Stem Cell Roundup: Battle of the Biotech Bands, “Cells I See” Art Contest and Teaching Baseball Fans the Power of Stem Cells

This Friday’s stem cell roundup is dedicated to the playful side of stem cell science. Scientists are often stereotyped as lab recluses who honorably forgo social lives in the quest to make game-changing discoveries and advance cutting-edge research. But as a former bench scientist, I can attest that scientists are normal people too. They might have a nerdy, slightly neurotic side around their field of research, but they know how to enjoy life and have fun. So here are a few stories that caught our eye this week about scientists having a good time with science.

Rockin’ researchers battle for glory (Kevin McCormack)

Did you know that Bruce Springsteen got his big break after winning the Biotech Battle of the Bands (BBOB)? Probably not, I just made that up. But just because Bruce didn’t hit it big because of BBOB doesn’t mean you can’t.

BBOB is a fun chance for you and your labmates, or research partners, to cast off your lab coats, pick up a guitar, form a band, show off your musical chops, play before a live audience and raise money for charity.  This is the fourth year the event is being held. It’s part of Biotech Week Boston, on Wednesday, September 27th at the Royale Nightclub, Boston.

Biotech Week is a celebration of science and, duh, biotech; bringing together what the event organizers call “the most inventive scientific minds and business leaders in Boston and around the world.” And they wouldn’t lie would they, after all, they’re scientists.

If you want to check out the competition here’s some video from a previous year – see if you can spot the man with the cowbell!

“Cells I See” Stem Cell Art Contest

It’s that time again! The “Cells I See” art contest hosted by Canada’s Centre for Commercialization for Regenerative Medicine (CCRM) and The Stem Cell Network is now open for business. This is a super fun event that celebrates the beauty of stem cells and biomaterials that support regenerative medicine.

Not only is “Cells I See” a great way for scientists to share their research with the public, it’s also a way for them to tap into their artistic, creative side. Last year’s ­contestants submitted breathtaking microscope images, paintings and graphic designs of stem cells in action. The titles for these art submissions were playful. “Nucleic Shower” “The Quest for Innervation” and “Flat, Fluorescent & Fabulous” were some of my favorite title entries.

There are two prizes for this contest. The grand prize of $750 will be awarded to the submission with the highest number of votes from scientists attending the Till and McCulloch Stem Cell Meeting in November. There is also a “People’s Choice” prize of $500 given to the contestant who has the most numbers of likes on the CCRM Facebook page.

The deadline for “Cell I See” submissions is September 8th so you have plenty of time to get your creative juices flowing!

Iris

The 2016 Grand Prize and People’s Choice Winner, Sabiha Hacibekiroglu, won for her photo titled “Iris”.

Scientists Teach Baseball Fans the Power of Stem Cells

San Francisco Giants fans who attended Tuesday’s ball game were in for a special treat – a science treat that is. Researchers from the Gladstone Institutes partnered with the SF Giants to raise awareness about the power of stem cells for advancing research and developing cures for various diseases.

Gladstone PhD student Jessica Butts explains the Stem Cell Plinko game to a Giants fan.

The Gladstone team had a snazzy stem cell booth at the Giant’s Community Clubhouse with fun science swag and educational stem cell activities for fans of all ages. One of the activities was a game called “Stem Cell Plinko” where you drop a ball representing a pluripotent stem cell down a plinko board. The path the ball travels represents how that stem cell differentiates or matures into adult cells like those in the heart.

Gladstone also debuted their new animated stem cell video, which explains how “stem cell research has opened up promising avenues for personalized and regenerative medicine.”

Finally, Gladstone scientists challenged fans to participate in a social media contest about their newfound stem cell knowledge cells on Twitter. The winner of the contest, a woman named Nicole, will get an exclusive, behind-the-scenes lab tour at the Gladstone and “see firsthand how Gladstone is using stem cells to overcome disease.”

The Gladstone “Power of Stem Cells” event is a great example of how scientists are trying to make research and science more accessible to the public. It not only benefits people by educating them about the current state of stem cell research, but also is a fun way for scientists to engage with the local community.

