We at the California Institute for Regenerative Medicine have a lot to be thankful for this Thanksgiving. We get to work with some extraordinary colleagues, we get to know some remarkable patient advocates who are pioneers in volunteering for stem cell and gene therapies, and we have a front row seat in a movement that is changing the face of medicine.
We also get to work with some brilliant scientists and help support their research. As if we needed any reminders of how important that funding is, we thought we would share this video with you. It’s from the talented post docs and researchers at the University of California San Diego. It’s a delightful parody of the Cyndi Lauper classic “Girls Just Wanna Have Fun”. Only in this case it’s “Nerds Just Wanna Have Funds.”
Neurona Therapeutics is testing a new therapy for a drug-resistant form of epilepsy and has just released some encouraging early findings. The first patient treated went from having more than 30 seizures a month to just four seizures over a three-month period.
This clinical trial, funded by the California Institute for Regenerative Medicine (CIRM), is targeting mesial temporal lobe epilepsy (MTLE), one of the most common forms of epilepsy. Because the seizures caused by MTLE are frequent, they can be particularly debilitating and increase the risk of a decreased quality of life, depression, anxiety and memory impairment.
Neurona’s therapy, called NRTX-1001, consists of a specialized type of neuronal cell derived from embryonic stem cells. Neuronal cells are messenger cells that transmit information between different areas of the brain, and between the brain and the rest of the nervous system.
NRTX-1001 is injected into the brain in the area affected by the seizures where it releases neurotransmitters or chemical messengers that will block the signals in the brain causing the epileptic seizures.
The first patient treated had a nine-year history of epilepsy and, despite being on anti-epileptic medications, was experiencing dozens of seizures a month. Since the therapy he has had only four seizures in three months. The therapy hasn’t produced any serious side effects.
In a news release Dr. Cory Nicholas, Neurona’s President and CEO, said while this is only one patient, it’s good news.
“The reduced number of seizures reported by the first person to receive NRTX-1001 is very encouraging, and we remain cautiously optimistic that this reduction in seizure frequency will continue and extend to others entering this cell therapy trial. NRTX-1001 administration has been well tolerated thus far in the clinic, which is in line with the extensive preclinical safety data collected by the Neurona team. With recent clearance from the Data Safety Monitoring Board we are excited to continue patient enrollment. We are very grateful to these first participants, and thank the clinical teams for the careful execution of this pioneering study.”
CIRM has been a big supporter of this work from the early Discovery stage work to this clinical trial. That’s because when we find something promising, we want to do everything we can to help it live up to its promise.
Clinical fellow Brian Shy talks with postdoctoral scholar Tori Yamamoto in the Marson Lab at Gladstone Institutes on June 8th, 2022. Photo courtesy Gladstone Institutes.
For years scientists have been touting the potential of CRISPR, a gene editing tool that allows you to target a specific mutation and either cut it out or replace it with the corrected form of the gene. But like all new tools it had its limitations. One important one was the difficult in delivering the corrected gene to mature cells in large numbers.
Scientists at the Gladstone Institutes and U.C. San Francisco say they think they have found a way around that. And the implications for using this technique to develop new therapies for deadly diseases are profound.
In the past scientists used inactivated viruses as a way to deliver corrected copies of the gene to patients. We have blogged about UCLA’s Dr. Don Kohn using this approach to treat children born with SCID, a deadly immune disorder. But that was both time consuming and expensive.
CRISPR, on the other hand, showed that it could be easier to use and less expensive. But getting it to produce enough cells for an effective therapy proved challenging.
The team at Gladstone and UCSF found a way around that by switching from using CRISPR to deliver a double-stranded DNA to correct the gene (which is toxic to cells in large quantities), and instead using CRISPR to deliver a single stranded DNA (you can read the full, very technical description of their approach in the study they published in the journal Nature Biotechnology).
Alex Marson, MD, PhD, director of the Gladstone-UCSF Institute of Genomic Immunology and the senior author of the study, said this more than doubled the efficiency of the process. “One of our goals for many years has been to put lengthy DNA instructions into a targeted site in the genome in a way that doesn’t depend on viral vectors. This is a huge step toward the next generation of safe and effective cell therapies.”
It has another advantage too, according to Gladstone’s Dr. Jonathan Esensten, an author of the study. “This technology has the potential to make new cell and gene therapies faster, better, and less expensive.”
