Celebrating Stem Cell Awareness Day with SUPER CELLS!


To all you stem cell lovers out there, today is your day! The second Wednesday of October is Stem Cell Awareness Day (SCAD), which brings together organizations and individuals that are working to ensure the general public realizes the benefits of stem cell research.

For patients in desperate need of treatments for diseases without cures, this is also a day to recognize their struggles and the scientific advances in the stem cell field that are bringing us closer to helping these patients.


Induced pluripotent stem cells.

How are people celebrating SCAD?

This year, a number of institutes in California are hosting events in honor of Stem Cell Awareness Day. Members of the CIRM team will be speaking on Saturday about “The Power of Stem Cells” at the Buck Institute for Research on Aging in Novato (RSVP on Facebook) and at the Berkeley Student Society for Stem Cell Research Conference in Berkeley (RSVP on Eventbrite). There are also a few SCAD events going on this week in Southern California. You can learn more about these all events on our website.

You can also find out about other SCAD celebrations and events on social media by following the hashtag #StemCellAwarenessDay and #StemCellDay on Twitter.

Super Cells: The Power of Stem Cells

Super Cells exhibit at the Lawrence Hall of Science

Super Cells exhibit at the Lawrence Hall of Science

Today, the CIRM Stem Cellar is celebrating SCAD by sharing our recent visit to the Lawrence Hall of Science, which is currently hosting an exhibit called “Super Cells: The Power of Stem Cells”.

This is a REALLY COOL interactive exhibit that explains what stem cells are, what they do, and how we can harness their power to treat disease and injury. CIRM was one of the partners that helped create this exhibit, so we were especially excited to see it in person.

Super Cells has four “high-tech interactive zones and a comprehensive educational guide for school children ages 6-14”. You can read more details about the exhibit in this promotional handout. Based on my visit to the exhibit, I can easily say­­ that Super Cells will be interesting and informative to any age group.

The exhibit was unveiled on September 28th, and the Hall told us that they have already heard positive reviews from their visitors. We had the opportunity to talk further with Susan Gregory, the Deputy Director of the Hall, and Adam Frost, a marketing specialist, about the Super Cells exhibit. We asked them a few questions and will share their interview below followed by a few fun pictures we took of the exhibit.

Q: Why did the Lawrence Hall of Science decide to host the Super Cells exhibit?

The Lawrence Hall of Science has a history of bringing in exciting and engaging traveling exhibitions, and we were looking for something new to excite our visitors in the Fall season. When the opportunity presented itself to host Super Cells, we thought it would be a good fit for our audience. Additionally, the Hall is increasing its programming and exhibits in the fields of biology, chemistry and bioengineering.

Q: What aspects of the Super Cells exhibit do you think are valuable to younger kids?

We strive to make our exhibit experiences hands-on and interactive. The Hall believes that the best way for kids to learn science is for them to be active in their learning. Super Cells offers a variety of elements that speak to our philosophy of learning and make learning science more fun.

Q: How is exhibit similar or unique to other exhibits you’ve hosted previously?

 The Hall hosts and develops exhibits across a broad range of scientific, engineering, technology and mathematical topics. We are always looking for exhibits that address recent scientific advances, and also try to showcase cutting edge research.

Super Cells presents both basic cell biology and information about recent medical and scientific advances, so it fits. Also, as mentioned in our behind the scenes story about the exhibit install, in the past many of our traveling exhibits were very large experiences that tended to take up a lot of space on the museum floor. One thing that is great about Super Cells is that it packs a lot of information into a relatively small space, allowing us to keep a number of experiences and activities that our audience has come to love on the floor, instead of removing them to make room.

Q: Will there be any special events at the Hall featuring this exhibit?

On November 11, the Hall will host a fun day of activities centered around DNA and the exhibit. Younger visitors will make DNA bracelets based on the unique traits in their genome, while older kids will isolate their own DNA using a swab from inside their cheek. We are still finalizing the details of this event, but it will definitely happen.

Q:  Why do you think it’s important for younger students and the general public to learn about stem cells and stem cell research?

As UC Berkeley’s public science center, the Hall is committed to providing a window into cutting edge research and the latest scientific information. We think it’s really important for people and kids to learn about the skills and science behind current research so they can be prepared for a future of incredible scientific challenges and opportunities that we can’t foresee.

Super Cells will be open at the Lawrence Hall of Science until November 27th, so be sure to check it out before then. If you don’t live in California, don’t worry, Super Cells will be traveling around the U.S., Europe and Canada. You can find out where Super Cells is touring next on their website.

We hope you enjoy our photos of the Super Cells exhibit!







Science and Improv: Spotlight on CIRM Bridges Scholar Jill Tsai

As part of our CIRM scholar series, we’re featuring the research and career accomplishments of CIRM funded students.

What do science and improv have in common? The answer is not a whole lot. However, I recently met a talented student from our CIRM Bridges master’s program who one day is going to change this.

Jill Tsai

Jill Tsai, CIRM Bridges scholar

Meet Jill Tsai. She recently graduated from the CIRM Bridges program at the Scripps Research Institute in San Diego and is now starting a PhD program in cancer biology at the City of Hope in Duarte California.

Jill received her Bachelors from UC Merced general biology and went to Cal Poly Pomona for a Master’s program in cancer research. While at Cal Poly Pomona, she successfully applied for a CIRM Bridges internship that allowed her to finish her Master’s degree at Scripps in the lab of Dr. Lazzerini Denchi.

I met Jill at the 2016 Bridges Conference in July and was immediately impressed by her passion for science and communications. I was also intrigued by her interest in improv and how she balances her time between two very different passions. I’m thrilled that Jill agreed to an interview for the Stem Cellar as I think it’s valuable to read about scientists who are pursuing multiple passions not necessarily related to science.