“Participating in the SF Giants game was very fun,” said Megan McDevitt, vice president of communications at the Gladstone Institutes. “Our booth experienced heavy traffic all evening, giving us a wonderful opportunity to engage with the San Francisco community about science and, more specifically, stem cell research. We were delighted to see how interested fans were to learn more on the topic.”

And as if all that wasn’t enough, the Giants won, something that hasn’t been happening very much this season.

Go Giants. Go Gladstone.

Gladstone scientist dropping stem cell knowledge to Giants fans.

4 things to know about stem cell clinical trials [Video]

Every day, we receive phone calls and emails from people who are desperately seeking our help. Sometimes they reach out on their own behalf, though often it’s for a family member or close friend. In every case, someone is suffering or dying from a disorder that has no available cure or effective treatment and they look to stem cell treatments as their only hope.

It’s heartbreaking to hear these personal stories that are unfolding in real time. Though they contact us from a wide range of places about a wide range of disorders, their initial set of questions are often similar and go something like this:

  • “Where can I find stem cell clinical trial for my condition?”
  • “What are my chances of being cured?”
  • “How much does it cost to be in a clinical trial?”
  • “How can I be sure it’s safe?”

We think anyone thinking about taking part in a clinical trial should consider these important questions. So, in addition to providing answers as we receive them through phone calls and emails, we wanted to find a way to reach out to as many people as possible. The result? The four-minute animation video you can watch below:

As mentioned in the video, the answers to these questions are only the tip of the iceberg for finding out if a particular clinical trial is right for you. The website, A Closer Look at Stem Cells, produced by the International Society for Stem Cell Research (ISSCR), is an excellent source for more advice on what things you should know before participating in a stem cell clinical trial or any experimental stem cell treatment.

And visit the Patient Resources section of our website for even more practical information including our growing list of CIRM-funded clinical trials as well as trials supported by our Alpha Stem Cell Clinic Network.

School is out which means SPARK is in for the summer!

It’s mid-June, which means that school’s out for the summer! While most students are cheering about their newfound freedom from the classroom, a special group of high school students are cheering about the start of the CIRM SPARK internship program.

SPARK is CIRM’s high school educational program that gives students from underrepresented communities the opportunity to conduct stem cell research at top-notch universities in California. Students will spend the summer working in stem cell labs under the guidance and mentorship of scientists, PhDs, master’s students and postdocs. They will learn basic lab techniques like how to do PCR and how to grow stem cells.

Each student will have their own research project that answers an important question in the stem cell field. Students will also attend scientific lectures at their host university, participate in patient-centered activities and write blogs and social media posts about their experiences in the lab. At the end of the summer, they will show off their hard work through posters and talks at the annual SPARK conference.

SPARK gives students early exposure to research and proves to them that science is not only fun but is also a promising career option within their reach. We’ve offered a high school internship summer program for the past few years, and many students who’ve previously participated have told us that they are excited to pursue an education in science or medicine in college.

Ranya taking care of her stem cells!

I’ve featured some of these exciting success stories previously on our blog. One of these stellar students is Ranya Odeh. She was a student in the UC Davis SPARK program and recently told us that she will attend Stanford University to pursue bioengineering after receiving the prestigious QuestBridge scholarship. Another student we featured recently is Shannon Larsuel who participated in the Stanford SPARK program. Shannon was inspired after she worked at the Stanford bone marrow registry as part of her SPARK experience and now plans to be a pediatric oncologist.

Now that the 2017 SPARK program is in session, we can look forward to another exciting summer of talented and motivated students. Our SPARK students are encouraged to document their summer experiences on social media, so you’ll be able to follow their journeys on Instagram. Make sure to check out @CIRM_stemcells Instagram account and the #CIRMSPARKlab hashtag on both Instagram and Twitter.

If you’re a student or teacher who wants to learn more about the CIRM SPARK program, visit our website for more details. And with that, I’ll leave you with a few of the most recent Instagram posts from our new cohort of SPARK students!

