CIRM Board Approves Two New Discovery Research Projects for COVID-19

Dr. Karen Christman (left) and Dr. Lili Yang (right)

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two new discovery research project as part of the $5 million in emergency funding for COVID-19 related projects.  This brings the number of COVID-19 projects CIRM is supporting to 17, including three clinical trials.

$249,974 was awarded to Dr. Karen Christman at UC San Diego to develop a treatment for Acute Respiratory Distress Syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs and is prevalent in COVID-19 patients.  Dr. Christman and her team will develop extracellular matrix (ECM) hydrogels, a kind of structure that provides support to surrounding cells.  The goal is to develop a treatment that can be delivered directly to site of injury, where the ECM would recruit stem cells, treat lung inflammation, and promote lung healing.

$250,000 was awarded to Dr. Lili Yang at UCLA to develop a treatment for COVID-19.  Dr. Yang and her team will use blood stem cells to create invariant natural killer T (iNKT) cells, a powerful kind of immune cell with the potential to clear virus infection and mitigate harmful inflammation.  The goal is to develop these iNKT cells as an off the shelf therapy to treat patients with COVID-19.

These awards are part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“The harmful lung inflammation caused by COVID-19 can be dangerous and life threatening,” says Maria T. Millan, M.D., the President and CEO of CIRM. “Early stage discovery projects like the ones approved today are vital in developing treatments for patients severely affected by the novel coronavirus.”

Earlier in the week the Board also approved changes to both DISC2 and clinical trial stage projects (CLIN2). These were in recognition of the Agency’s remaining budget and operational timeline and the need to launch the awards as quickly as possible.

For DISC2 awards the changes include:

  • Award limit of $250,000
  • Maximum award duration of 12 months
  • Initiate projects within 30 days of approval
  • All proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.
  • All proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.

Under the CLIN2 awards, to help projects carry out a clinical trial, the changes include:

  • Adjust award limit to the following:
Applicant typePhase 1, Phase 1/2, Feasability Award CapPhase 2 Award CapPhase 3 Award Cap
Non-profit$9M$11.25M$7.5M
For-profit$6M$11.25M$7.5M
  • Adjust the award duration to not exceed 3 years with award completion no later than November 2023
  • Initiate projects within 30 days of approval
  • All proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard.

The changes outlined above for CLIN2 awards do not apply to sickle cell disease projects expected to be funded under the CIRM/NHLBI Cure Sickle Cell Disease joint Initiative.

Lab-grown human sperm cells could unlock treatments for infertility

Dr. Miles Wilkinson: Photo courtesy UCSD

Out of 100 couples in the US, around 12 or 13 will have trouble starting a family. In one third of those cases the problem is male infertility (one third is female infertility and the other third is a combination of factors). In the past treatment options for men were often limited. Now a new study out of the University of California San Diego (UCSD) could help lead to treatments to help these previously infertile men have children of their own.

The study, led by Dr. Miles Wilkinson of UCSD School of Medicine, targeted spermatogonial stem cells (SSCs), which are the cells that develop into sperm. In the past it was hard to isolate these SSCs from other cells in the testes. However, using a process called single cell RNA sequencing – which is like taking a photo of all the gene expression happening in one cell at a precise moment – the team were able to identify the SSCs.

In a news release Dr. Wilkinson, the senior author of the study, says this is a big advance on previous methods: “We think our approach — which is backed up by several techniques, including single-cell RNA-sequencing analysis — is a significant step toward bringing SSC therapy into the clinic.”

Identifying the SSCs was just the first step. Next the team wanted to find a way to be able to take those cells and grow and multiply them in the lab, an important step in having enough cells to be able to treat infertility.

So, they tested the cells in the lab and identified something called the AKT pathway, which controls cell division and survival. By blocking the AKT pathway they were able to keep the SSCs alive and growing for a month. Next they hope to build on the knowledge and expand the cells for even longer so they could be used in a clinical setting.

This image has an empty alt attribute; its file name is wilkinson-ssc-graphic_450px.jpg
Illustrations by Vishaala Wilkinson

The hope is that this could ultimately lead to treatments for men whose bodies don’t produce sperm cells, or enough sperms cells to make them fertile. It could also help children going through cancer therapy which can destroy their ability to have children of their own later in life. By taking sperm cells and freezing them, they could later be grown and expanded in the lab and injected back into the testes to restore sperm production.

The study is published in the journal Proceedings of the National Academy of Science.