Q: What did you study during your Bridges internship?

JT: I was a research intern in the lab of Dr. Lazzerini Denchi. In his lab, we study telomeres, which are the pieces of DNA at the end of chromosomes that help protect them from being degraded. We’re specifically looking at proteins that help maintain telomere function in mouse stem cells. We do big protein pull downs to try to figure out what new and novel proteins are surrounding the mechanisms that maintain telomere function, and then we do functional assays to figure out what these proteins do.

Lazzerini Denchi’s lab focuses on basic research and how certain proteins affect telomere length and also the telomere deprotection response. One function of telomeres is that they suppress the double and single stranded DNA repair mechanism. If you don’t suppress those mechanisms, then the ends of those linear chromosomes look exactly like double stranded DNA breaks and repair proteins try to fix them by fusing those chromosomes together.

There are great pictures from Lazzerini Denchi’s first author publication showing chromosomes hooked end to end to end like long strings of spaghetti as a result of telomere deprotection. We are studying novel proteins that assist telomeres with the deprotection response and determining whether these proteins have some other kind of function as well.

Telomere deprotection results in chromosomes that are linked together (right) instead of separate (left). (Source Denchi et al. Nature)

Telomere deprotection results in chromosomes that are linked together (right) instead of separate (left). (Source Nature: Denchi et al., 2007)

Our larger focus in the lab is being able to understand cancer and specific telomere related genetic disorders that are associated with cancer.

Q: What was your CIRM Bridges experience like?

JT: CIRM was really amazing, and I credit it a lot for being able to start a PhD this fall. I’d been working in my lab at Cal Poly Pomona for five years, and my research unfortunately wasn’t working out. I was probably going to have to quit the program or take an out with an easier project. When I applied to CIRM, I was hoping to get the internship because if I didn’t get it, I was going to go down a completely different career path.

The CIRM internship was very valuable to me. It provided training through stem cell classes and lectures and allowed me to immerse myself in a real lab that had real equipment and personnel. The experience took my research knowledge to the next level and then some. And I knew for sure it had when I was at the poster session during the Bridges conference. I was walking around and asking students about their research, and I understood clearly the path of their research. I knew what questions were good to ask and what the graphs meant without having to take them home and dissect them. It was extremely satisfying to be able to understand other’s scientific research by just listening to them.

I am so excited to start my PhD in the fall. For the first time, I feel confident about my foundational biology and research skills. I also have a better understanding of myself and where I need to improve in comprehension and technique. I am ready to jump into grad school and improve as a scientist.

Q: What are your future career steps?

JT: I want to do something that involves teaching or being able to educate people. I’ve worked as a TA in my master’s program for a few years, and I really enjoy that experience of clarifying complex subjects for people. But to be honest, I also don’t know what I want to do right now so I’m keeping my options open.

Q: What’s your favorite thing about being scientist?

JT: Being a scientist forces you to never be complacent in what you understand. If I had never gotten my master’s, there would be this whole level of critical thinking that I wouldn’t have right now. Learning more is one of the biggest reasons why I want to get my PhD even if I don’t know exactly what I want to do yet.

I want to be able to think at a higher level because I think it’s valuable. And I see my Professor at Scripps: he has all these publications under his belt, but he’s always tinkering with things and he’s always learning new software and he’s always reading new papers. As a scientist, you can’t be stagnant in your learning, and I think because of that you’re always pushing yourself to your best potential.
Q: Do you have advice for future Bridges students?

JT: For anyone who is interested in doing a PhD, this is the world’s best preparatory program. After you start a PhD, you hit the ground running. If I were to give advice, I’d say to not be too hard on yourself. There’s going to be expectations put on you that you might not be ready for and you might not do the best job. But you should try your best and know it’s going to help you grow.

Usually people who go into PhD programs are people that have always done well in school. But it’s important to know that learning in grad school is very different than how we are taught to learn elsewhere. Every other time it’s just like show up, listen, take the test you’re done. A PhD relies on a little bit of luck, getting the right project, and doing everything meticulously.

Q: What are your hobbies?

JT: My favorite hobby is improv comedy. What I really like about improv is that it is so different from science and it helps me to relax after work.

Improv is performing comedic scenes on stage with a bunch of people without a script. Skills that it requires are not being stuck in your own head and really paying attention to what’s going on around you. You also need to take big risks and not worry so much about what the end result is going to be, which is very different from research. It’s a nice break to be able to make big giant mistakes and know that after that day it doesn’t matter.

As a researcher, it’s hard to make friends, and even if you have friends, it’s hard to find the time to hang out with them. I love improv because it’s a built in activity. All of my friends outside of work are in improv. We show up and we play make believe together on stage – it’s just a really nice atmosphere. In improv we teach a philosophy that everything you have is enough. Everything you come in with is enough. It’s really nice, because being an adult is hard and life is hard. So it’s a nice thing to hear.

Jill's Improv team.

Flyspace Improv team.

Q: Do you see yourself combining your passions for science and improve in the future?

JT: I do. I don’t know what I want to do yet as a career, but improv is such a big part of my identity that it will always play a role in my life. Improv is so important in communication and interpersonal connections. I believe everyone in science could benefit from it. Ideally, I will find a career that allows me to use both of these passions to help people.

Young Minds Shine Bright at the CIRM SPARK Conference

SPARK students take a group photo with CIRM SPARK director Karen Ring.

SPARK students take a group photo with CIRM SPARK director Karen Ring.

Yesterday was one of the most exciting and inspiring days I’ve had at CIRM since I joined the agency one year ago. We hosted the CIRM SPARK conference which brought together fifty-five high school students from across California to present their stem cell research from their summer internships.

The day was a celebration of their accomplishments. But it was also a chance for the students to hear from scientists, patient advocates, and clinicians about the big picture of stem cell research: to develop stem cell treatments and cures for patients with unmet medical needs.

