Overcoming obstacles and advancing treatments to patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

UC Davis GMP Manufacturing facility: Photo courtesy UC Davis

When you are trying to do something that has never been done before, there are bound to be challenges to meet and obstacles to overcome. At the California Institute for Regenerative Medicine (CIRM) we are used to coming up with great ideas and hearing people ask “Well, how are you going to do that?”

Our new 5-year Strategic Plan is how. It’s the roadmap that will help guide us as we work to overcome critical bottlenecks in bringing regenerative medicine therapies to people in need.

Providing more than money

People often think of CIRM as a funding agency, providing the money needed to do research. That’s true, but it’s only part of the story. With every project we fund, we also offer a lot of support. That’s particularly true at the clinical stage, where therapies are being tested in people. Projects we fund in clinical trials don’t just get money, they also have access to:

  • Alpha Stem Cells Clinic Network – This is a group of specialized medical centers that have the experience and expertise to deliver new stem cell and gene therapies.
  • The CIRM Cell and Gene Therapy Center – This helps with developing projects, overcoming manufacturing problems, and offers guidance on working with the US Food and Drug Administration (FDA) to get permission to run clinical trials.
  • CIRM Clinical Advisory Panels (CAPs) – These are teams put together to help advise researchers on a clinical trial and to overcome problems. A crucial element of a CAP is a patient advocate who can help design a trial around the needs of the patients, to help with patient recruitment and retention.

Partnering with key stakeholders

Now, we want to build on this funding model to create new ways to support researchers in bringing their work to patients. This includes earlier engagement with regulators like the FDA to ensure that projects match their requirements. It includes meetings with insurers and other healthcare stakeholders, to make sure that if a treatment is approved, that people can get access to it and afford it.

In the past, some in the regenerative medicine field thought of the FDA as an obstacle to approval of their work. But as David Martin, a CIRM Board member and industry veteran says, the FDA is really a key ally.

“Turning a promising drug candidate into an approved therapy requires overcoming many bottlenecks… CIRM’s most effective and committed partner in accelerating this is the FDA.”

Removing barriers to manufacturing

Another key area highlighted in our Strategic Plan is overcoming manufacturing obstacles. Because these therapies are “living medicines” they are complex and costly to produce. There is often a shortage of skilled technicians to do the jobs that are needed, and the existing facilities may not be able to meet the demand for mass production once the FDA gives permission to start a clinical trial. 

To address all these issues CIRM wants to create a California Manufacturing Network that combines academic innovation and industry expertise to address critical manufacturing bottlenecks. It will also coordinate training programs to help build a diverse and expertly trained manufacturing workforce.

CIRM will work with academic institutions that already have their own manufacturing facilities (such as UC Davis) to help develop improved ways of producing therapies in sufficient quantities for research and clinical trials. The Manufacturing Network will also involve industry partners who can develop facilities capable of the large-scale production of therapies that will be needed when products are approved by the FDA for wider use.

CIRM, in collaboration with this network, will also help develop education and hands-on training programs for cell and gene therapy manufacturing at California community colleges and universities. By providing internships and certification programs we will help create a talented, diverse workforce that is equipped to meet the growing demands of the industry.

You can read more about these goals in our 2022-27 Strategic Plan.

Sharing ideas and data to advance regenerative medicine

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If Kindergarten kids can learn to share why can’t scientists?

When I was a kid, we were always told to share our toys. It was a good way of teaching children the importance of playing nice with the other kids and avoiding conflicts.

Those same virtues apply to science. Sharing data, knowledge and ideas doesn’t just create a sense of community. It also helps increase the odds that scientists can build on the knowledge gained by others to advance their own work, and the field as a whole.

That’s why advancing world class science through data sharing is one of the big goals in CIRM’s new Strategic Plan. There’s a very practical reason why this is needed. Although most scientists today fully appreciate and acknowledge the importance of data sharing, many still resist the idea. This is partly for competitive reasons: the researchers want to publish their findings first and take the credit.

But being first isn’t just about ego. It is also crucial in getting promotions, being invited to prestigious meetings, winning awards, and in some cases, getting the attention of biopharma. So, there are built-in incentives to avoiding data sharing.