CIRM Board Approves Third Clinical Trial for COVID-19

Dr. Xiaokui Zhang (left), Dr. Albert Wong (center), and Dr. Preet Chaudhary (right)

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $750,000 to Dr. Xiaokui Zhang at Celularity to conduct a clinical trial for the treatment of COVID-19.  This brings the total number of CIRM clinical trials to 64, including three targeting the coronavirus.

This trial will use blood stem cells obtained from the placenta to generate natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, and administer them to patients with COVID-19.  NK cells play an important role in defense against cancer and in fighting off viral infections.  The goal is to administer these cells to locate the active sites of COVID-19 infection and destroy the virus-infected cells.  These NK cells have been used in two other clinical trials for acute myeloid leukemia and multiple myeloma.

The Board also approved two additional awards for Discovery Stage Research (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

One award for $100,000 was given to Dr. Albert Wong at Stanford.  Dr. Wong has recently received an award from CIRM to develop a vaccine that produces a CD8+ T cell response to boost the body’s immune response to remove COVID-19 infected cells.  The current award will enable him to expand on the initial approach to increase its potential to impact the Latinx and African American populations, two ethnicities that are disproportionately impacted by the virus in California.

The other award was for $249,996 and was given to Dr. Preet Chaudhary at the University of Southern California.  Dr. Chaudary will use induced pluripotent stem cells (iPSCs) to generate natural killer cells (NK). These NK cells will express a chimeric antigen receptor (CAR), a synthetic receptor that will directly target the immune cells to kill cells infected with the virus.  The ultimate goal is for these iPSC-NK-CAR cells to be used as a treatment for COVID-19. 

“These programs address the role of the body’s immune T and NK cells in combatting viral infection and CIRM is fortunate enough to be able to assist these investigators in applying experience and knowledge gained elsewhere to find targeted treatments for COVID-19” says Dr. Maria T. Millan, the President & CEO of CIRM. “This type of critical thinking reflects the resourcefulness of researchers when evaluating their scientific tool kits.  Projects like these align with CIRM’s track record of supporting research at different stages and for different diseases than the original target.”

The CIRM Board voted to endorse a new initiative to refund the agency and provide it with $5.5 billion to continue its work. The ‘California Stem Cell Research, Treatments and Cures Initiative of 2020 will appear on the November ballot. 

The Board also approved a resolution honoring Ken Burtis, PhD., for his long service on the Board. Dr. Burtis was honored for his almost four decades of service at UC Davis as a student, professor and administrator and for his 11 years on the CIRM Board as both a member and alternate member. In the resolution marking his retirement the Board praised him, saying “his experience, commitment, knowledge, and leadership, contributed greatly to the momentum of discovery and the future therapies which will be the ultimate outcome of the dedicated work of the researchers receiving CIRM funding.”

Jonathan Thomas, the Chair of the Board, said “Ken has been invaluable and I’ve always found him to have tremendous insight. He has served as a great source of advice and inspiration to me and to the ICOC in dealing with all the topics we have had to face.” 

Lauren Miller Rogen thanked Dr. Burtis, saying “I sat next to you at my first meeting and was feeling so extraordinarily overwhelmed and you went out of your way to explain all these big science words to me. You were always a source of help and support, and you explained things to me in a way that I always appreciated with my normal brain.”

Dr. Burtis said it has been a real honor and privilege to be on the Board. “I’ve been amazed and astounded at the passion and dedication that the Board and CIRM staff have brought to this work. Every meeting over the years there has been a moment of drama and then resolution and this Board always manages to reach agreement and serve the people of California.”

Super charging killer cells to fight leukemia

Colorized scanning electron micrograph of a natural killer cell.
Photo credit: National Institute of Allergy and Infectious Diseases

Racing car drivers are forever tinkering with their cars, trying to streamline them and soup up their engines because while fast is good, faster is better. Researchers do the same things with potential anti-cancer therapies, tinkering with them to make them safer and more readily available to patients while also boosting their ability to fight cancer.

That’s what researchers at the University of California San Diego (UCSD), in a CIRM-funded study, have done. They’ve taken immune system cells – with the already impressive name of ‘natural killer’ (NK) cells – and made them even deadlier to cancers.

These natural killer (NK) cells are considered one of our immune system’s frontline weapons against outside threats to our health, things like viruses and cancer. But sometimes the cancers manage to evade the NKs and spread throughout the body or, in the case of leukemia, throughout the blood.

Lots of researchers are looking at ways of taking a patient’s own NK cells and, in the lab boosting their ability to fight these cancers. However, using a patient’s own cells is both time consuming and very, very expensive.

Dan Kaufman MD

Dr. Dan Kaufman and his team at UCSD decided it would be better to try and develop an off-the-shelf approach, a therapy that could be mass produced from a single batch of NK cells and made available to anyone in need.