Since taking on the role of the CIRM SPARK director, I’ve been blown away by the passion, dedication, and intelligence that our SPARK interns have shown during their short time in the lab. They’ve mastered techniques and concepts that I only became familiar with during my PhD and postdoctoral research. And even more impressive, they eloquently communicated their research through poster presentations and talks at the level of professional scientists.

During their internships, SPARK students were tasked with documenting their research experiences through blogs and social media. They embraced this challenge with gusto, and we held an awards ceremony to recognize the students who went above and beyond with these challenges.

I’d like to share the winning blogs with our readers. I hope you find them as inspiring and motivating as I do. These students are our future, and I look forward to the day when one of them develops a stem cell treatment that changes the lives of patients. 

Andrew Choi

Andrew Choi

Andrew Choi, Cedars-Sinai SPARK student

Am I crying or is my face uncontrollably sweating right now? I think I am doing both as I write about my unforgettable experiences over the course of the past 6 weeks and finalize my poster.

As I think back, I am very grateful for the takeaways of the research field, acquiring them through scientific journals, lab experiments with my mentor, and both formal and informal discourses. It seems impossible to describe all the episodes and occurrences during the program in this one blog post, but all I can say is that they were all unique and phenomenal in their own respective ways.

Gaining new perspectives and insights and being acquainted with many of the techniques, such as stereology, immunocytochemistry and immunohistochemistry my peers have utilized throughout their careers, proved to me the great impact this program can make on many individuals of the younger generation.

CIRM SPARK not only taught me the goings on behind the bench-to-bedside translational research process, but also morals, work ethics, and effective collaboration with my peers and mentors. My mentor, Gen, reiterated the importance of general ethics. In the process of making my own poster for the program, her words resonate even greater in me. Research, education, and other career paths are driven by proper ethics and will never continue to progress if not made the basic standard.

I am thankful for such amazing institutions: California Institute of Regenerative Medicine (CIRM) and Cedars-Sinai Medical Center for enabling me to venture out into the research career field and network. Working alongside with my fellow seven very brilliant friends, motivated me and made this journey very enjoyable. I am especially thankful my mentor, Gen, for taking the time to provide me with the best possible resources, even with her busy ongoing projects. She encouraged me to be the best that I am.

I believe, actually, I should say, I KNOW Cedars-Sinai’s CIRM SPARK program does a SUPERB and astounding job of cultivating life-long learners and setting exceptional models for the younger generation. I am hoping that many others will partake in this remarkable educational program.

I am overall very blessed to be part of a successful summer program. The end of this program does not mark the end of my passions, but sparks them to even greater heights.

Jamey Guzman

Jamey Guzman

Jamey Guzman, UC Davis SPARK student

When I found out about this opportunity, all I knew was that I had a fiery passion for learning, for that simple rush that comes when the lightbulb sputters on after an unending moment of confusion. I did not know if this passion would translate into the work setting; I sometimes wondered if passion alone would be enough to allow me to understand the advanced concepts at play here. I started at the lab nervous, tentative – was this the place for someone so unsure exactly what she wanted to be ‘when she grew up,’ a date now all too close on the horizon? Was I going to fit in at this lab, with these people who were so smart, so busy, people fighting for their careers and who had no reason to let a 16-year-old anywhere near experiments worth thousands of dollars in cost and time spent?

I could talk for hours about the experiments that I worked to master; about the rush of success upon realizing that the tasks now completed with confidence were ones that I had once thought only to belong to the lofty position of Scientist. I could fill pages and pages with the knowledge I gained, a deep and personal connection to stem cells and cell biology that I will always remember, even if the roads of Fate pull me elsewhere on my journey to a career.

The interns called the experience #CIRMSparkLab in our social media posts, and I find this hashtag so fitting to describe these last few months. While there was, of course, the lab, where we donned our coats and sleeves and gloves and went to work with pipets and flasks…There was also the Lab. #CIRMSparkLab is so much more than an internship; #CIRMSparkLab is an invitation into the worldwide community of learned people, a community that I found to be caring and vibrant, creative and funny – one which for the first time I can fully imagine myself joining “when I grow up.”

#CIRMSparkLab is having mentors who taught me cell culture with unerring patience and kindness. It is our team’s lighthearted banter across the biosafety cabinet; it is the stories shared of career paths, of goals for the present and the future. It is having mentors in the best sense of the word, trusting me, striving to teach and not just explain, giving up hours and hours of time to draw up diagrams that ensured that the concepts made so much sense to me.

#CIRMSparkLab is the sweetest ‘good-morning’ from scientists not even on your team, but who care enough about you to say hi, to ask about your projects, to share a smile. It is the spontaneity and freedom with which knowledge is dispensed: learning random tidbits about the living patterns of beta fish from our lab manager, getting an impromptu lecture about Time and the Planck Constant from our beloved professor as he passes us at lunch. It is getting into a passionate, fully evidence-backed argument about the merits of pouring milk before cereal that pitted our Stem Cell team against our Exosome team: #CIRMSparkLab is finding a community of people with whom my “nerdy” passion for learning does not leave me an oddball, but instead causes me to connect instantly and deeply with people at all ages and walks of life. And it is a community that, following the lead of our magnificent lab director, welcomed ten interns into their lab with open arms at the beginning of this summer, fully cognizant of the fact that we will break beakers, overfill pipet guns, drop gels, bubble up protein concentration assays, and all the while never stop asking, “Why? Why? Why? Is this right? Like this? WHY?”