Looking at our infected tissue cells!! 🔬🔬#CIRMSPARKLab

A post shared by monse mendoza (@mawnsay) on

Happy #workwednesday! I'm so excited that the @cirm_stemcells #cirmsparklab high school stem cell program has begun! It's a summer internship program where students from underrepresented communities do research in stem cell labs at universities in California. . These smiling students are part of the @uc_davis_stem_cells SPARK program led by Dr. Gerhard Bauer (left). To get into SPARK, they had to win the UC Davis #teenbiotechchallenge by creating a website about a specific science topic. . These students will spend two months doing stem cell research in a lab at UC Davis with grad student and postdoc mentors. At the end of the summer they will present their work at the CIRM spark conference. . I'm so excited for this year's new batch of students. They are posting pictures of their lab work on Instagram (see #cirmsparklab) and their enthusiasm for communicating their science is contagious. I'll be sharing more pictures from this program this summer! 👍🔬 . PS thanks to Dr. Jan Nolta from UC Davis for this photo and for her dedication to the SPARK program as a mentor and teacher!

A post shared by Dr. Karen Ring (@drkarenring) on

Baseball’s loss is CIRM’s gain as Stanford’s Linda Boxer is appointed to Stem Cell Agency Board

Boxer

Dr. Linda Boxer: Photo courtesy Stanford University

One of the things that fascinates me is finding out how people end up in the job they have, the job they love. It is rare that the direction they started out on is the one they end on. Usually, people take several different paths, some intended, some unintended, to get to where they want to be.

A case in point is Dr. Linda Boxer, a renowned and respected researcher and physician at the Stanford School of Medicine, and now the newest member of the CIRM Board (you can read all about that in our news release).

In Dr. Boxer’s case, her original career path was a million miles from working with California’s stem cell agency:

“The first career choice that I recall as a young child was professional baseball—growing up in Minnesota, I was a huge Twins fan—I did learn fairly quickly that this was not likely to be a career that was available for a girl, and it wasn’t clear what one did after that career ended at a relatively young age.”

Fortunately for us she became interested in science.

“I have always been curious about how things work—science classes in grade school were fascinating to me. I was given a chemistry kit as a birthday gift, and I was amazed at what happened when different chemicals were mixed together: color changes, precipitates forming, gas bubbles, explosions (small ones, of course).

Then when we studied biology in middle school, I was fascinated by what one could observe with a microscope and became very interested in trying to understand how living organisms work.

It was an easy decision to plan a career in science.  The tougher decision came in college when I had planned to apply to graduate school and earn a PhD, but I was also interested in human health and disease and thought that perhaps going to medical school made more sense.  Fortunately, one of my faculty advisors told me about combined MD/PhD programs, and that choice seemed perfect for me.”

Along the way she says she got a lot of help and support from her colleagues. Now she wants to do the same for others:

“Mentors are incredibly important at every career stage.  I have been fortunate to have been mentored by some dedicated scientists and physicians.  Interestingly, they have all been men.  There were really very few women available as mentors at the time—of course, that has changed for the better now.  It never occurred to me then that gender made a difference, and I just looked for mentors who had successful careers as scientists and physicians and who could provide advice to someone more junior.

One of the aspects of my role now that I enjoy the most is mentoring junior faculty and trainees.  I don’t think one can have too many mentors—different mentors can help with different aspects of one’s life and career.  I think it is very important for established scientists to give back and to help develop the next generation of physicians and scientists.”

Dr. Boxer is already well known to everyone at CIRM, having served as the “alternate” on the Board for Stanford’s Dr. Lloyd Minor. But her appointment by State Controller Betty Yee makes her the “official” Board member for Stanford. She brings a valuable perspective as both a scientist and a physician.

The Minnesota Twins lost out when she decided to pursue a career in science. We’re glad she did.

 

Don’t Be Afraid: High school stem cell researcher on inspiring girls to pursue STEM careers

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Shannon Larsuel

Shannon Larsuel is a high school senior at Mayfield Senior School in Pasadena California. Last summer, she participated in Stanford’s CIRM SPARK high school internship program and did stem cell research in a lab that studies leukemia, a type of blood cancer. Shannon is passionate about helping people through research and medicine and wants to become a pediatric oncologist. She is also dedicated to inspiring young girls to pursue STEM (Science, Technology, Engineering, and Mathematics) careers through a group called the Stem Sisterhood.

I spoke with Shannon to learn more about her involvement in the Stem Sisterhood and her experience in the CIRM SPARK program. Her interview is below.


Q: What is the Stem Sisterhood and how did you get involved?