That’s unfortunate because scientific progress is often dependent on collaboration and building upon the work of other researchers.

CIRM’s goal is to break down those barriers and make it easier to share data. We will do that by building what are called “knowledge networks.” These networks will streamline data sharing from CIRM-funded projects and combine that with research data from other organizations, publishers and California academic institutions. We want to create incentives for scientists to share their data, rather than keep it private.

We are going to start by creating a knowledge network for research targeting the brain and spinal cord. We hope this will have an impact on studying everything from stroke and Alzheimer’s to Parkinson’s and psychiatric disorders. The network will eventually cover all aspects of research—from the most basic science to clinical trials—because knowledge gained in one area can help influence research done in another.

To kick start this network, CIRM will partner with other funding agencies, disease foundations and research institutions to enable scientists to have access to this data such that data from one platform can be used to analyze data from another platform. This will amplify the power of data analysis and allow researchers to build upon the work of others rather than repeat already existing research.

As one of our Board members, Dr. Keith Yamamoto said in our Strategic Plan, “Making such data sharing and analysis across CIRM projects operational and widely accessible would leverage CIRM investments, serving the biomedical research enterprise broadly.”

It’s good for science, but ultimately and more importantly, it’s good for all of us because it will speed up the development of new approaches and new therapies for a wide range of diseases and disorders.

Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.

How two California researchers are advancing world class science to develop real life solutions

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

In our recently launched 5-year Strategic Plan, the California Institute for Regenerative Medicine (CIRM) profiled two researchers who have leveraged CIRM funding to translate basic biological discoveries into potential real-world solutions for devastating diseases.

Dr. Joseph Wu is director of the Stanford Cardiovascular Institute and the recipient of several CIRM awards. Eleven of them to be exact! Over the past 10 years, Dr. Wu’s lab has extensively studied the application of induced pluripotent stem cells (iPSCs) for cardiovascular disease modeling, drug discovery, and regenerative medicine. 

Dr. Wu’s extensive studies and findings have even led to a cancer vaccine technology that is now being developed by Khloris Biosciences, a biotechnology company spun out by his lab. 

Through CIRM funding, Dr. Wu has developed a process to produce cardiomyocytes (cardiac muscle cells) derived from human embryonic stem cells for clinical use and in partnership with the agency. Dr. Wu is also the principal investigator in the first-in-US clinical trial for treating ischemic heart disease. His other CIRM-funded work has also led to the development of cardiomyocytes derived from human induced pluripotent stem cells for potential use as a patch.

Over at UCLA, Dr. Lili Yang and her lab team have generated invariant Natural Killer T cells (iNKT), a special kind of immune system cell with unique features that can more effectively attack tumor cells. 

More recently, using stem cells from donor cord-blood and peripheral blood samples, Dr. Yang and her team of researchers were able to produce up to 300,000 doses of hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells. The hope is that this new therapy could dramatically reduce the cost of producing immune cell products in the future. 

Additionally, Dr. Yang and her team have used iNKT cells to develop both autologous (using the patient’s own cells), and off-the-shelf anti-cancer therapeutics (using donor cells), designed to target blood cell cancers.

The success of her work has led to the creation of a start-up company called Appia Bio. In collaboration with Kite Pharma, Appia Bio is planning on developing and commercializing the promising technology. 

CIRM has been an avid supporter of Dr. Yang and Dr. Wu’s research because they pave the way for development of next-generation therapies. Through our new Strategic Plan, CIRM will continue to fund innovative research like theirs to accelerate world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and the world.

Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.

One more good reason to exercise

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

As we start the New Year with a fervent hope that it’s better than the last two, many people are making a resolution to get more exercise. A new study suggests that might not just benefit the body, it could also help the brain. At least if you are a mouse.

Researchers at the University of Queensland Brain Institute found that 35 days of exercise could improve brain function and memory.

In an interview in Futurity, Dan Blackmore, one of the lead researchers on the study, says they not only showed the benefits of exercise, but also an explanation for why it helps.