I cannot make some sweeping statement that I now know at age 16 exactly what I want to do when I grow up. Conversely, to say I learned so much – or I am so grateful – or you have changed my life is simply not enough; words cannot do justice to those sentiments which I hope that all of you know already. But I can say this: I will never forget how I felt when I was at the lab, in the community of scientists. I will take everything I learned here with me as I explore the world of knowledge yet to be obtained, and I will hold in my heart everyone who has helped me this summer. I am truly a better person for having known all of you.

Thank you, #CIRMSparkLab. 

Adriana Millan

Adriana Millan

Adriana Millan, CalTech SPARK student

As children, we all grew up with the companionship of our favorite television shows. We enjoyed sitcoms and other animations throughout our childhood and even as adults, there’s no shame. The goofy and spontaneous skits we enjoyed a laugh over, yet we did not pay much attention to the lessons they attempted to teach us. As a child, these shows play crucial roles in our educational endeavors. We are immediately hooked and tune in for every episode. They spark curiosity, as they allow our imaginations to run wild. For me, that is exactly where my curiosity stemmed and grew for science over the years. A delusional young girl, who had no idea what the reality of science was like.

You expect to enter a lab and run a full day of experimentations. Accidentally mix the wrong chemicals and discover the cure for cancer. Okay, maybe not mix the incorrect chemicals together, I learned that in my safety training class. The reality is that working in a lab was far from what I expected — eye opening. Working alongside my mentor Sarah Frail was one of the best ways I have spent a summer. It was not my ideal summer of sleeping in until noon, but it was worthwhile.

My experience is something that is a part of me now. I talk about it every chance I get, “Mom, can you believe I passaged cells today!” It changed the way I viewed the principles of science. Science is one of the most valuable concepts on this planet, it’s responsible for everything and that’s what I have taken and construed from my mentor. She shared her passion for science with me and that completed my experience. Before when I looked at cells, I did not know exactly what I was supposed to observe. What am I looking at? What is that pink stuff you are adding to the plate?

However, now I feel accomplished. It was a bit of a roller coaster ride, with complications along the way, but I can say that I’m leaving this experience with a new passion. I am not just saying this to please the audience, but to express my gratitude. I would have never even looked into Huntington’s Disease. When I first arrived I was discombobulated. Huntington’s Disease? Now I can proudly say I have a grasp on the complexity of the disease and not embarrass my mentor my calling human cells bacteria – quite embarrassing in fact.  I’m a professional pipette handler, I work well in the hood, I can operate a microscope – not so impressive, I have made possibly hundreds of gels, I have run PCRs, and my cells love me, what else can I ask for.

If you are questioning what career path you are to take and even if it is the slightest chance it may be a course in science, I suggest volunteering in a lab. You will leave with your questioned answered. Is science for me? This is what I am leaving my experience with. Science is for me.

Other SPARK 2016 Awards

Student Speakers: Jingyi (Shelly) Deng (CHORI), Thomas Thach (Stanford)

Poster Presentations: Jerusalem Nerayo (Stanford), Jared Pollard (City of Hope), Alina Shahin (City of Hope), Shuling Zhang (UCSF)

Instagram Photos: Roxanne Ohayon (Stanford), Anna Victoria Serbin (CHORI), Diana Ly (UC Davis)

If you want to see more photos from the CIRM SPARK conference, check out our Instagram page @CIRM_Stemcells or follow the hashtag #CIRMSPARKLab on Instagram and Twitter.

Advancing Stem Cell Research at the CIRM Bridges Conference

Where will stem cell research be in 10 years?

What would you say to patients who wanted stem cell therapies now?

What are the most promising applications for stem cell research?

Why is it important for the government to fund regenerative medicine?

These challenging and thought-provoking questions were posed to a vibrant group of undergraduate and masters-level students at this year’s CIRM Bridges to Stem Cell Research and Therapy conference.

Educating the next generation of stem cell scientists

The Bridges program is one of CIRM’s educational programs that offers students the opportunity to take coursework at California state schools and community colleges and conduct stem cell research at top universities and industry labs. Its goal is to train the next generation of stem cell scientists by giving them access to the training and skills necessary to succeed in this career path.

The Bridges conference is the highlight of the program and the culmination of the students’ achievements. It’s a chance for students to showcase the research projects they’ve been working on for the past year, and also for them to network with other students and scientists.

Bridges students participated in a networking pitch event about stem cell research.

Bridges students participated in a networking pitch event about stem cell research.

CIRM kicked off the conference with a quick and dirty “Stem Cell Pitch” networking event. Students were divided into groups, given one of the four questions above and tasked with developing a thirty second pitch that answered their question. They were only given ten minutes to introduce themselves, discuss the question, and pick a spokesperson, yet when each team’s speaker took the stage, it seemed like they were practiced veterans. Every team had a unique, thoughtful answer that was inspiring to both the students and to the other scientists in the crowd.

Getting to the clinic and into patients

The bulk of the Bridges conference featured student poster presentations and scientific talks by leading academic and industry scientists. The theme of the talks was getting stem cell research into the clinic and into patients with unmet medical needs.

Here are a few highlights and photos from the talks:

On the clinical track for Huntington’s disease

Leslie Thompson, Professor at UC Irvine, spoke about her latest research in Huntington’s disease (HD). She described her work as a “race against time.” HD is a progressive neurodegenerative disorder that’s associated with multiple social and physical problems and currently has no cure. Leslie described how her lab is heading towards the clinic with human embryonic stem cell-derived neural (brain) stem cells that they are transplanting into mouse models of HD. So far, they’ve observed positive effects in HD mice that received human neural stem cell transplants including an improvement in the behavioral and motor defects and a reduction in the accumulation of toxic mutant Huntington protein in their nerve cells.

Leslie Thompson

Leslie Thompson

Leslie noted that because the transplanted stem cells are GMP-grade (meaning their quality is suitable for use in humans), they have a clear path forward to testing their potential disease modifying activity in human clinical trials. But before her team gets to humans, they must take the proper regulatory steps with the US Food and Drug Administration and conduct further experiments to test the safety and proper dosage of their stem cells in other mouse models as well as test other potential GMP-grade stem cell lines.