SL: The Stem Sisterhood is a blog. But for me, it’s more than a blog. It’s a collective of women and scientists that are working to inspire other young scientists who are girls to get involved in the STEM field. I think it’s a wonderful idea because girls are underrepresented in STEM fields, and I think that this needs to change.

I got involved in the Stem Sisterhood because my friend Bridget Garrity is the founder. This past summer when I was at Stanford, I saw that she was doing research at Caltech. I reconnected with her and we started talking about our summer experiences working in labs. Then she asked me if I wanted to be involved in the Stem Sisterhood and be one of the faces on her website. She took an archival photo of Albert Einstein with a group of other scientists that’s on display at Caltech and recreated it with a bunch of young women who were involved in the STEM field. So I said yes to being in the photo, and I’m also in the midst of writing a blog post about my experience at Stanford in the SPARK program.

Members of The Stem Sisterhood

Q: What does the Stem Sisterhood do?

SL: Members of the team go to elementary schools and girl scout troop events and speak about science and STEM to the young girls. The goal is to inspire them to become interested in science and to teach them about different aspects of science that maybe are not that well known.

The Stem Sisterhood is based in Los Angeles. The founder Bridget wants to expand the group, but so far, she has only done local events because she is a senior in high school. The Stem Sisterhood has an Instagram account in addition to their blog. The blog is really interesting and features interviews with women who are in science and STEM careers.

Q: How has the Stem Sisterhood impacted your life?

SL: It has inspired me to reach out to younger girls more about science. It’s something that I am passionate about, and I’d like to pursue a career in the medical field. This group has given me an outlet to share that passion with others and to hopefully change the face of the STEM world.

Q: How did you find out about the CIRM SPARK program?

SL: I knew I wanted to do a science program over the summer, but I wasn’t sure what type. I didn’t know if I wanted to do research or be in a hospital. I googled science programs for high school seniors, and I saw the one at Stanford University. It looked interesting and Stanford is obviously a great institution. Coming from LA, I was nervous that I wouldn’t be able to get in because the program had said it was mostly directed towards students living in the Bay Area. But I got in and I was thrilled. So that’s basically how I heard about it, because I googled and found it.

Q: What was your SPARK experience like?

SL: My program was incredible. I was a little bit nervous and scared going into it because I was the only high school student in my lab. As a high school junior going into senior year, I was worried about being the youngest, and I knew the least about the material that everyone in the lab was researching. But my fears were quickly put aside when I got to the lab. Everyone was kind and helpful, and they were always willing to answer my questions. Overall it was really amazing to have my first lab experience be at Stanford doing research that’s going to potentially change the world.

Shannon working in the lab at Stanford.

I was in a lab that was using stem cells to characterize a type of leukemia. The lab is hoping to study leukemia in vitro and in vivo and potentially create different treatments and cures from this research. It was so cool knowing that I was doing research that was potentially helping to save lives. I also learned how to work with stem cells which was really exciting. Stem cells are a new advancement in the science world, so being able to work with them was incredible to me. So many students will never have that opportunity, and being only 17 at the time, it was amazing that I was working with actual stem cells.

I also liked that the Stanford SPARK program allowed me to see other aspects of the medical world. We did outreach programs in the Stanford community and helped out at the blood drive where we recruited people for the bone marrow registry. I never really knew anything about the registry, but after learning about it, it really interested me. I actually signed up for it when I turned 18. We also met with patients and their families and heard their stories about how stem cell transplants changed their lives. That was so inspiring to me.

Going into the program, I was pretty sure I wanted to be a pediatric oncologist, but after the program, I knew for sure that’s what I wanted to do. I never thought about the research side of pediatric oncology, I only thought about the treatment of patients. So the SPARK program showed me what laboratory research is like, and now that’s something I want to incorporate into my career as a pediatric oncologist.

I learned so much in such a short time period. Through SPARK, I was also able to connect with so many incredible, inspired young people. The students in my program and I still have a group chat, and we text each other about college and what’s new with our lives. It’s nice knowing that there are so many great people out there who share my interests and who are going to change the world.

Stanford SPARK students.

Q: What was your favorite part of the SPARK program?