The team has already used this method to generate more than one billion CAR-T cells – specialized immune system cells that can target cancers such as multiple myeloma – and says it could also prove effective in targeting some rare genetic immune diseases.
Jackie Ward, PhD. Photo courtesy National Institute of Neurological Diseases and Stroke
It’s always fun to meet someone early in their career and see how they grow and evolve and take on new challenges.
I first met Jackie Ward when she received a training grant from CIRM while she studied for her PhD at the University of California, San Diego. Jackie offered to write blogs for us about her experience and they were always fun, informative, elegantly written and very engaging. Fast forward a few years and Jackie became a part of Americans For Cures, then she became Chief of Staff at the National Institute of Neurological Disorders and Stroke (NINDS), and finally – at least so far – she took on the role of Assistant Director at the White House Office of Science and Technology Policy (OSTP).
Not too shabby eh.
So, I reached out to Jackie and asked her some questions about her work and career. She generously put aside keeping the nation healthy to answer them. Enjoy.
What made you decide to move from research into government.
I think if you asked my high school government teacher (shout out to Mr. Bell!), he would be the least surprised person that I have ended up where I am currently. I was always interested in topics and activities beyond science, but at a certain point you have to choose a path. When it came time to deciding my undergraduate major, I figured that if I pursued my interest in biology it would still keep my options open to do something different in my career, but if I chose to be a French major, or Political Science major, or English major – I might close the door in my ability to pursue scientific research. When I got to graduate school, I saw the impact of government (both state and federal) decisions on work in the lab. This takes the form of where funding goes, but also in the rules you have to follow while doing research. Though I liked the pursuit of new knowledge and being the one designing and performing experiments, I was interested in understanding more about how those government decisions are made upstream of the lab bench.
What’s the most surprising thing you have learned in your time at the White House Office of Science and Technology Policy (OSTP).
Maybe not “surprising” but the thing that may not be obvious to outsiders: OSTP’s budget is tiny compared to other Executive Branch agencies (like where I came from previously at NIH). The work we accomplish in this office is solely by forming partnerships and collaborations with others across the government. We are not typically the rowers of the boat, but we can be the steerer or navigator. (Is the term coxswain? I have never been on a crew team obviously.)
Was it hard making the transition from research to advocacy and now policy?
Honestly I feel like my training in research set me up well for the jobs I’ve had in policy. There is often not someone telling you exactly how to do something – you have to do the work yourself to search the literature, talk to other people, find collaborators, and keep at it. And the skills that you hone in research – from keeping an organized lab notebook the whole way through to writing scientific papers – are some of the same skills you need in government.
At a time when so many people seem so skeptical of science how do you get your message out.
We have to meet people where they are. As a government official, I have great respect for messages that come from experts within the government – but that is not the only way the message should be getting out. Scientists and other experts within communities should also be spokespeople for science. I would urge scientists at every level – whether you are a citizen scientist, a medical doctor, a PhD student, or some other kind of expert – to engage with their communities and put the work in to understand how to effectively communicate at levels beyond just speaking to your colleagues.
One of the issues that so many of us, including here at CIRM, are working on is improving our performance in diversity, equity and inclusion. How big an issue is that for you and your colleagues at OSTP and what are you doing to try and address it.
The mission of our office is to “maximize the benefits of science and technology to advance health, prosperity, security, environmental quality, and justice for all Americans.” Those final two words are key: “all Americans.” It is the policy of this Office and our Administration that it is not okay for the benefits of science & technology to only reach a select few – who can afford it or who live in a certain zip code or who know the right people.
This takes different forms depending on what kind of S&T work we are talking about, but I will give you an example from my own work. I have been leading an effort that aims to explore and act upon how digital health care delivery technologies can be used to increase access to healthcare in community-based health settings. We know that these cutting edge technologies are most likely to get to people who, for example, get their care at academic medical centers, or who have primo health insurance plans, or who are already tech savvy. We feel that as these technologies continue to grow within the healthcare system, that it is an imperative to ensure that they are accessible to practitioners and patients at community health centers, or to people who may not be tech geeks, or that they can be interoperable with the systems used by community health workers.
During a time of Covid and now Monkeypox, what’s it like to have a front row seat and watch how government responds to public health emergencies.