Gene therapy for SCID babies

Morton Cowan, a pediatric immunologist from UC San Francisco, followed Leslie with a talk about his efforts to get gene therapy for SCID (severe combined immunodeficiency disease) off the bench into the clinic. SCID is also known as bubble-baby disease and put simply, is caused by a lack of a functioning immune system. SCID babies don’t have normal T and B immune cell function and as a result, they generally die of infection or other conditions within their first year of life.

Morton Cowan

Morton Cowan, UCSF

Morton described how the gold standard treatment for SCID, which is hematopoietic or blood stem cell transplantation, is only safe and effective when the patient has an HLA matched sibling donor. Unfortunately, many patients don’t have this option and face life-threatening challenges of transplant rejection (graft-versus host disease). To combat this issue, Morton and his team are using gene therapy to genetically correct the blood stem cells of SCID patients and transplant those cells back into these patients so that they can generate healthy immune cells.

They are currently developing a gene therapy for a particularly hard-to-treat form of SCID that involves deficiency in a protein called Artemis, which is essential for the development of the immune system and for repairing DNA damage in cells. Currently his group is conducting the necessary preclinical work to start a gene therapy clinical trial for children with Artemis-SCID.

Treating spinal cord injury in the clinic

Casey Case, Asterias Biotherapeutics

Casey Case, Asterias Biotherapeutics

Casey Case, Senior VP of Research and Nonclinical Development at Asterias Biotherapeutics, gave an update on the CIRM-funded clinical trial for cervical (neck) spinal cord injury (SCI). They are currently testing the safety of transplanting different doses of their oligodendrocyte progenitor cells (AST-OPC1) in a group of SCI patients. The endpoint for this trial is an improvement in movement greater than two motor levels, which would offer a significant improvement in a patient’s ability to do some things on their own and reduce the cost of their healthcare. You can read more about these results and the ongoing study in our recent blogs (here, here).

Opinion: Scientists should be patient advocates

David Higgins gave the most moving speech of the day. He is a Parkinson’s patient and the Patient Advocate on the CIRM board and he spoke about what patient advocates are and how to become one. David explained how, these days, drug development and patient advocacy is more patient oriented and patients are involved at the center of every decision whether it be questions related to how a drug is developed, what side effects should be tolerated, or what risks are worth taking. He also encouraged the Bridges students to become patient advocates and understand what their needs are by asking them.

David Higgins, Parkinson's advocate and CIRM Board member

David Higgins

“As a scientist or clinician, you need to be an ambassador. You have a job of translating science, which is a foreign language to most people, and you can all effectively communicate to a lay audience without being condescending. It’s important to understand what patients’ needs are, and you’ll only know that if you ask them. Patients have amazing insights into what needs to be done to develop new treatments.”

Bridging the gap between research and patients

The Bridges conference is still ongoing with more poster presentations, a career panel, and scientific talks on discovery and translational stem cell research and commercializing stem cell therapies to all patients in need. It truly is a once in a lifetime opportunity for the Bridges students, many of whom are considering careers in science and regenerative medicine and are taking advantage of the opportunity to talk and network with prominent scientists.

If you’re interested in hearing more about the Bridges conference, follow us on twitter (@CIRMnews, @DrKarenRing, #CIRMBridges2016) and on Instagram (@CIRM_Stemcells).

California high schoolers SPARK interest in stem cell research through social media

I have a job for you today and it’s a fun one. Open your Instagram app on your phone. If you’re not an Instagrammer, don’t worry, you can access the website on your computer.

Do you have it open? OK now type in the hashtag #CIRMSparkLab and click on it.

What you’ll find is around 200 posts of the most inspiring and motivating pictures of stem cell research that I’ve seen. These pictures are from high school students currently participating in the CIRM summer SPARK program, one of our educational programs, which has the goal to train the next generation of stem cell scientists.

The SPARK program offers California high school students an invaluable opportunity to gain hands-on training in regenerative medicine at some of the finest stem cell research institutes in the state. And while they gain valuable research skills, we are challenging them to share their experiences with the general public through blogging and social media.

Communicating science to the public is an important mission of CIRM, and the SPARK students are excelling at this task by posting descriptive photos on Instagram that document their internships. Some of them are fun lab photos, while others are impressive images of data with detailed explanations about their research projects.

Below are a few of my favorite posts so far this summer. I’ve been so inspired by the creativity of these posts that we are now featuring some of them on the @CIRM_Stemcells account. (Yes this is a shameless plug for you to follow us on Instagram!).

City of Hope SPARK program.

Screen Shot 2016-07-13 at 11.15.14 AM

Screen Shot 2016-07-13 at 11.17.24 AM

Screen Shot 2016-07-13 at 11.16.59 AM

Screen Shot 2016-07-13 at 11.23.51 AM

Screen Shot 2016-07-13 at 11.17.43 AM

I encourage you all to follow our talented SPARK students this summer as they continue to document their exciting journeys on Instagram. These students are our future and supporting their training and education in stem cell research is an honor for CIRM and a vital step towards achieving our mission of accelerating stem cell treatments to patients with unmet medical needs.

Stay tuned for more blog coverage about SPARK and our other educational program, the Bridges to Stem Cell Research program for undergraduate and master-level students. The annual Bridges conference that brings all the students together to present their research will be held next week, and the SPARK conference is on August 8th both in Berkeley.

Knowledge is on the menu at Dinner with a Scientist:

Helen Budworth, Ph.D., is one of the Science Officers at CIRM. She wrote this blog about her experiences talking to some budding local scientists who just happen to be ten years old.kids dinner

Recently I had the pleasure of attending the Oakland Unified School District (OUSD) “Dinner with a Scientist” event held at the Oakland Zoo. OUSD has been hosting this annual event since 2009 to bring together local scientists, teachers, and students to celebrate science in an evening of activities and science conversation.