SL: Being in the lab every day was really incredible to me. It was my first research experience and I was in charge of a semi-independent project where I would do bacterial transformations on my own and run the gels. It was cool that I could do these experiments on my own. I also really loved the end of the summer poster session where all the students from the different SPARK programs came together to present their research. Being in the Stanford program, I only knew the Stanford students, but there were so many other awesome projects that the other SPARK students were doing. I really enjoyed being able to connect with those students as well and learn about their projects.

Q: Why do you want to pursue pediatric oncology?

SL: I’ve always been interested in the medical field but I’ve had a couple of experiences that really inspired me to become a doctor. My friend has a charity that raises money for Children’s Hospital Los Angeles. Every year, we deliver toys to the hospital. The first year I participated, we went to the hospital’s oncology unit and something about it stuck with me. There was one little boy who was getting his chemotherapy treatment. He was probably two years old and he really inspired to create more effective treatments for him and other children.

I also participated in the STEAM Inquiry program at my high school, where I spent two years reading tons of peer reviewed research on immunotherapy for pediatric cancer. Immunotherapy is something that really interests me. It makes sense that since cancer is usually caused by your body’s own mutations, we should be able to use the body’s immune system that normally regulates this to try and cure cancer. This program really inspired me to go into this field to learn more about how we can really tailor the immune system to fight cancer.

Q: What advice do you have for young girls interested in STEM.

SL: My advice is don’t be afraid. I think that sometimes girls are expected to be interested in less intellectual careers. This perception can strike fear into girls and make them think “I won’t be good enough. I’m not smart enough for this.” This kind of thinking is not good at all. So I would say don’t be afraid and be willing to put yourself out there. I know for me, sometimes it’s scary to try something and know you could fail. But that’s the best way to learn. Girls need to know that they are capable of doing anything and if they just try, they will be surprised with what they can do.

Teach your kids about stem cells and science with Think-A-Lot-Tots children’s books

It’s never too early to start learning.

When it comes to teaching science to kids, here’s my advice: don’t shy away from talking about topics like mitochondria or nuclei. Children are curious and intelligent. They can understand complex scientific concepts if you engage them in the right way. So it’s time to set aside the baby talk and educate young minds about science early so that they can understand their own biology and the world around them.

There are many ways to educate kids about science, but a tried and true method is children’s picture books. Images capture children’s attention and tell a visual story that connects with their brains better than words can on their own.

Thomai Dion

Thomai Dion

One of my favorite children’s science books is a series called “Think-A-Lot-Tots.” They are written for babies, toddlers and kids and have beautiful hand-drawn illustrations. The author, Dr. Thomai Dion, is a pharmacist and science writer who was inspired to write this series to satisfy her young son’s curiosity for science. So far she has written books about animal cells, neurons, microorganisms, and just this week, she published a new book about stem cells!

I have to admit that I’m to blame for this new stem cell book. When I first read her stories, I was so excited by how simply and elegantly she wrote about neurons, that I started daydreaming about a children’s book on stem cells. I contacted Thomai and asked her whether she wanted to collaborate on a stem cell book. She was very eager, so I wrote the initial script and Thomai used her artistic expertise to visualize my ideas.  Fast forward three months and Thomai has turned my dream into a wonderful book that I can share with my family and friends with kids!

The stem cell book covers the basics, starting with what a stem cell is and then expanding into the different types of stem cells in the body. By the end, kids will understand that they come from embryonic stem cells and that they have adult stem cells in their body that keep them healthy.

Below are a few pages from Think-A-Lot-Tots: Stem Cells and also a short interview where Thomai explains her inspiration behind her children’s book series and her newest edition on stem cells.

41w9lwy6qhlpluripotent

somatic-stem-cellsbrain

Interview with Author Thomai Dion

Q: Tell us about the mission of your Think-A-Lot-Tots series.

TD: The mission for my “Think-A-Lot-Tots” series is to introduce science education to our youngest thinkers in a fun, approachable and engaging way. My books do not strive to make an expert of the reader; rather, they provide an overview of a seemingly abstract and advanced scientific concept otherwise reserved for “older children” in an effort to show that babies, toddlers and younger kids can not only retain but also enjoy these same topics. My books focus on building scientific vocabulary, promoting STEM education at a very young age and sparking a love of learning as soon as possible.