Using the iPSC method (which turns tissues like skin or blood into embryonic stem cell-like cells, capable of becoming any other cell in the body) they created a line of NK cells. Then they removed a gene called CISH which slows down the activities of cytokines, acting as a kind of brake or restraint on the immune system.

In a news release, Dr. Kaufman says removing CISH had a dramatic effect, boosting the power of the NK cells.

“We found that CISH-deleted iPSC-derived NK cells were able to effectively cure mice that harbor human leukemia cells, whereas mice treated with the unmodified NK cells died from the leukemia.”

Dr. Kaufman says the next step is to try and develop this approach for testing in people, to see if it can help people whose disease is not responding to conventional therapies.

“Importantly, iPSCs provide a stable platform for gene modification and since NK cells can be used as allogeneic cells (cells that come from donors) that do not need to be matched to individual patients, we can create a line of appropriately modified iPSC-derived NK cells suitable for treating hundreds or thousands of patients as a standardized, ‘off-the-shelf’ therapy.”

The study is published in the journal Cell Stem Cell.

CIRM Board Approves Two Additional COVID-19 Projects

Dr. Vaithilingaraja Arumugaswami (left) and Dr. Song Li (right), UCLA

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional projects as part of the $5 million in emergency funding for COVID-19 related projects. This brings the number of projects CIRM is supporting to 11, including two clinical trials.

The Board awarded $349,999 to Dr. Vaithilingaraja Arumugaswami at UCLA.  The focus of this project will be to study Berzosertib, a therapy targeting viral replication and damage in lung stem cells.  The ultimate goal would be to use this agent as a therapy to prevent COVID-19 viral replication in the lungs, thereby reducing lung injury, inflammation, and subsequent lung disease caused by the virus.  

This award is part of CIRM’s Translational Stage Research Program (TRAN1), which promotes the activities necessary for advancement to clinical study of a potential therapy.

The Board also awarded $149,916 to Dr. Song Li at UCLA.  This project will focus on developing an injectable biomaterial that can induce the formation of T memory stem cells (TMSCs), an important type of stem cell that plays a critical role in generating an immune response to combat viruses. In vaccine development, there is a major challenge that the elderly may not be able to mount a strong enough immunity.  This innovative approach seeks to address this challenge by increasing TMSCs in order to boost the immune response to vaccines against COVID-19.

This award is under CIRM’s Discovery Stage Research Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“CIRM continues to support novel COVID-19 projects that build on previous knowledge acquired,” says Dr. Maria T. Millan, the President & CEO of CIRM. “These two projects represent the much-needed multi-pronged approach to the COVID-19 crisis, one addressing the need for effective vaccines to prevent disease and the other to treat the severe illness resulting from infection.”

Blocking pancreatic cancer stem cells

John Cashman

Cancer stem cells are one of the main reasons why cancers are able to survive surgery, chemotherapy and radiation. They are able to hide from those therapies and, at a future date, emerge and spread the cancer in the body once again.

Jionglia Cheng, PhD.

Jionglia Cheng, PhD., the lead author of a new CIRM-funded study, says that’s one of the reasons why pancreatic cancer has proved so difficult to treat.

“Pancreatic cancer remains a major health problem in the United States and soon will be the second most common cause of mortality due to cancer. A majority of pancreatic cancer patients are often resistant to clinical therapies. Thus, it remains a challenge to develop an efficacious clinically useful pancreatic cancer therapy.”

Dr. Cheng, a researcher with ChemRegen Inc., teamed up with John Cashman at the Human BioMolecular Research Institute and identified a compound, that seems to be effective in blocking the cancer stem cells.

In earlier studies the compound, called PAWI-2, demonstrated effectiveness in blocking breast, prostate and colon cancer. When tested in the laboratory PAWI-2 showed it was able to kill pancreatic cancer stem cells, and also was effective in targeting drug-resistant pancreatic cancer stem cells.

In addition, when PAWI-2 was used with a drug called erlotinib (brand name Tarceva) which is commonly prescribed for pancreatic cancer, the combination proved more effective against the cancer stem cells than erlotinib alone.

In a news release Dr. Cheng said: “In the future, this molecule could be used alone or with other chemotherapy albeit at lower doses, as a new therapeutic drug to combat pancreatic cancer. This may lead to much less toxicity to the patient,”

The study is published in the journal Scientific Reports.

CIRM Board Approves Clinical Trials Targeting COVID-19 and Sickle Cell Disease

Coronavirus particles, illustration.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved new clinical trials for COVID-19 and sickle cell disease (SCD) and two earlier stage projects to develop therapies for COVID-19.