My colleagues who work on outbreaks and pandemic responses are some of the most dedicated public servants I know. They will be the first to admit that we are continually learning and integrating new tools and technologies into our toolbox, and that is a constant effort. Emergent issues like outbreaks force decisions when there may not be a lot of information – that is a hard job.
I’ve always felt that DC would be a fun place to live and work (except during the height of summer!) what do you most like about it.
DC is a city full of people who care deeply (almost to a pathological extent) about the work they do and how to make the world a better place. There’s also incredible diversity here – which means a variety of viewpoints, languages, and food! I love that.
Jackie is not just a good writer. She’s also a great speaker. Here’s a clip of her responding to our Elevator Challenge many years ago, when she was still a fledgling researcher. Her explanation of what she does, is a master class in turning a complex subject into something easy to understand.
An ever-growing array of academic and industry resources are required to rapidly translate scientific discoveries and emerging technologies toward safe and effective regenerative medicine therapies for patients. To help, the California Institute for Regenerative Medicine (CIRM) is creating a network of Industry Resource Partners (IRP) that will make its unique resources available to help accelerate the progression of CIRM-funded Discovery, Translational and Clinical stage research projects toward transformative regenerative medicine therapies for rare and prevalent diseases.
The Industry Resource Partners will offer their services, technologies and expertise to CIRM-funded projects in a cost-effective, stage-appropriate and consistent manner.
For example, Novo Nordisk is making research-grade vials of its Good Manufacturing Practice (GMP)-grade human embryonic stem cell line available for CIRM Discovery Quest stage research projects at no cost. Having access to clinically compatible pluripotent stem cell lines such as this one will help CIRM researchers accelerate the translation of their therapeutic discoveries toward clinical use. Researchers will also have future access to Novo Nordisk’s GMP seed stock as well as opportunities for partnering with Novo Nordisk.
“CIRM is a lender of first resort, supporting projects in the very early stages, long before they are able to attract outside investment,” says Shyam Patel, PhD, the Director of Business Development at CIRM. “With the launch of this program we hope to create a force-multiplier effect by bringing in industry partners who have the resources, experience and expertise to help further accelerate CIRM-funded regenerative medicine research projects.”
This new network builds on work CIRM started in 2018 with the Industry Alliance Program (IAP). The goal of the IAP was to partner researchers and industry to help accelerate the most promising stem cell, gene and regenerative medicine therapy programs to commercialization. Four of the members of the IAP are also founding members or the IRP.
In addition to Novo Nordisk, the IRP includes:
ElevateBio is providing access to high quality, well-characterized induced pluripotent stem cell (iPSC) lines to CIRM Discovery Quest stage research projects for product development in regenerative medicine. CIRM awardees will also have access to ElevateBio’s viral vector technologies, process development, analytical development, and GMP manufacturing services.
Bayer is offering to support the cell therapy process development and GMP manufacturing needs of CIRM Translational and Clinical awardees at its newly built Berkeley facilities. The partnered projects will have access to Bayer’s cell therapy manufacturing facilities, equipment, resources and expertise. Bayer is also open to partnering from fee-based-services to full business development and licensing opportunities.
Resilience is providing access to its GMP manufacturing services for CIRM Translational and Clinical Stage projects. In addition to providing access to its cell therapy manufacturing services and partnering opportunities, Resilience will provide project consultation that could aid CIRM applicants in drafting manufacturing plans and budgets for CIRM applications.
“These partnerships are an important step forward in helping advance not only individual projects but also the field as a whole,” says Dr. Maria T. Millan, President and CEO of CIRM. “One of the biggest challenges facing regenerative medicine right now involves manufacturing. Providing researchers with access to high quality starting materials and advanced manufacturing capabilities is going to be essential in helping these projects maintain high quality standards and comply with the regulatory frameworks needed to bring these therapies to patients.”
While the IRP Network will offer its services to CIRM grantees there is no obligation or requirement that any CIRM awardee take advantage of these services.
One of the great pleasures of my job is getting to meet the high school students who take part in our SPARK or Summer Internship to Accelerate Regenerative Medicine Knowledge program. It’s a summer internship for high school students where they get to spend a couple of months working in a world class stem cell and gene therapy research facility. The students, many of whom go into the program knowing very little about stem cells, blossom and produce work that is quite extraordinary.
