less dangerous infection.

All in all it’s encouraging evidence that a flu shot might help protect you against the coronavirus. And at the very least it will reduce your risk of the flu, and if there’s one thing you definitely don’t want this year it’s having to battle two life-threatening viruses at the same time.

A look back at 15 years of CIRM funding at UCLA

Researchers in the lab of CIRM grantee Donald Kohn, M.D.
Image Credit: UCLA Broad Stem Cell Center

Since the first grant was issued in April 2006, CIRM has funded a wide range of research conducted by top scientists at UCLA for a wide range of diseases. To give a retrospective look at all the research, UCLA released a news article that describes all this work up until this past September. During this period, UCLA researchers were awarded 120 grants totaling more than $307 million. We’ll highlight some of these findings from the article below.

51 Basic Biology CIRM Grants

Basic biology research encompasses very early stage work that focuses on the very essentials such as how stem cells work, how to successfully turn a stem cell into another type of cell, and other basic mechanisms that underly the stem cell research field. This research is critical because they inform future therapies for dozens of conditions including heart disease, genetic and blood disorders, cancer, spinal cord injuries and neurological disorders.

3 Consecutive Year-Long CIRM Training Grants

These CIRM grants are essential in training the next generation of scientists and physicians in the regenerative medicine field. The CIRM training grants supported 146 graduate students, post‐doctoral fellows, and clinical fellows working in UCLA laboratories by providing them year-long  training fellowships. This program was so successful that the UCLA Broad Stem Cell Research Center funded 26 additional fellowships to supplement CIRM’s support.

5 COVID-19 Related Grants

Shortly after the coronavirus pandemic, CIRM authorized  $5 million in emergency funding to fund COVID-19 related projects. UCLA has received a $1.02 million to support four discovery research projects and one translational project. Discovery research promotes promising new technologies that could be translated to enable broad use and improve patient care. Translational research takes it a step further by promoting the activities necessary for advancement to clinical study of a potential therapy.

1 Alpha Stem Cell Clinic (ASCC) Grant

One award was used to establish the UCLA‐UCI Alpha Stem Cell Clinic. It is one of five leading medical centers throughout California that make up the CIRM ASSC Network, which specializes in the delivery of stem cell therapies by providing world-class, state of the art infrastructure to support clinical research.

8 Clinical Trials

Out of the 64 CIRM-funded clinical trials to date, eight of these have been conducted at UCLA. Most notably, this includes a stem cell gene therapy approach developed by Donald Kohn, M.D. The approach was used in three different clinical trials for the following genetic diseases: X-linked chronic granulomatous disease (X-CGD), bubbly baby disease (also known as SCID), and sickle cell disease. The SCID trial resulted in over 50 infants being cured of the disease, including little Evie. The other five clinical trials conducted at UCLA were for corneal damage, lung damage, skin cancer, sarcomas, and solid tumors.

Wide Reach of Conditions

CIRM grants at UCLA have supported research related to many conditions, including the following:

To read the full UCLA article that discusses some of the other grants, click here.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?