“We tested the cognitive ability of elderly mice following defined periods of exercise and found an optimal period or ‘sweet spot’ that greatly improved their spatial learning. We found that growth hormone (GH) levels peaked during this time, and we’ve been able to demonstrate that artificially raising GH in sedentary mice also was also effective in improving their cognitive skills. We discovered GH stimulates the production of new neurons in the hippocampus—the region of the brain critically important to learning and memory.

The study was published in the journal iScience.

Obviously, this is great for mice, but they hope that future research could show similar benefits for people. But don’t wait for that study to come out, there’s already plenty of evidence that exercising has terrific benefits for the body. Here’s just seven ways it can give you a boost.

How do Zebrafish grow ears? It’s quite transparent

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Zebrafish

One of the hopes of regenerative medicine is that one day we will be able to use stem cells to regrow damaged organs, avoiding the need for a transplant. It’s a fascinating idea, supported in part by the ability of some creatures, such as Axolotls and salamanders, to regrow parts of their anatomy that they have lost.

But there’s quite a leap from a lizard to a human and bridging that gap is proving far from easy. One of the problems is simply understanding how cells know what to do to form the correct shape for the organ. Even something as relatively simple as an ear is incredibly complex.

However, researchers at Harvard Medical School have discovered a way to replicate how cells form into flexible sheets, so they can be folded into the delicate shape of tubes in the inner ear. They did this by studying Zebrafish. Why? In an article in Genetic Engineering and Biology News Dr. Akankshi Munjal, PhD, first author of the paper, said the reason was simple.

Akankshi Munjal, PhD, first author of the paper; Photo courtesy Harvard Medical School

“Zebrafish are transparent, so we just stick them under a microscope and look at this entire process from a single cell to a larva that can swim and has all its parts.”

Because they could watch the Zebrafish develop in real time, they were able to observe what the cells were doing at any point simply by looking at the fish under a microscope. Another advantage is that in Zebrafish the semicircular canals of the inner ear – tubes that help them maintain balance and orient themselves – form close to the surface, making it even easier to see what was going on.

In the study, published in the journal Cell, the researchers say it appears that a combination of pressure generated by hyaluronic acid, which acts as a cushion and lubricant between tissues, and molecular tethers between cells help direct flat sheets of cells into tubes and other shapes.

Dr. Sean Megason, one of the authors of the paper, said that knowing the mechanism at work is really important. “Right now tissue engineers are trying to build tissues without knowing how cells normally do this during embryonic development. We want to define these rules such that cells can be programmed to assemble into any desired pattern and shape. This work shows a new way in which cells can generate force to bend tissues into the right shape.”

The researchers say if they can understand how cells work together to create these complex shapes they may be better able to replicate that process in the lab, and grow ears, parts of ears or even other organs for people.

How some brilliant research may have uncovered a potential therapy for Alzheimer’s 

Dr. Nicole Koutsodendris, photo courtesy Gladstone Institutes

In the world of scientific research, the people doing clinical trials tend to suck up all the oxygen in the room. They’re the stars, the ones who are bringing potential therapies to patients. However, there’s another group of researchers who toil away in the background, but who are equally deserving of praise and gratitude. 

Dr. Lana Zholudeva, photo courtesy Gladstone Institutes

These are the scientists who do basic or discovery-level research. This is where all great therapies start. This is where a researcher gets an idea and tests it to see if it holds promise. A good idea and a scientist who asks a simple question, “I wonder if…..”  

Dr. Yadong Huang, Photo courtesy Gladstone Institutes

In our latest “Talking ‘Bout (re)Generation” podcast we talk to three researchers who are asking those questions and getting some truly encouraging answers. They are scientists at the Gladstone Institutes in San Francisco: one seasoned scientist and two young post-docs trying to make a name for themselves. And they might just have discovered a therapy that could help people battling Alzheimer’s disease. 

Enjoy the podcast.


  

Newly-developed Organoid Mimics How Gut and Heart Tissues Arise Cooperatively From Stem Cells 

Microscopy image of the new type of organoid created by Todd McDevitt, Ana Silva, and their colleagues in which heart tissue (red, purple, and orange masses) and gut tissue (blue and green masses) are growing together. Captured by Ana Silva.
Microscopy image of the new type of organoid created by Todd McDevitt, Ana Silva, and their colleagues in which heart tissue (red, purple, and orange masses) and gut tissue (blue and green masses) are growing together. Captured by Ana Silva. Image courtesy of Gladstone Institutes.