One such student is Tan Ieng Huang, who came to the US from China for high school. During her internship at U.C. San Francisco she got to work in the lab of Dr. Arnold Kriegstein. He is the Founding Director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco. Not only did she work in his lab, she took the time to do an interview with him about his work and his thoughts on the field.
It’s a fascinating interview and shows the creativity of our SPARK students. You will be seeing many other examples of that creativity in the coming weeks. But for now, enjoy the interview with someone who is a huge presence in the field today, by someone who may well be a huge presence in the not too distant future.
‘a tête-à-tête with Prof. Arnold Kriegstein’
The Kriegstein lab team: Photo courtesy UCSF
Prof. Arnold Kriegstein is the Founding Director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco. Prof. Kriegstein is also the Co-Founder and Scientific Advisor of Neurona Therapeutics which seeks to provide effective and safe cell therapies for chronic brain disorder. A Clinician by training, Prof. Kriegstein has been fascinated by the intricate workings of the human brain. His laboratory focuses on understanding the transcriptional and signaling networks active during brain development, the diversity of neuronal cell types, and their fate potential. For a long time, he has been interested in harnessing this potential for translational and therapeutic intervention.
During my SEP internship I had the opportunity to work in the Kriegstein lab. I was in complete awe. I am fascinated by the brain. During the course of two months, I interacted with Prof. Kriegstein regularly, in lab meetings and found his ideas deeply insightful. Here’s presenting some excerpts from some of our discussions, so that it reaches many more people seeking inspiration!
Tan Ieng Huang (TH): Can you share a little bit about your career journey as a scientist?
Prof. Arnold Kriegstein (AK): I wanted to be a doctor when I was very young, but in high school I started having some hands-on research experience. I just loved working in the lab. From then on, I was thinking of combining those interests and an MD/PhD turned out to be an ideal course for me. That was how I started, and then I became interested in the nervous system. Also, when I was in high school, I spent some time one summer at Rockefeller University working on a project that involved operant conditioning in rodents and I was fascinated by behavior and the role of the brain in learning and memory. That happened early on, and turned into an interest in cortical development and with time, that became my career.
TH: What was your inspiration growing up, what made you take up medicine as a career?
AK: That is a little hard to say, I have an identical twin brother. He and I used to always share activities, do things together. And early on we actually became eagle scouts, sort of a boy scout activity in a way. In order to become an eagle scout without having to go through prior steps, we applied to a special program that the scouts had, which allowed us to shadow physicians in a local hospital. I remember doing that at a very young age. It was a bit ironic, because one of the evenings, they showed us films of eye surgery, and my brother actually fainted when they made an incision in the eye. The reason it makes me laugh now is because my brother became an eye surgeon many years later. But I remember our early experience, we both became very fascinated by medicine and medical research.
Tan Ieng and Dr. Arnold Kriegstein at UCSF
TH: What inspired you to start the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research Institute?
AK: My interest in brain development over the years became focused on earlier stages of development and eventually Neurogenesis, you know, how neurons are actually generated during early stages of in utero brain development. In the course of doing that we discovered that the radial glial cells, which have been thought for decades to simply guide neurons as they migrate, turned out to actually be the neural stem cells, they were making the neurons and also guiding them toward the cortex. So, they were really these master cells that had huge importance and are now referred to as neural stem cells. But at that time, it was really before the stem cell field took off. But because we studied neurogenesis, because I made some contributions to understanding how the brain develops from those precursors or progenitor cells, when the field of stem cells developed, it was very simple for me to identify as someone who studied neural stem cells. I became a neural stem cell scientist. I started a neural stem cell program at Columbia University when I was a Professor there and raised 15 million dollars to seed the program and hired new scientists. It was shortly after that I was approached to join UCSF as the founder of a new stem cell program. And it was much broader than the nervous system; it was a program that covered all the different tissues and organ systems.
TH: Can you tell us a little bit about how stem cell research is contributing to the treatment of diseases? How far along are we in terms of treatments?
