Join us to hear how stem cell and gene therapy are taking on diseases of aging

It is estimated that as many as 90 percent of people in industrialized countries who die every day, die from diseases of aging such as heart disease, stroke, and cancer. Of those still alive the numbers aren’t much more reassuring. More than 80 percent of people over the age of 65 have a chronic medical condition, while 68 percent have two or more.

Current medications can help keep some of those conditions, such as high blood pressure, under control but regenerative medicine wants to do a lot more than that. We want to turn back the clock and restore function to damaged organs and tissues and limbs. That research is already underway and we are inviting you to a public event to hear all about that work and the promise it holds.

On June 16th from 3p – 4.30p PST we are holding a panel discussion exploring the impact of regenerative medicine on aging. We’ll hear from experts on heart disease and stroke; we will look at other ground breaking research into aging; and we’ll discuss the vital role patients and patient advocates play in helping advance this work.

The discussion is taking place in San Francisco at the annual conference of the International Society for Stem Cell Research. But you can watch it from the comfort of your own home. That’s because we are going to live stream the event.

Here’s where you can see the livestream: https://www.youtube.com/watch?v=CaUgsc5alDI

And if you have any questions you would like the panel to answer feel free to send them to us at info@cirm.ca.gov

The long road to developing a therapy for epilepsy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Good science takes time. That’s an important guiding phrase for researchers looking to develop new therapies. But it’s also a frustrating reality for patients who are waiting for something to help them now.

That point was driven home last week when the governing board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $8 million to test a new approach to treating a drug-resistant form of epilepsy. This approach holds a lot of promise but getting to this point has not been easy or quick.

Epilepsy is one of the most common neurological disorders in the US, affecting more than three million people. More than one third of those people have a form of epilepsy that doesn’t respond to current medications, so the only options are surgery or using lasers (LITT) to remove the affected part of the brain. Not surprisingly this can cause serious, irreversible damage, such as effects on memory, mood and vision. Equally unsurprising, because of those impacts many people are reluctant to go that route.

Now a company called Neurona Therapeutics has developed a new approach called NRTX-1001. This consists of a specialized type of neuronal or brain cell that is derived from embryonic stem cells (hESCs).  These neuronal cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

Cory Nicholas, PhD, the Co-Founder and CEO of Neurona says this approach will be tested on people with drug-resistant temporal lobe epilepsy, the most common form of epilepsy.

“To our knowledge, NRTX-1001 is the first human cell therapy to enter clinical trials for epilepsy. This cell therapy has the potential to provide a less invasive, non-tissue destructive, regenerative alternative for people with chronic focal seizures.” 

“Epilepsy patient advocates and clinicians have said that such a regenerative cell therapy could represent a first option that, if successful, could obviate the need for lobectomy/LITT. And for those not eligible for lobectomy/LITT, cell therapy could provide the only option to potentially achieve seizure-freedom.”

Nicholas says this work didn’t happen overnight. “This effort to develop regenerative cell therapy for epilepsy officially began in the early 2000’s from the laboratories of John Rubenstein, MD, PhD, Arturo Alvarez-Buylla, PhD, and Arnold Kriegstein, MD, PhD, at UC San Francisco. They were among the first to understand how specialized inhibitory nerve cells, called interneurons, develop from neural stem cells in our forebrain before birth. Subsequently, they pioneered the extraction and use of these cells as a cell therapy in preclinical models.”

Over the years the group working on this approach expanded, later becoming Neurona Therapeutics, and CIRM supported that work with several awards.

“CIRM provided the necessary funds and expertise to help translate our discoveries toward the clinic using human embryonic stem cell (hESC) technology to generate a sustainable supply of interneuron cells for further evaluation. Truly, CIRM has been the essential catalyst in accelerating this important research from bench to bedside.”

Nicholas says its immensely gratifying to be part of this work, and to know that if it succeeds it will be life-altering, even life-saving, for so many people.

“It is difficult to reflect back with all the work that is happening at present on the first-in-human trial, but it is always emotional for me to think about our amazing team: Neurona employees, CIRM staff, clinicians, professors, trainees, collaborators, and investors; who have worked tirelessly in contributing to the advancement of this therapeutic mission. I am deeply humbled by the opportunity to be part of this innovative, rigorous, and compassionate effort, and by the responsibility to the brave patients participating in the study. We remain steadfast in our commitment to patient safety and cautiously optimistic that NRTX-1001 cell therapy will improve quality of life for people living with chronic focal epilepsy. Moreover, we are sincerely thankful to Californians for their commitment to CIRM’s vision, and we are proud to be a part of this groundbreaking initiative that has put our state at the forefront, dedicated to fulfilling the promise of regenerative medicine.”