Q: How did you get interested in writing children’s books about science?

TD: It was my son’s questions about the world around him that made me want to teach him as much as I could about all that I could. Similar to other children, several of his questions would revolve around topics such as why the sky is blue and why the grass is green. He has also pleasantly surprised me with several very insightful inquiries such as why do “tall trees” lose their leaves but pines trees do not, as well as “how do my eyes see?”. His natural inclination to ask “why” coupled with an insatiable desire to learn inspired me to teach him about science-focused concepts beyond what is readily seen such as the cell, the neuron and microorganisms. I created my first book as a helpful way for him and I to talk about topics like the cell, and I thought since I was making this available to my family, I may as well make it available to others. As such, my first book was created and 4 others have followed with a 5th nearly finished.

Q: Why were you inspired to write a book about stem cells?

TD: My first children’s science book focused on the parts of the cell, providing an overview of the cell membrane, the nucleus, mitochondria and others. My second book focused on the neuron, which discussed not only its different parts but also its special function within our bodies. I found that I enjoyed not only talking about what a cell or neuron was but also why it was important, and so I began thinking about what other ideas I could write about in this manner.

I am a pharmacist by trade and although familiar with stem cells, I was not initially as knowledgeable as I would have liked to be about what their function was within the body, what types of work were currently being done with regards to their research, and what a significant impact they could have on science and medicine. I learned more about all of this as I connected with folks within the field who focused on stem cell research, and only then did I realize how important it was for not only myself to understand stem cells but also our future big thinkers.

I was thrilled when you reached out to me with the idea of writing a book about stem cells and am so thankful for the guidance and expertise you provided with the creation of “Think-A-Lot-Tots: Stem Cells”. My little one will be 4-years-old soon and we’ve read the book together several times. To hear a child want to talk about and exclaim “stem cells!” before they have even begun elementary school is so wonderful!

Q: What other types of science books are you planning to write?

TD: I admittedly have an entire list of topics that I’d like to write about for children’s STEM education. As a medical professional, most of these topics can be found within biology, anatomy and physiology, although I do have some ideas that introduce concepts within chemistry and other areas as well. I am a few days away from officially releasing a STEM coloring book and it would be a very exciting area to explore further with additional coloring and activity books in the future. I also currently have a children’s notebook available that outlines the steps found within the scientific method and I’d love to continue creating hands-on learning tools in addition to read-along books.

Q: What are your insights for the best ways to teach young kids science?

TD: I think we vastly underestimate our children’s ability to learn about their world. Provided the child has an interest in learning about a topic, I don’t see any limitation in explaining the facets of that topics or introducing the terminology typically associated with its discussion. I truly believe there is no difference between teaching a child the word “ball” and the word “nucleus”; rather, it builds familiarity with the term and could even be associated with enjoyable memories if presented in a fun and engaging way.

Similarly to teaching about scientific terminology, science as a whole does not have to be limited to an academic setting and only after a certain age. In reality, children are naturally-born scientists, eager to inquire about any and everything around them from the very beginning of their childhood. I recently wrote an article discussing this concept that was published in Ar Magazine entitled “The Science of Why and its Impact on Children’s Learning”.

In summary and to quote part of this article, I note that “My son and I talk together constantly throughout the day about his observations, what he thinks of this leaf or that rock. I also read to him daily either the books that I created myself as well as those from other talented authors and illustrators. To hinder my child’s natural aptitude towards science would be to mute his interest in the world around him. More simply stated, my brushing-off his questions would stifle his drive to learn. In my humble opinion, I cannot bring myself to do that.” In short, I would say the best ways to teach young kids about science would be to: Talk together. Talk often. Talk about it all.


You can find Thomai’s Think-A-Lot-Tots science books on Amazon and learn more about her quest to educate young minds on her website.

Stem Cell Stories That Caught our Eye: Making blood and muscle from stem cells and helping students realize their “pluripotential”

Stem cells offer new drug for blood diseases. A new treatment for blood disorders might be in the works thanks to a stem cell-based study out of Harvard Medical School and Boston Children’s hospital. Their study was published in the journal Science Translational Medicine.