AK: It’s taken decades, but things are really starting to reach the clinic now. The original work was basic discovery done in research laboratories, now things are moving towards the clinic. It’s a really very exciting time. Initially the promise of stem cell science was called Regenerative medicine, the idea of replacing injured or worn-out tissues or structures with new cells and new tissues, new organs, the form of regeneration was made possible by understanding that there are stem cells that can be tweaked to actually help make new cells and tissues. Very exciting process, but in fact the main progress so far hasn’t been replacing worn out tissues and injured cells, but rather understanding diseases using human based model of disease. That’s largely because of the advent of induced pluripotent stem cells, a way of using stem cells to make neurons or heart cells or liver cells in the laboratory, and study them both in normal conditions during development and in disease states. Those platforms which are relatively easy to make now and are pretty common all over the world allow us to study human cells rather than animal cells, and the hope is that by doing that we will be able to produce conventional drugs and treatments that work much better than ones we had in the past, because they will be tested in actual human cells rather than animal cells.
TH: That is a great progress and we have started using human models because even though there are similarities with animal models, there are still many species-specific differences, right?
AK: Absolutely, in fact, one of the big problems now in Big Pharma, you know the drug companies, is that they invest millions and sometimes hundreds of millions of dollars in research programs that are based on successes in treating mice, but patients don’t respond the same way. So the hope is that by starting with a treatment that works on human cells it might be more likely that the treatment will work on human patients.
TH: What are your thoughts on the current challenges and future of stem cell research?
AK: I think this is an absolute revolution in modern medicine, the advent of two things that are happening right now, first the use of induced pluripotent stem cells, the ability to make pluripotent cells from adult tissue or cells from an individual allows us to use models of diseases that I mentioned earlier from actual patients. That’s one major advance. And the other is gene editing, and the combination of gene editing and cell-based discovery science allows us to think of engineering cells in ways that can make them much more effective as a form of cell therapy and those cell therapies have enormous promise. Right now, they are being used to treat cancer, but in the future, they might be able to treat heart attack, dementia, neurodegenerative diseases, ALS, Parkinson’s disease, a huge list of disorders that are untreatable right now or incurable. They might be approached by the combination of cell-based models, cell therapies, and gene editing.
TH: I know there are still some challenges right now, like gene editing has some ethical issues because people don’t know if there can be side effects after the gene editing, what are your thoughts?
AK: You know, like many other technologies there are uncertainties, and there are some issues. Some of the problems are off-target effects, that is you try to make a change in one particular gene, and while doing that you might change other genes in unexpected ways and cause complications. But we are understanding that more and more now and can make much more precise gene editing changes in just individual genes without affecting unanticipated areas of the genome. And then there are also the problems of how to gene-edit cells in a safe way. There are certain viral factors that can be used to introduce the gene editing apparatus into a cell, and sometimes if you are doing that in a patient, you can also have unwanted side effects from the vectors that you are using, often they are modified viral vectors. So, things get complicated very quickly when you start trying to treat patients, but I think these are all tractable problems and I think in time they will all be solved. It will be a terrific, very promising future when it comes to treating patients who are currently untreatable.
TH: Do you have any advice for students who want to get into this field?
AK: Yes, I think it’s actually never been a better time and I am amazed by the technologies that are available now. Gene editing that I mentioned before but also single cell approaches, the use of single cell multiomics revealing gene expression in individual cells, the molecular understanding of how individual cells are formed, how they are shaped, how they change from one stage to another, how they can be forced into different fates. It allows you to envision true Regenerative medicine, improving health by healing or replacing injured or diseased tissues. I think this is becoming possible now, so it’s a very exciting time. Anyone who has an interest in stem cell biology or new ways of treating diseases, should think about getting into a laboratory or a clinical setting. I think this time is more exciting than it’s ever been.
TH: So excited to hear that, because in school we have limited access to the current knowledge, the state-of-art. I want to know what motivates you every day to do Research and contribute to this field?
AK: Well, you know that I have been an MD/PhD, as I mentioned before, in a way, there are two different reward systems at play. In terms of the PhD and the science, it’s the discovery part that is so exciting. Going in every day and thinking that you might learn something that no one has ever known before and have a new insight into a mechanism of how something happens, why it happens. Those kinds of new insights are terrifically satisfying, very exciting. On the MD side, the ability to help patients and improve peoples’ lives is a terrific motivator. I always wanted to do that, was very driven to become a Neurologist and treat both adult and pediatric patients with neurological problems. In the last decade or so, I’ve not been treating patients so much, and have focused on the lab, but we have been moving some of our discoveries from the laboratory into the clinic. We have just started a clinical trial, of a new cell-based therapy for epilepsy in Neurona Therapeutics, which is really exciting. I am hoping it will help the patients but it’s also a chance to actually see something that started out as a project in the laboratory become translated into a therapy for patients, so that’s an achievement that has really combined my two interests, basic science, and clinical medicine. It’s a little late in life but not too late, so I’m very excited about that.