I was dining with 4th and 5th grade elementary students and their teachers from Think College Now and from Brookfield Elementary in Oakland. They included many budding scientists, with interests ranging from biology and chemistry, to geology and astronomy. The students were eager to learn about how I became a scientist, what interests me about my job and how they can prepare themselves for a future scientific career. I explained that my interest in science began in childhood because I loved puzzles and really enjoyed trying to work things out, and that my interest in science naturally flowed from that. Both students and teachers alike were interested to learn more about CIRM and what our scientists are working on.

The evening began with the students being asked a simple question: “What is science?” One of the kids said it was finding out new things; another said it meant conducting experiments to answer questions. One said it was a way of making money. He’s in for a rude surprise when he grows up!

kids dinner2

In order to demonstrate the potential of stem cells, I led an activity that allowed the groups to use Play Doh to model the early stages of human development from a zygote, the earliest stage of a fertilized egg, through the first few weeks of embryonic development. What I learned from this event is that when you ask a 4th/5th grader if they know how babies are made, you will get many giggles and some interesting descriptions of ways that sperm and egg can meet – but few details of what happens after that.

This hands-on activity showed the students the processes of cell division, differentiation and development of a multi-cellular organism from a single-celled zygote. Scientific studies of stem cells, such as those found at early stages of development, have allowed us to reach the point where we are now harnessing the power of these cells to create treatments for diseases. They were very intrigued by the idea that you begin life as a single cell, that grows and multiplies and changes until all those cells become the different parts of you and creates a whole human being.

The exercise, indeed the whole evening, gave the students an opportunity to see how scientific careers are translated to real world applications and will hopefully inspire some future scientists and doctors.

I asked one of the students what kind of scientist she wanted to be, and she replied that she wanted to be a chemist. When I asked why she said because she likes mixing things. That seems as good a reason to think about a career in science as any.




Brave new world or dark threatening future: a clear-eyed look at genome editing and what it means for humanity


   Is this the face of the future?

“Have you ever wished that there were something different about yourself? Maybe you imagined yourself taller, thinner or stronger? Smarter? More attractive? Healthier?”

That’s the question posed by UC Davis stem cell researcher (and CIRM grantee) Paul Knoepfler at the start of his intriguing new book ‘GMO Sapiens: The Life-Changing Science of Designer Babies’.


You can find GMO Sapiens on Amazon.com

The book is a fascinating, and highly readable, and takes a unique look at the dramatic advances in technology that allow us to edit the human genome in ways that could allow us to do more than just create “designer babies”, it could ultimately help us change the definition of what it means to be human.

Paul begins by looking at the temptation to use technologies like CRISPR (we have blogged about this here), to genetically edit or alter human embryos so that the resulting child is enhanced in some ways. It could be that the editing is used to remove a genetic mutation that could cause a deadly disease (such as the BRCA1 gene that puts women at increased risk of breast and ovarian cancer) or it could be that the technique is used to give a baby blue eyes, to make it taller, more athletic, or to simply eliminate male pattern baldness later in life.

Paul says those latter examples are not as ridiculous as they sound:

Paul Knoepfler

Paul Knoepfler

“If you think these ideas sound far-fetched, consider that Americans alone spend tens of billions of dollars each year on plastic surgery procedures and creams to try to achieve these kinds of goals. Some of the time elective cosmetic surgery is done on children. In the future, we might have “cosmetic genetic surgeons” who do “surgery” on our family’s genes for cosmetic reasons. In other countries the sensibilities and cultural expectations could lead to other kinds of genetic modifications of humans for “enhancements”.

While the technology that enables us to do this is new, the ideas behind why we would want to do this are far from new. Paul delves into those ideas including a look at the growth of the eugenics movement in the late 19th and early 20th century advocating the improvement of human genetic traits through higher reproductive rates for people considered “superior”. And there was a darker side to the movement:

“Indiana had instituted the first law for sterilization of “inferior” people in the world in 1907. Astonishingly this state law and then similar laws (the original was revoked, but a new law was passed later) stayed on the books in that state until 1974.

This led to approximately 2,500 governmentally forced sterilizations. The poor, uneducated, people of color, Native Americans, and people with disabilities were disproportionately targeted.”

Paul explores the ethical and moral implications of changing our genetic code, changes that can then be passed on to future generations. While he understands the desire to use these technologies to create positive changes, he is also very clear in his concerns that we don’t yet have enough knowledge to be able to use them in a safe manner.

“CRISPR can literally re-write the genomic book inside of us. However, it remains unknown how often it might go to the wrong page or paragraph, so to speak, or stay on the right page, but make an undesired edit there.”

Tiny errors in editing the genome, particularly at such an early stage in an embryo’s development, could have profound and unintended consequences years down the road, resulting in physical or developmental problems we can’t anticipate or predict. For example, you might remove the susceptibility to one disease only to create an even larger problem, one that is now embedded in that person’s DNA and ready to be passed on to subsequent generations.

The book includes interviews with key figures in the field – scientists, bioethicists etc. – and covers a wide range of views of what we should do. For example, the Director of the US National Institutes of Health (NIH), Francis Collins, said that designer babies “make good Hollywood — and bad science,” while the Center for Genetics and Society has advocated for a moratorium on human genetic modification in the US.

In contrast, scientists such as Harvard professor George Church and CRISPR pioneer Jennifer Doudna of UC Berkeley, say we need to carefully explore how to harness the potential for these technologies.

For Church it is a matter of choice:

“The new technology enables parents to make choices about their children just as they might with Ritalin or cleft palate surgery to ‘improve’ behavior or appearance.”