The teams made induced pluripotent stem cells (iPSCs) from the skin of patients with a rare blood disorder called Diamond-Blackfan anemia (DBA) – a bone marrow disease that prevents new blood cells from forming. iPSCs from DBA patients were then specialized into blood progenitor cells, the precursors to blood cells. However, these precursor cells were incapable of forming red blood cells in a dish like normal precursors do.

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

The blood progenitor cells from DBA patients were then used to screen a library of compounds to identify drugs that could get the DBA progenitor cells to develop into red blood cells. They found a compound called SMER28 that had this very effect on progenitor cells in a dish. When the compound was tested in zebrafish and mouse models of DBA, the researchers observed an increase in red blood cell production and a reduction of anemia symptoms.

Getting pluripotent stem cells like iPSCs to turn into blood progenitor cells and expand these cells into a population large enough for drug screening has not been an easy task for stem cell researchers.

Co-first author on the study, Sergei Doulatov, explained in a press release, “iPS cells have been hard to instruct when it comes to making blood. This is the first time iPS cells have been used to identify a drug to treat a blood disorder.”

In the future, the researchers will pursue the questions of why and how SMER28 boosts red blood cell generation. Further work will be done to determine whether this drug will be a useful treatment for DBA patients and other blood disorders.

 

Students realize their “pluripotential”. In last week’s stem cell stories, I gave a preview about an exciting stem cell “Day of Discovery” hosted by USC Stem Cell in southern California. The event happened this past Saturday. Over 500 local middle and high school students attended the event and participated in lab tours, poster sessions, and a career resource fair. Throughout the day, they were engaged by scientists and educators about stem cell science through interactive games, including the stem cell edition of Family Feud and a stem cell smartphone videogame developed by USC graduate students.

In a USC press release, Rohit Varma, dean of the Keck School of Medicine of USC, emphasized the importance of exposing young students to research and scientific careers.

“It was a true joy to welcome the middle and high school students from our neighboring communities in Boyle Heights, El Sereno, Lincoln Heights, the San Gabriel Valley and throughout Los Angeles. This bright young generation brings tremendous potential to their future pursuits in biotechnology and beyond.”

Maria Elena Kennedy, a consultant to the Bassett Unified School District, added, “The exposure to the Keck School of Medicine of USC is invaluable for the students. Our students come from a Title I School District, and they don’t often have the opportunity to come to a campus like the Keck School of Medicine.”

The day was a huge success with students posting photos of their experiences on social media and enthusiastically writing messages like “stem cells are our future” and “USC is my goal”. One high school student acknowledged the opportunity that this day offers to students, “California currently has biotechnology as the biggest growing sector. Right now, it’s really important that students are visiting labs and learning more about the industry, so they can potentially see where they’re going with their lives and careers.”

You can read more about USC’s Stem Cell Day of Discovery here. Below are a few pictures from the event courtesy of David Sprague and USC.

Students have fun with robots representing osteoblast and osteoclast cells at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Students have fun with robots representing osteoblast and osteoclast cells at the USC Stem Cell Day of Discovery. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the USC Stem Cell Day of Discovery. Photo by David Sprague

New stem cell recipes for making muscle: new inroads to study muscular dystrophy (Todd Dubnicoff)

Embryonic stem cells are amazing because scientists can change or specialize them into virtually any cell type. But it’s a lot easier said than done. Researchers essentially need to mimic the process of embryo development in a petri dish by adding the right combination of factors to the stem cells in just the right order at just the right time to obtain a desired type of cell.

Making human muscle tissue from embryonic stem cells has proven to be a challenge. The development of muscle, as well as cartilage and bone, are well characterized and known to form from an embryonic structure called a somite. Researches have even been successful working out the conditions for making somites from animal stem cells. But those recipes didn’t work well with human stem cells.

Now, a team of researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overcome this roadblock by carrying out a systematic approach using human tissue. As described in Cell Reports, the scientists isolated somites from early human embryos and studied their gene activity. By comparing somites that were just beginning to emerge with fully formed somites, the researchers pinpointed differences in gene activity patterns. With this data in hand, the team added factors to the cells that were known to affect the activity of those genes. Through some trial and error, they produced a recipe – different than those used in animal cells – that could convert 90 percent of the human stem cells into somites in only four days. Those somites could then readily transform into muscle or bone or cartilage.