Scientists at Gladstone Institutes have discovered how to grow a first-of-its-kind organoid—a three-dimensional, organ-like cluster of cells—that mimics how gut and heart tissues arise cooperatively from stem cells.  

The study was supported by a grant from CIRM and the Gladstone BioFulcrum Heart Failure Research Program. 

Gladstone Senior Investigator Todd McDevitt, PhD said this first-of-its-kind organoid could serve as a new tool for laboratory research and improve our understanding of how developing organs and tissues cooperate and instruct each other. 

McDevitt’s team creates heart organoids from human induced pluripotent stem cells, coaxing them into becoming heart cells by growing them in various cocktails of nutrients and other naturally occurring substances. In this case, the scientists tried a different cocktail to potentially allow a greater variety of heart cells to form. 

To their surprise, they found that the new cocktail led to organoids that contained not only heart, but also gut cells. 

“We were intrigued because organoids normally develop into a single type of tissue—for example, heart tissue only,” says Ana Silva, PhD, a postdoctoral scholar in the McDevitt Lab and first author of the new study. “Here, we had both heart and gut tissues growing together in a controlled manner, much as they would in a normal embryo.” 

Shown here is the study’s first author, Ana Silva, a postdoctoral scholar in the McDevitt Lab. Image courtesy of Gladstone Institutes.

The researchers also found that compared to conventional heart organoids, the new organoids resulted in much more complex and mature heart structures—including some resembling more mature-like blood vessels. 

These organoids offer a promising new look into the relationship between developing tissues, which has so far relied on growing single-tissue organoids separately and then attempting to combine them. Not only that, the organoids could help clarify how the process of human development can go wrong and provide insight on congenital disorders like chronic atrial and intestinal dysrhythmias that are known to affect both heart and gut development. 

“Once it became clear that the presence of the gut tissue contributed to the maturity of the heart tissue, we realized we had arrived at something new and special,” says McDevitt. 

Read the official release about this study on Gladstone’s website

The study findings are published in the journal Cell Stem Cell.

Creating a New Model for Diversity in Scientific and Medical Research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Nature Cell Biology cover

The global pandemic has highlighted many of the inequities in our health care system, with the virus hitting communities of color the hardest. That has led to calls for greater diversity, equity and inclusion at every level of scientific research and, ultimately, of medical care. A recently released article in the journal Nature Cell Biology, calls for “new models for basic and disease research that reflect diverse ancestral backgrounds and sex and ensure that diverse populations are included among donors and research participants.”

The authors of the article are Dr. Maria T. Millan, CIRM’s President & CEO; Rick Horwitz Senior Advisor and Executive Director, Emeritus, Allen Institute for Cell Science; Dr. Ekemini Riley, President, Coalition for Aligning Science; and Dr. Ruwanthi N. Gunawardane, Executive Director of the Allen Institute for Cell Science.

Dr. Maria Millan, CIRM’s President & CEO, says we need to make these issues a part of everything we do. “At CIRM we have incorporated the principles of promoting diversity, equity and inclusion in our research funding programs, education programs and future programs. We believe this is essential to ensure that the therapies our support helps advance will reach all patients in need and in particular communities that are disproportionately affected and/or under-served.”

The article highlights how, in addition to cultural, environmental, and socioeconomic factors, genetic factors also appear to play a role in the way disease affects different people. For example, 50 percent of people in South Asia have genetic traits that increases their risk for severe COVID-19, in contrast only 16 percent of Europeans have those traits.

But while some studies have shown how African American men are at greater risk for prostate cancer than white men, most of the research in this and other areas has been done on white populations of European ancestry. Efforts are already underway to change these disparities. For example, the National Institutes of Health (NIH) has sponsored the All of Us Research Program, which is inviting one million people across the U.S. to help build one of the most diverse health databases in history.