Dr. Michael Mathay, of the University of California at San Francisco, was awarded $750,000 for a clinical trial testing the use of Mesenchymal Stromal Cells for respiratory failure from Acute Respiratory Distress Syndrome (ARDS). In ARDS, patients’ lungs fill up with fluid and are unable to supply their body with adequate amounts of oxygen. It is a life-threatening condition and a major cause of acute respiratory failure. This will be a double-blind, randomized, placebo-controlled trial with an emphasis on treating patients from under-served communities.

This award will allow Dr. Matthay to expand his current Phase 2 trial to additional underserved communities through the UC Davis site.

“Dr. Matthay indicated in his public comments that 12 patients with COVID-related ARDS have already been enrolled in San Francisco and this funding will allow him to enroll more patients suffering from COVID- associated severe lung injury,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM, in addition to the NIH and the Department of Defense, has supported Dr. Matthay’s work in ARDS and this additional funding will allow him to enroll more COVID-19 patients into this Phase 2 blinded randomized controlled trial and expand the trial to 120 patients.”

The Board also approved two early stage research projects targeting COVID-19.

  • Dr. Stuart Lipton at Scripps Research Institute was awarded $150,000 to develop a drug that is both anti-viral and protects the brain against coronavirus-related damage.
  • Justin Ichida at the University of Southern California was also awarded $150,00 to determine if a drug called a kinase inhibitor can protect stem cells in the lungs, which are selectively infected and killed by the novel coronavirus.

“COVID-19 attacks so many parts of the body, including the lungs and the brain, that it is important for us to develop approaches that help protect and repair these vital organs,” says Dr. Millan. “These teams are extremely experienced and highly renowned, and we are hopeful the work they do will provide answers that will help patients battling the virus.”

The Board also awarded Dr. Pierre Caudrelier from ExcellThera $2 million to conduct a clinical trial to treat sickle cell disease patients

SCD is an inherited blood disorder caused by a single gene mutation that results in the production of “sickle” shaped red blood cells. It affects an estimated 100,000 people, mostly African American, in the US and can lead to multiple organ damage as well as reduced quality of life and life expectancy.  Although blood stem cell transplantation can cure SCD fewer than 20% of patients have access to this option due to issues with donor matching and availability.

Dr. Caudrelier is using umbilical cord stem cells from healthy donors, which could help solve the issue of matching and availability. In order to generate enough blood stem cells for transplantation, Dr. Caudrelier will be using a small molecule to expand these blood stem cells. These cells would then be transplanted into twelve children and young adults with SCD and the treatment would be monitored for safety and to see if it is helping the patients.

“CIRM is committed to finding a cure for sickle cell disease, the most common inherited blood disorder in the U.S. that results in unpredictable pain crisis, end organ damage, shortened life expectancy and financial hardship for our often-underserved black community” says Dr. Millan. “That’s why we have committed tens of millions of dollars to fund scientifically sound, innovative approaches to treat sickle cell disease. We are pleased to be able to support this cell therapy program in addition to the gene therapy approaches we are supporting in partnership with the National Heart, Lung and Blood Institute of the NIH.”

Promising results from CIRM-funded projects

Severe Leukocyte Adhesion Deficiency-1 (LAD-1) is a rare condition that causes the immune system to malfunction and reduces its ability to fight off viruses and bacteria. Over time the repeated infections can take a heavy toll on the body and dramatically shorten a person’s life. But now a therapy, developed by Rocket Pharmaceuticals, is showing promise in helping people with this disorder.

The therapy, called RP-L201, targets white blood cells called neutrophils which ordinarily attack and destroy invading particles. In people with LAD-1 their neutrophils are dangerously low. That’s why the new data about this treatment is so encouraging.

In a news release, Jonathan Schwartz, M.D., Chief Medical Officer of Rocket, says early results in the CIRM-funded clinical trial, show great promise:

“Patients with severe LAD-I have neutrophil CD18 expression of less than 2% of normal, with extremely high mortality in early childhood. In this first patient, an increase to 47% CD18 expression sustained over six months demonstrates that RP-L201 has the potential to correct the neutrophil deficiency that is the hallmark of LAD-I. We are also pleased with the continued visible improvement of multiple disease-related skin lesions. The second patient has recently been treated, and we look forward to completing the Phase 1 portion of the registrational trial for this program.”

The results were released at the 23rd Annual Meeting of the American Society of Gene and Cell Therapy.