For Doudna it’s acknowledging the fact that you can’t put the genie back in the bottle:

“There’s no way to unlearn what is learned. We can’t put this technology to bed. If a person has basic knowledge of molecular biology they can do it. It’s not realistic to think we can block it…We want to put out there the information that people would need to make an informed decision, to encourage appropriate research and discourage forging ahead with clinical applications that could be dangerous or raise ethical issues.”

The power of Paul’s book is that while it does not offer any easy answers, it does raise many important questions.

It’s a wonderfully well-written book that anyone can read, even someone like me who doesn’t have a science background. He does a good job of leading the reader through the development of these technologies (from the basic idea of genetically altering plants to make them disease resistant) to the portrayal of these concepts in literature (Frankenstein and Brave New World) to movies (Gattaca – 4 stars on Rotten Tomatoes  a great film if you haven’t already seen it).

It’s clear where Paul stands on the issue; he believes there should be a moratorium on human genetic modification until we have a much deeper understanding of the science behind it, and the ethics and morality underpinning it:

“This is a very exciting time to be alive and we should be open to embracing change, but not blindly or in a rush. Armed with information and passion, we can have a major, positive impact on how this biotech revolution unfolds and impacts humanity.”

By the way, Paul also has one of the most widely read blogs about stem cells, where you can read more about his thoughts on CRISPR and other topics.


Learning about the Potential of Stem Cells? There’s an App for that.

Screen Shot 2016-05-03 at 9.42.32 AM.png

Say hello to Reggie

Staying informed about stem cell research is an important but daunting task. With all of the scientific lingo, the hundreds of websites, and the multitude of diseases related to stem cell research, it’s a perfect storm of information overload. For our readers who feel swept up in those waves at times (or most of the time!), say hello to Reggie, a new, free, smart phone app that cuts through all that to provide some basic information about the potential of stem cells.

Reggie was launched in March and is the brainchild of CellCAN, a network of Canadian researchers who work in regenerative medicine and cellular therapy. The Canadian Stem Cell Foundation also collaborated on the project. Why the name Reggie? It turns out the CellCAN’s CEO Denis Claude Roy came up with the idea. I reached out to COO Vanessa Laflamme who gave me the backstory:

We were looking for an easy to remember name related to cell therapy and regenerative medicine – that’s when Reggie (for regenerative) came to mind! Hopefully, Reggie will be one day associated with regenerative medicine and cell therapy as much as ‘’Oscar’’ is associated with every skeleton in medical schools!

As the creators mention on the About Reggie page, the app isn’t an extensive encyclopedia of all that there is to know about stem cells. Instead, it takes a “keep it simple” approach with a list of essential terms and brief summaries on the status of stem cell-based therapies for a number of diseases.


The Interactive Body feature on the Reggie app

All the information is easy to access with an intuitive interface. The brief disease summaries, for instance, are searchable from an alphabetical list of illnesses or from a fun Interactive Body feature – tap on, let’s say, Reggie’s head and you’ll get overviews of stem cell research related to autism, cerebral palsy, deafness, Parkinson’s disease and stroke. Each summary answers the same four questions so you know what particulars to expect for each disease: What are scientists hoping stem cells can do? Are there stem cell treatments for the disease? Are clinical trials currently underway? When might a stem cell therapy be available?

Since the Reggie app is literally in your back pocket, I imagine it will be really handy for patient advocates and others who attend outreach events and find themselves needing to answer basic questions about the stem cell field. And for students and others who are just starting to learn about stem cell research, it’s a great jumping off point. As the creators mention in the app, they hope Reggie encourages people to seek out more information:

“The reader is invited to learn more by consulting other sources of information on the Web or by speaking to a doctor”.

Here’s the spot where I shamelessly plug our website and blog as great sources for finding that additional information about the exciting potential of stem cells to treat people with unmet medical needs!

CellCAN has big plans for Reggie in the near future. Laflamme gave me a sneak preview of what to expect:

We plan on launching a “Reggie 2.0” by the end of 2016. The point of Reggie is really to engage with the public, so a crowdsourcing campaign is planned for this summer in order to obtain information about what people would like to learn about with Reggie. And a little scoop: a stem cell trivia will be included in the 2.0 version of Reggie! Also, stay tuned, as Reggie might soon be available in more languages!

Stem cell stories that caught our eye: fighting cancer, a cell’s neighborhood matters, funding next generation scientists

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Reprogramming skin to fight cancer. Earlier CIRM-funded research showed that adult nerve stem cells can home to the residual brain cancer left behind after surgery and deliver a cancer killing agent directly to where it is most needed. Now a team at the University of North Carolina has shown it can use reprogramming techniques similar to the Nobel-prize winning iPS cell reprogramming method to turn a patient’s own skin cells directly into adult nerve stem cells. They then used those stem cells to deliver a cancer-fighting protein to mice with brain cancer and extended their lives.

“We wanted to find out if these induced neural stem cells would home in on cancer cells and whether they could be used to deliver a therapeutic agent. This is the first time this direct reprogramming technology has been used to treat cancer,” said the leader of the study, Shawn Hingtgen, in a UNC press release.

Cancer cells. (iStockPhoto)

Cancer cells. (iStockPhoto)

Many outlets picked up the release, including FoxNews, which overstated the lack of progress in the field.  Their piece suggests there had been no improvements “in more than 30 years,” which ignores several advances, but you can not argue with the quote they use from Hingtgen: “Patients desperately need a better standard of care.”

More evidence the neighborhood matters. Cells excrete substances that become the structure, known as the extracellular matrix (ECM), that holds them in place. Many regenerative medicine strategies count on using donor ECM to attract and hold stem cells, or use a synthetic material that mimics ECM. A team at the Institute for Research in Biomedicine in Barcelona has documented a strong feedback loop in which the ECM also directs which cells populate an area.