The power of the patient advocate: how a quick visit led to an $11M grant to fund a clinical trial

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Members of NFOSD visiting UC Davis in 2013

At the California Institute for Regenerative Medicine (CIRM) we are fortunate in having enough money to fund the most promising research to be tested in a clinical trial. Those are expensive projects, often costing tens of millions of dollars. But sometimes the projects that come to our Board start out years before in much more humble circumstances, raising money through patient advocates, tapping into the commitment and ingenuity of those affected by a disease, to help advance the search for a treatment.

That was definitely the case with a program the CIRM Board voted to approve yesterday, investing more than $11 million dollars to fund a Phase 2 clinical trial testing a cell therapy for dysphagia. That’s a debilitating condition that affects many people treated for head and neck cancer.

Patients with head and neck cancer often undergo surgery and/or radiation to remove the tumors. As a result, they may develop problems swallowing and this can lead to serious complications such as malnutrition, dehydration, social isolation, or a dependence on using a feeding tube. Patients may also inhale food or liquids into their lungs causing infections, pneumonia and death. The only effective therapy is a total laryngectomy where the larynx or voice box is removed, leaving the person unable to speak.

Dr. Peter Belafsky and his team at the University of California at Davis are developing a therapeutic approach using Autologous Muscle Derived Progenitor Cells (AMDC), cells derived from a biopsy of the patient’s own muscle, elsewhere in the body. Those AMDCs are injected into the tongue of the patient, where they fuse with existing muscle fibers to increase tongue strength and ability to swallow.

The $11,015,936 that Dr. Belafsky is getting from CIRM will enable them to test this approach in patients. But without grass roots support the program might never have made it this far.

Ed Steger is a long-term survivor of head and neck cancer, he’s also the President of the National Foundation of Swallowing Disorders (NFOSD). In 2007, after being treated for his cancer, Ed developed a severe swallowing disorder. It helped motivate him to push for better treatment options.

In 2013, a dozen swallowing disorder patients visited UC Davis to learn how stem cells might help people with dysphagia. (You can read about that visit here). Ed says: “We were beyond thrilled with the possibilities and drawing on patients and other UCD contacts our foundation raised enough funds to support a small UCD clinical trial under the guidance of Dr. Belafsky in mouse models that demonstrated these possibilities.”

A few years later that small funding by patients and their family members grew into a well-funded Phase I/II human clinical trial. Ed says the data that trial produced is helping advance the search for treatments.

“Skipping forward to the present, this has now blossomed into an additional $11 million grant, from CIRM, to continue the work that could be a game changer for millions of Americans who suffer annually from oral phase dysphagia. My hat is off to all those that have made this possible… the donors, patient advocates, and the dedicated committed researchers and physicians who are performing this promising and innovative research.”

Our hats are off to them too. Their efforts are making what once might have seemed impossible, a real possibility.

Replacement brain cells offer hope for Parkinson’s treatment

A colony of iPSCs from a Parkinson’s patient (left) and dopaminergic neurons made from these iPSCs (right) to model PD. (Image credit: Jeanne Loring)

A new study that used adult blood stem cells to create replacement brain nerve cells appears to help rats with Parkinson’s.

In Parkinson’s, the disease attacks brain nerve cells that produce a chemical called dopamine. The lack of dopamine produces a variety of symptoms including physical tremors, depression, anxiety, insomnia and memory problems. There is no cure and while there are some effective treatments they tend to wear off over time.

In this study, researchers at Arizona State University took blood cells from humans and, using the iPSC method, changed those into dopamine-producing neurons. They then cultured those cells in the lab before implanting them in the brains of rats which had Parkinson’s-like symptoms.

They found that rats given cells that had been cultured in the lab for 17 days survived in greater numbers and seemed to be better at growing new connections in their brains, compared to rats given cells that had been cultured for 24 or 37 days.

In addition, those rats given larger doses of the cells experienced a complete reversal of their symptoms, compared to rats given smaller doses.

In a news release, study co-author Dr. Jeffrey Kordower, said: “We cannot be more excited by the opportunity to help individuals who suffer from [a] genetic form of Parkinson’s disease, but the lessons learned from this trial will also directly impact patients who suffer from sporadic, or non-genetic forms of this disease.”