=================================================

These microscopic images show gene expression in muscle stem and progenitor cells as they mature from early development to adulthood (left to right). As part of this process, the cells switch from actively expressing one key gene (green) to another (violet); this is accompanied by the growth of muscle fibers (red).
Photo courtesy: Cell Stem Cell/UCLA Broad Stem Cell Research Center

When you are going on a road-trip you need a map to help you find your way. It’s the same with stem cell research. If you are going to develop a new way to treat devastating muscle diseases, you need to have a map to show you how to build new muscle stem cells. And that’s what researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA – with help from CIRM funding – have done.

The team took muscle progenitor cells – which show what’s happening in development before a baby is born – and compared them to muscle stem cells – which control muscle development after a baby is born. That enabled them to identify which genes are active at what stage of development.

In a news release, April Pyle, senior author of the paper, says this could open the door to new therapies for a variety of conditions:

“Muscle loss due to aging or disease is often the result of dysfunctional muscle stem cells. This map identifies the precise gene networks present in muscle progenitor and stem cells across development, which is essential to developing methods to generate these cells in a dish to treat muscle disorders.”

The study is published in the journal Cell Stem Cell.

Helping the blind see – mice that is

When I first saw the headline for this story I thought of the nursery rhyme about the three blind mice. Finally, they’ll be able to see the farmer’s wife coming at them with a carving knife. But the real-world implications are of this are actually pretty exciting.

Researchers at the National Institute of Health’s National Eye Institute took skin cells from mice and directly reprogrammed them into becoming light sensitizing cells in the eye, the kind that are often damaged and destroyed by diseases like macular degeneration or retinitis pigmentosa.

What’s particularly interesting about this is that it bypassed the induced pluripotent stem cell (iPSC) stage where researchers turn the skin cells into embryonic-like cells, then turn those into the cells found in the eye.

In a news release, Anand Swaroop of the NEI says this more direct approach has a number of advantages: “This is the first study to show that direct, chemical reprogramming can produce retinal-like cells, which gives us a new and faster strategy for developing therapies for age-related macular degeneration and other retinal disorders caused by the loss of photoreceptors.”

After converting the skin cells into cells called rod photoreceptors – the light sensing cells found in the back of the eye – the team transplanted them into blind mice. One month later they tested the mice to see if there had been any change in vision. There had; 43 percent of the mice reacted to light exposure, something they hadn’t done before.

Biraj Mahato, the study’s first author, said that three months later, the transplanted cells were still alive and functioning. “Even mice with severely advanced retinal degeneration, with little chance of having living photoreceptors remaining, responded to transplantation. Such findings suggest that the observed improvements were due to the lab-made photoreceptors rather than to an ancillary effect that supported the health of the host’s existing photoreceptors.”

Obviously there is a lot of work still to do before we can even begin to think about trying something like this in people. But this is certainly an encouraging start.

In the meantime, CIRM is funding a number of stem cell programs aimed at treating vision destroying diseases like macular degeneration and retinitis pigmentosa.

An advocate’s support for CIRM’s COVID-19 funding

Patient Advocates play an important role in everything we do at the stem cell agency, helping inform all the decisions we make. So it was gratifying to hear from one of our Advocates par excellence, Adrienne Shapiro, about her support for our Board’s decision to borrow $4.2 million from our Sickle Cell Cure fund to invest in rapid research for COVID-19. The money will be repaid but it’s clear from Adrienne’s email that she thinks the Board’s action is one that stands to benefit all of us.

Adrienne Shapiro and her daughter Marissa, who has sickle cell disease

Last Friday the CIRM Board voted to borrow $4.2 million dollars from the Sickle Cell Stem Cell Cure’s budget to fund Covid-19 research. The loan will be paid back at the end of the year from funds that are returned to the CIRM budget from projects that did not use them.  At first I thought “that makes sense, if the money is not being used …” then I thought how wonderful it was that the SCD budget was there and could be used for Covid-19 research.

Wonderful because Covid-19 is a great threat to the SCD community. Sickle cell patients are at risk of dying from the virus as many have no spleens, are immune-compromised and suffer from weakened lung function due to damage from sickling red blood cells and low oxygen levels. 

Wonderful because CIRM sponsored the first large clinical stem cell trials for a cure to SCD. Their funding and commitment to finding a universal cure for SCD opened what feels like a flood gate of research for a cure and new treatments.

Wonderful because it gives CIRM an opportunity to show the world what a government organization — that is committed to tackling complex medical problems — can accomplish using efficient, inclusive, responsible and agile methodologies.

I am eager to see what happens. We all hope that new treatments and even a cure will be found soon. If it does not come from CIRM funding we know that whatever is proven using these funds will help future researchers and patients. 

After all: the SCD community is living proof that science done well leads to a world with less suffering