The work builds on a growing body of research we have written about that shows the neighborhood a stem cell finds itself in helps dictate what it will become. The study, published in eLife, focused on the tracheal tube in fruit flies.

“The biological context of these cells modifies not only their behavior but also their internal structure,” said the head of the project Jordi Casanova in a press release picked up by NewsMedical.net. “When we modify only the extracellular matrix, the cytoskeleton is also altered.”

The research team suggested that this form of intracellular communication has been preserved in evolution and has an important role in humans, including in inflammatory diseases and cancer.

Cancer therapys major step toward patients. We frequently point out that our mission is not to do research; it is to deliver therapies to patients. And that requires commercial partners that can do all the late stage work needed to bring a therapy to market. So, we are thrilled when the developers of a therapy we have fostered from the very earliest days in the lab announces they have complete the first half of a $75 million round of venture financing, and with major names from Silicon Valley, Lightspeed, Sutter Hill and Google Ventures.

The therapy, from the Stanford Lab of Irv Weissman, now being taken forward by the company he and colleagues founded, Forty Seven, has been shown to be effective against several types of cancer in animals and is now in an early phase human clinical trial funded by CIRM. We also funded the pre-clinical work for a total investment of more than $30 million in the therapy, which has promise to work synergistically with other therapies to wipe out notoriously difficult cancers. The company name comes from the therapy’s target on cancer stem cells, CD47.

Irv Weissman

Irv Weissman

“Targeting CD47 integrates the adaptive and innate immune systems, creating synergy with existing cancer-specific antibodies like rituximab, cetuximab and trastuzumab through ADCP, and potentially with T-cell checkpoint inhibitors through cross-presentation,” said Weissman in a company press release.

The online publication Xconomy wrote a longer piece providing more perspective on how the therapy could fit into the market and on CIRM’s role in its development.

The next generation in the lab.  The Guardsman, the student newspaper of City College, San Francisco, did a nice write up on our recent renewal of the colleges grant for one of our 17 current Bridges programs that train undergraduate and masters level students the ins-and-outs of working in a stem cell laboratory.

Rosa Canchari works with cell cultures in City College’s biotech laboratory. (Photo by Amanda Aceves/Special to The Guardsman)

Rosa Canchari works with cell cultures in City College’s biotech laboratory. (Photo by Amanda Aceves/Special to The Guardsman)

The current renewal has redirected the programs to have the students better understand the end user, the patient, and to get a firmer grasp on the regulatory and process development pathways needed to bring a new therapy to market. As program officer for this initiative, I will be meeting with all the program directors next week to discuss how best to implement these changes.

But, as the CCSF director Dr. Carin Zimmerman told the Guardsman, the program continues to generate highly valued skilled workers. Like many of our programs, CCSF offers its basic courses to students at the school beyond those enrolled in the CIRM internships, and even that more limited exposure to stem cell science often lands jobs.

“One of the reasons we have a hard time filling all these classes is because people take one or two classes and get hired,” said Carin Zimmerman.

Super stem cell exhibit opens in San Diego

Stem cell exhibit

The best science museums are like playgrounds. They allow you to wander around, reading, watching and learning and being amazed as you go. It’s not just a feast for the mind; it’s also fun for the hands.  You get to interact with and experience science, pushing buttons, pulling levers, watching balls drop and electricity spark.

The best science museums bring out the kid in all of us.

This Saturday a really great science museum is going to be host to a really great exhibition. The Reuben H. Fleet Science Center in San Diego is the first stop on a California tour for “Super Cells: The Power of Stem Cells”. The exhibit is coming here fresh from a successful tour of Canada and the UK.

The exhibit is a “hands-on” educational display that demonstrates the importance and the power of stem cells, calling them “our body’s master cells.” It uses animations, touch-screen displays, videos and stunning images to engage the eyes and delight the brain.

stem cell exhibit 2Each of the four sections focuses on a different aspect of stem cell research, from basic explanations about what a stem cell is, to how they change and become all the different cells in our body. It has a mini laboratory so visitors can see how research is done; it even has a “treatment” game where you get to implant and grow cells in the eye, to see if you can restore sight to someone who is blind.


In a news release the Fleet Science Center celebrated the role that stem cells play in our lives:

“Stem cells are important because each of us is the result of only a handful of tiny stem cells that multiply to produce the 200 different types of specialized cells that exist in our body. Our stem cells continue to be active our whole lives to keep us healthy. Without them we couldn’t survive for more than three hours!”

It is, in short, really fun and really cool.

Of course we might be a tad biased here as we helped produce and develop the exhibit in collaboration with the Sherbrooke Museum of Science and Nature in Canada, the Canadian Stem Cell Network, the Centre for Commercialization of Regenerative Medicine in Canada; the Cell Therapy Catapult in the UK, and EuroStemCell.

stem cell exhibit 3

The exhibit is tri-lingual (English, Spanish and French) because our goal was to create a multi-lingual global public education program. San Diego was an obvious choice for the first stop on the California tour (with LA and the Bay Area to follow) because it is one of the leading stem cell research hubs in the U.S., and a region where CIRM has invested almost $380 million over the last ten years.

As our CIRM Board Chair, Jonathan Thomas, said:

“One of our goals at CIRM is to help spread awareness for the importance of stem cell research. San Diego is an epicenter of stem cell science and having this exhibition displayed at the Reuben H. Fleet Science Center is a wonderful opportunity to engage curious science learners of all ages.”

The Super Cells exhibit runs from January 23 to May 1, 2016, in the Main Gallery of the Reuben H. Fleet Science Center. The exhibition is included with the cost of Fleet admission.

For more information, visit the Reuben H. Fleet Science Center website.