The article in Nature Cell Biology stresses the need to account for diversity at the individual molecular, cellular and tissue level. The authors make the point that diversity in those taking part in clinical trials is essential, but equally essential is that diverse biology is accounted for in the scientific work that leads to the development of potential therapies in order to increase the likelihood of success.

That’s why the authors of the article say: “If we are to truly understand human biology, address health disparities, and personalize our treatments, we need to go beyond our important, ongoing efforts in addressing diversity and inclusion in the workforce and the delivery of healthcare. We need to improve the data we generate by including diverse populations among donors and research participants. This will require new models and tools for basic and disease research that more closely reflect the diversity of human tissues, across diverse donor backgrounds.”

“Greater diversity in biological studies is not only the right thing to do, it is crucial to helping researchers make new discoveries that benefit everyone,” said Ru Gunawardane, Executive Director of the Allen Institute for Cell Science.

To do this they propose creating “a suite” of research cells, such as human induced pluripotent stem cell (hiPSC) lines from a diverse group of individuals to reflect the racial, ethnic and gender composition of the population. Human iPSCs are cells taken from any tissue (usually skin or blood) from a child or adult that have been genetically modified to behave like an embryonic stem cell. As the name implies, these cells are pluripotent, which means that they can become any type of adult cell.

CIRM has already created one version of what this suite would look like, through its iPSC Repository, a collection of more than 2,600 hiPSCs from individuals of diverse ancestries, including African, Hispanic, Native American, East and South Asian, and European. The Allen Institute for Cell Science also has a collection that could serve as a model for this kind of repository. Its collection of over 50 hiPSC

lines have been thoroughly analyzed on both a genomic and biological level and could also be broken down to include diversity in donor ethnicity and sex.

Currently researchers use cells from different lines and often follow very different procedures in using them, making it hard to compare results from one study to another. Having a diverse and well defined collection of research cells and cell models that are created by standardized procedures, could make it easier to compare results from different studies and share knowledge within the scientific community. By incorporating diversity in the very early stages of scientific research, the scientists and therapy developers gain a more complete picture of the biology disease and potential treatments.  

A year unlike any other – a look back at one year post Prop 14

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

State flag of California

2020 was, by any standards, a pretty wacky year. Pandemic. Political convulsions. And a huge amount of uncertainty as to the funding of life-saving therapies at CIRM. Happily those all turned out OK. We got vaccines to take care of COVID. The election was won fair and square (seriously). And Proposition 14 was approved by the voters of California, re-funding your favorite state Stem Cell Agency.

But for a while, quite a while, there was uncertainty surrounding our future. For a start, once the pandemic lockdown kicked in it was impossible for people to go out and collect the signatures needed to place Proposition 14 on the November ballot. So the organizers of the campaign reached out online, using petitions that people could print out and sign and mail in.

It worked. But even after getting all the signatures needed they faced problems such as how do you campaign to get something passed, when the normal channels are not available. The answer is you get very creative very quickly.

Bob Klein

Bob Klein, the driving force behind both Proposition 71 (the 2004 ballot initiative that created CIRM) and Proposition 14, says it was challenging:

“It was a real adventure. It’s always hard, you have a complicated message about stem cells and genetics and therapy and it’s always a challenge to get a million signatures for a ballot initiative but in the middle of a pandemic where we had to shut down the signature gathering at grocery stores and street corners, where we had to go to petitions that had to be sent to voters and get them to fill them out properly and send them back. And of course the state went into an economic recoil because of the pandemic and people were worried about the money.”

Challenging absolutely, but ultimately successful. On November 13, ten days after the election, Prop 14 was declared the winner.

As our President and CEO, Dr. Maria Millan says, we went from an agency getting ready to close its doors to one ramping up for a whole new adventure.

“We faced many challenges in 2020. CIRM’s continued existence was hinging on the passage of a new bond initiative and we began the year uncertain if it would even make it on the ballot.  We had a plan in place to wind down and close operations should additional funding not materialize.  During the unrest and challenges brought by 2020, and functioning in a virtual format, we retained our core group of talented individuals who were able to mobilize our emergency covid research funding round, continue to advance our important research programs and clinical trials and initiate the process of strategic planning in the event that CIRM was reauthorized through a new bond initiative. Fortunately, we planned for success and Proposition 14 passed against all odds!”