The study, published in the journal npj Regenerative Medicine, says this approach might also help people suffering from other neurological diseases like Alzheimer’s or Huntington’s disease.

Smoking marijuana could be bad for your heart, but there is an unusual remedy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Smoking medical marijuana: Photo courtesy Elsa Olofsson

Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.

There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.

Now this latest study, from researchers at Stanford Medicine,  shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.

The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:

  • Were significantly more likely than others to have a heart attack.
  • Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.

The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.

They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.

In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”

On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.

“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”

The bootcamp helping in the fight against rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Emil Kakkis at the Rare Entrepreneur Bootcamp

Imagine you or someone you love is diagnosed with a rare disease and then told, “There is no cure, there are no treatments and because it’s so rare no one is even doing any research into developing a treatment.” Sadly for millions of people that’s an all-too-common occurrence.

There are around 7,000 rare diseases affecting some 25-30 million Americans. Some of these are ultra-rare conditions where worldwide there may be only a few hundred people, or even a few dozen, diagnosed with it. And of all these rare diseases, only 5% have an approved therapy.

For the people struggling with a rare disease, finding a sense of hope in the face of all this can be challenging. Some say it feels as if they have been abandoned by the health care system. Others fight back, working to raise both awareness about the disease and funds to help support research to develop a treatment. But doing that without experience in the world of fund raising and drug development can pose a whole new series of challenges.

That’s where Ultragenyx comes into the picture. The company has a simple commitment to patients. “We aim to develop safe and effective treatments for many serious rare diseases as fast as we can, and we are committed to helping the whole rare disease community move forward by sharing our science and expertise to advance future development, whether by us or others.”

They live up to that commitment by hosting a Rare Entrepreneur Bootcamp. Every year they bring together a dozen or so patient or family organizations that are actively raising funds for a potential treatment approach and give them a 3-day crash course in what they’ll need to know to have a chance to succeed in rare disease drug development.

A panel discussion at the Rare Entrepreneur Bootcamp

Dr. Emil Kakkis, the founder of Ultragenyx, calls these advocates “warriors” because of all the battles they are going to face. He told them, “Get used to hearing no, because you are going to hear that a lot. But keep fighting because that’s the only way you get to ‘yes’.”

The bootcamp brings in experts to coach and advise the advocates on everything from presentation skills when pitching a potential investor, to how to collaborate with academic researchers, how to design a clinical trial, what they need to understand about manufacturing or intellectual property rights.

In a blog about the event, Arjun Natesan, vice president of Translational Research at Ultragenyx, wrote, “We are in a position to share what we’ve learned from bringing multiple drugs to market – and making the process easier for these organizations aligns with our goal of treating as many rare disease patients as possible. Our aim is to empower these organizations with guidance and tools and help facilitate their development of life-changing rare disease treatments.”

For the advocates it’s not just a chance to gain an understanding of the obstacles ahead and how to overcome them, it’s also a chance to create a sense of community. Meeting others who are fighting the same fight helps them realize they are not alone, that they are part of a bigger, albeit often invisible, community, working tirelessly to save the lives of their children or loved ones.  

CIRM also has a commitment to supporting the search for treatments for rare diseases. We are funding more than two dozen clinical trials, in addition to many earlier stage research projects, targeting rare conditions.

Turning back the clock to make old skin cells young again

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Diljeet Gill, photo courtesy Babraham Institute, Cambridge UK

Sometimes when I am giving public presentations people ask if stem cells are good for the face. I always say that if stem cells could help improve people’s faces would I look like this. It’s a line that gets a laugh but it’s also true. The ads you see touting stem cells as being beneficial for skin are all using plant stem cells. But now some new research has managed to turn back the clock for skin cells, and it might do a lot more than just help skin look younger.

Back in 2007 Japanese scientist Shinya Yamanaka discovered a way to turn ordinary skin cells back into an embryonic-like state, meaning those cells could then be turned into any other cell in the body. He called these cells induced pluripotent stem cells or iPSCs. Dr. Yamanaka was later awarded the Nobel Prize for Medicine for this work.

Using this work as their starting point, a team at Cambridge University in the UK, have developed a technique that can rewind the clock on skin cells but stop it less than a third of the way through, so they have made the cells younger but didn’t erase their identity as skin cells.

The study, published in the journal ELifeSciences, showed the researchers were able to make older skin cells 30 years younger. This wasn’t about restoring a sense of youthful beauty to the skin, instead it was about something far more important, restoring youthful function to the skin.