Tan Ieng Huang, Kriegstein Lab, SEP Intern, CIRM Spark Program2022
Tablet BM47753. Neo-Babylonian Period. Courtesy of the British Museum, London.
Epilepsy seems to have been a problem for people for as long as people have been around. The first recorded mention of it is on a 4000-year-old Akkadian tablet found in Mesopotamia (modern day Iraq). The tablet includes a description of a person with “his neck turning left, hands and feet are tense, and his eyes wide open, and from his mouth froth is flowing without him having any consciousness.”
Despite that long history, effective treatments for epilepsy were a long time coming. It wasn’t till the middle of the 19th century that physicians started using bromides to help people with the condition, but they also came with some nasty side effects, including depression, weakness, fatigue, lethargy, and coma.
Fast forward 150 years or so and we are now, hopefully, entering a new era. This week, Neurona Therapeutics announced they had dosed the first patient in their first-in-human clinical trial formesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults. The trial specifically targets people who have a drug-resistant form of MTLE.
Neurona has developed a therapy called NRTX-1001, consisting of a specialized type of neuronal or brain cell derived from embryonic stem cells. These cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.
A new approach is very much needed because current therapies for drug-resistant epilepsy are only partially effective and have serious drawbacks. One treatment that can significantly reduce seizure frequency is the removal of the affected part of the brain, however this can cause serious, irreversible damage, such as impacting memory, mood and vision.
CIRM has a vested interest in seeing this therapy succeed. We have invested more than $14 million over four different awards, in helping this research progress from a basic or Discovery level through to the current clinical trial.
In a news release, two key figures in administering the first dose to a patient said this was an important step forward.
Harish Babu, M.D., Ph.D., assistant professor of neurosurgery at SUNY Upstate Medical University said: “Neurona’s regenerative cell therapy approach has the potential to provide a single-administration, non-destructive alternative for the treatment of drug-resistant focal epilepsy. Currently, people with mesial temporal lobe epilepsy who are not responsive to anti-seizure medications have few options, such as an invasive surgery that removes or destroys the affected brain tissue.”
Robert Beach, M.D., Ph.D. professor of neurology at SUNY Upstate Medical University added: “The objective of NRTX-1001 is to add cells that have the potential to repair the circuits that are damaged in epilepsy and thus reduce seizure activity.”
There is a huge unmet medical need for an effective, long-term therapy. Right now, it’s estimated that three million Americans have epilepsy, and 25 to 35 percent live with ongoing seizures despite dozens of approved drugs on the market.
If this therapy works it might mean that 4,000 year old tablet will become a medical footnote, rather than a reminder that we still have work to do.
While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.
The awards are from CIRM’s DISC2 Quest program, which supports the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.
“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”
Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.
Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.
Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics
Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.
Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.
In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.
Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.
Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.
Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.
I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.
It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.
The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.
Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.
Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.
“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”
With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene?
The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.
As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.
“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”
Glaucoma is the world’s leading cause of irreversible blindness. There is no cure and current treatments are only able to slow down the progression of the disease. Now research using stem cells to create a genetic blueprint of glaucoma is giving scientist a powerful new tool to combat the disease.
Glaucoma occurs when healthy retinal ganglion cells, which relay information from the eyes to the brain, are damaged and die. However, researchers were unable to really understand what was happening because the only way to look at retinal ganglion cells was through very invasive procedures.
So, researchers in Australia took skin cells from people with glaucoma and people with healthy eyes and, using the iPSC method, turned them into retinal ganglion cells. They were then able to map the genetic expression of these cells and compare the healthy cells with the diseased ones.
In an interview with Science Daily, Professor Joseph Powell, who led the team, says they were able to identify more than 300 unique genetic features which could provide clues as to what is causing the vision loss.
“The sequencing identifies which genes are turned on in a cell, their level of activation and where they are turned on and off —— like a road network with traffic lights. This research gives us a genetic roadmap of glaucoma and identifies 312 sites in the genome where these lights are blinking. Understanding which of these traffic lights should be turned off or on will be the next step in developing new therapies to prevent glaucoma.”
Powell says by identifying underlying causes for glaucoma researchers may be able to develop new, more effective therapies.