“When California said “Yes,” the CIRM team was positioned to launch the next Era of CIRM! We have recruited top talent to grow the team and have developed a new strategic plan and evolved our mission:  Accelerating world-class science to deliver transformative regenerative medicine treatments to a diverse California and worldwide in an equitable manner.” 

And since that close call we have been very busy. In the last year we have hired 16 new employees, everyone from a new General Counsel to the Director of Finance, and more are on the way as we ramp up our ability to turn our new vision into a reality.

We have also been working hard to ensure we could continue to fund groundbreaking research from the early-stage Discovery work, to testing therapies in patients in clinical trials. Altogether our Board has approved almost $250 million in 56 new awards since December 2020. That includes:

Clinical – $84M (9 awards)

Translational – $15M (3 awards)

Discovery – $13M (11 awards)

Education – $138M (33 awards)

We have also enrolled more than 360 new patients in clinical trials that we fund or that are being carried out in the CIRM Alpha Stem Cell Clinic network.

This is a good start, but we know we have a lot more work to do in the coming years.

The last year has flown by and brought more than its fair share of challenges. But the CIRM team has shown that it can rise to those, in person and remotely, and meet them head on. We are already looking forward to 2022. We’ve got a lot of work to do.

Promising new approach for people with epilepsy

Image courtesy Epilepsy.com

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

A new therapeutic approach, supported by CIRM, that blocks the signals in the brain that can cause epilepsy has been given permission by the US Food and Drug Administration (FDA) to be tested in a clinical trial.

Nearly 3.5 million Americans suffer from some form of epilepsy. It can affect people in different ways from stiff muscles or staring spells, to violent shaking and loss of consciousness. The impact it has on people’s lives extends far beyond the condition itself. People who suffer from epilepsy experience a higher frequency of depression and other mood disorders, social isolation, challenges in school and with living independently, higher unemployment, limitations on driving, and higher risk of early death.

Medications can help control the seizures in some people, but around one-third of patients don’t respond to those drugs. The alternative is surgery, which is invasive and can cause damage to delicate brain tissue.

Now Neurona Therapeutics has developed an approach, called NRTX-1001, that turns stem cells into interneurons, a kind of nerve cell in the brain. These cells secrete chemical messengers, called GABA inhibitory neurotransmitters, that help rebalance the misfiring electrical signals in the brain and hopefully eliminate or reduce the seizures.

Cory Nicholas, PhD, Neuron’s Therapeutics co-founder and CEO, said getting the go-ahead from the FDA for a clinical trial is a key milestone for the company. “Neurona’s accomplishments are a testament to longstanding support from CIRM. CIRM has supported the NRTX-1001 program from bench to bedside, dating back to early research in the Neurona founders’ laboratories at the University of California, San Francisco to the recent IND-enabling studies conducted at Neurona. It’s an exciting time for the field of regenerative medicine and is gratifying to see the NRTX-1001 neuronal cell therapy now cleared by the FDA to enter clinical testing in people who have drug resistant temporal lobe epilepsy. We are thankful to CIRM for their support of this important work that has the potential to provide seizure-freedom for patients who currently have limited treatment options.”

In a news release Dr. Nicholas said the timing was perfect. “This milestone is especially rewarding and timely given that November is Epilepsy Awareness Month. NRTX-1001 is a new type of inhibitory cell therapy that is targeted to the focal seizure onset region in the brain and, in a single treatment, has the potential to significantly improve the lives of people living with focal epilepsy.”

In animal models NRTX-1001 produced freedom from seizures in more than two-thirds of the treated group, compared to just 5 percent of the untreated group. It also resulted in reduced tissue damage in the seizure-affected area of the brain.

The clinical trial will initially target people affected by mesial temporal lobe epilepsy (MTLE) where seizures often begin in a structure called the hippocampus. MTLE is the most common type of focal epilepsy.

CIRM has invested almost $6.67 million in funding three stages of this project, from the early Discovery work to this latest late-stage preclinical work, highlighting our commitment to doing all we can to advance the most promising science from the bench to the bedside.