In a news release, Dr Diljeet Gill, a lead author on the study, said: “Our understanding of ageing on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

The team proved the potential for their work using fibroblasts, the most common kind of cell found in connective tissues such as skin. Fibroblasts are important because they produce collagen which helps provide support and structure to tissues and also helps in healing wounds. When the researchers examined the rejuvenated skin cells they found they were producing more collagen than cells that had not been rejuvenated. They also saw signs that these rejuvenated cells could help heal wounds better than the old cells.

The researchers also noted that this approach had an effect on other genes linked to age-related conditions, such Alzheimer’s disease and the development of cataracts.

The researchers acknowledge that this is all very early on, but the fact that they were able to make the cells behave and act like younger cells, without losing their identity as skin cells, holds tremendous promise not just for conditions affecting the skin, but for regenerative medicine as a whole.

Dr. Diljeet concluded: “Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells. The fact that we also saw a reverse of ageing indicators in genes associated with diseases is particularly promising for the future of this work.”

Recovery from muscle loss injuries hindered by immune cell conflicts

During a game in 2018, Alex Smith suffered a compound fracture that broke both the tibia and fibula in his right leg. The gruesome injury aside, the former 49ers quarterback soon developed life-threatening necrotizing fasciitis — a rare bacterial infection — that resulted in sepsis and required him to undergo 17 surgeries.

In a battle to save his life and avoid amputating his leg, doctors had to remove a great deal of his muscle tissue leading to volumetric muscle loss (VML). When Smith returned to the field after nearly two years of recovery, many called his comeback a “miracle”. 

Skeletal muscle is one of the most dynamic tissues of the human body. It defines how we move and can repair itself after injury using stem cells. However, when significant chunks of muscle are destroyed through severe injury (e.g. gunshot wound) or excessive surgery (like that of Smith’s), VML overwhelms the regenerative capacity of the muscle stem cells.

Despite the prevalence of these injuries, no standardized evaluation protocol exists for the characterization and quantification of VML and little is understood about why it consistently overwhelms the body’s natural regenerative processes. Current treatment options include functional free muscle transfer and the use of advanced bracing designs.

However, new research from the University of Michigan (U-M) may have just discovered why tissues often fail to regenerate from traumatic muscle loss injuries.

When researchers from U-M collaborated with partners at Georgia Tech, Emory University and the University of Oregon to study VML injuries in mice, they found that that sometimes post-injury immune cells become dysregulated and prevent stem cell repair. In VML injuries that don’t heal, neutrophils — a type of white blood cell — remain at the injured site longer than normal meaning that they’re not doing their job properly.

In addition, researchers found that intercellular communication between neutrophils and natural killers cells impacted muscle stem cell-mediated repair. When neutrophils communicated with natural killer cells, they were essentially prompted to self-destruct.

The findings suggest that by altering how the two cell types communicate, different healing outcomes may be possible and could offer new treatment strategies that eventually restore function and prevent limb loss. The team of researchers hope that better treatments could mean that recovery from VML injuries is no longer considered a “miracle”.

To read the source release, click here.

Making the list of people to follow

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you are walking down the street on a dark night, being followed is not necessarily something you want. But if you are online, having someone follow you is almost always a positive thing. And when that person is Dr. Paul Knoepfler it’s most definitely a plus.

Paul is a stem cell scientist at UC Davis (full disclosure, we have funded some of his work). He’s also one of the longest-running and most active bloggers about regenerative medicine and an ever-present presence on Twitter. His blog is always a great read and, for those of us without a science background, easy to follow and understand.

Dr. Paul Knoepfler, UC Davis: Photo courtesy UC Davis

That’s why it’s quite an honor that Paul has listed the California Institute for Regenerative Medicine’s as one of the 50 Influencers on stem cells to follow on Twitter.

Paul says this does not necessarily mean the most influential in the field of research because many researchers – such as Nobel Prize winner Dr. Shinya Yamanaka – don’t use Twitter. He says in making the list he looked for a few key elements.

“I particularly appreciate those accounts that include a mix of info, news, and opinion with original content or opinions of their own too.

“I emphasized inclusion of those accounts who regularly tweet. Also, I aimed for a good mixture of accounts across the globe, not just in the U.S. I also included stem cell policy researchers and bioethicists.”

“I picked this list of 50… for 2022 based simply on my impressions of their influence or because they do interesting tweets and/or have a fresh perspective on things, not strictly based on metrics.”

Whatever the reason, we’re delighted, and honored to be on Paul’s list.

And if you would like to see why we made the ’50 to Follow list’, then follow us on Twitter

Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.