This new method for making human muscle will be critical for the lab’s goal to develop therapies for Duchenne muscular dystrophy, an incurable muscle wasting disease that strikes young boys and is usually fatal by their 20’s.

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells.  Image: April Pyle Lab/UCLA

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells. Image: April Pyle Lab/UCLA

Results are in: The Winners of our 2017 #StemCellResolution Campaign

We asked and you answered! In January, we launched our first Stem Cell Resolution campaign to raise awareness about the importance of stem cell research. We challenged scientists, students, institutes and the public to make a #StemCellResolution and share it on social media.

The goal of our campaign was to start a larger conversation about why stem cell research is important not just to advance science but to develop cures for diseases that currently have none.

Our campaign ran for the month of January, and we had global participation on multiple social media platforms including Twitter, Instagram, videos and blogs. Some resolutions involved answering important research questions while others involved empowering the public to pursue and understand scientific evidence to make their own informed decisions about the benefits of stem cell treatments for treating disease.

I was thoroughly impressed with everyone’s enthusiasm towards supporting and sharing this campaign that I plan to hold it again next year. But for now, I’ll announce the winners of our 2017 #StemCellResolution campaign. We picked the most inspiring resolution for each social media category and a few honorable mentions. The winner of each category will receive CIRM Stem Cell Champions t-shirts.

You can view the full list of this year’s stem cell resolutions on our Storify.


Twitter

Winner: Hamideh Emrani (@HamidehEmrani)

Hamideh is a science and technology communicator and the founder of Emrani Communications. 

Honorable Mention: Christine Liu (@Christineliuart)

Christine is a neuroscience phd student at UC Berkeley and a science communicator and artist.

Instagram

Winner: Pedro Soria Jr. (@shadowtype)

Pedro is a former CIRM Bridges student who is conducting stem cell research in neural regeneration at Western University in Southern California.

My Stem Cell Resolution for 2017 is to create a social media page dedicated to educating, enlightening and disseminating information about past, current, and future stem cell related studies to the general public, as well as those in science, in order to bring to light the importance of stem cell research. My objective is to bring people together regardless of whether or not they Originate from the natural sciences and spark an interest in this emerging field. Coming from a family where I'm first generation Mexican American and the only scientist has shown me the importance of communication amongst those that have little knowledge of the natural world especially people that come from countries that aren't scientifically advanced. Both my parents are born and raised in Michoacan, Mexico, in a small mountain town called Ario de Rosales. Back in my parents day, most people were farmers that worked from sun rise to sunset in order to feed and provide for their families. Naturally, they had little time for education because of the need to survive but had a positive work ethic, which I was lucky to inherit. My parents came to America for an opportunity to improve their situations and provide for themselves and families back home. They worked so hard to obtain what they have and to give me the chance they never had, which I'm so deeply grateful for each and every day of my life!! I had always felt destined for more than mediocre and enjoy taking on challenges to improve myself mentally, physically and spiritually. As a stem cell scientist, it is my responsibility to share my knowledge with everyone I encounter in order to bring change to this world. I wouldn't be where I am if it weren't for the support of my family, friends, professors, colleagues and of course #CIRM . Please join me on this journey and spread the word to anyone that will listen because we're all on this ride together in one way or another. That is my #stemcellresolution #soriaclan #bringingchange #cellculture Look out for my social media page #cellculture for all your stem cell info and check out the @cirm_stemcells to see what this beautiful institute is doing this year!!! #StemCellResolution

A post shared by Pedro Soria Jr. (@shadowtype) on

Video

Winner: Samantha Yammine (@SamanthaZY)

Samantha Yammine is a science communicator and a PhD candidate in Dr. Derek van der Kooy’s lab at the University of Toronto. You can learn more about Sam and her research on her website. She also recently wrote a guest blog for CIRM about a Keystone stem cell conference that you can find here.

Honorable Mentions: Paul Knoepfler (@pknoepfler)

Paul is a biomedical scientist at UC Davis, a science writer, advocate, and cancer survivor. He writes a popular stem cell blog called the Niche.

Honorable Mention: Catia B (@apulgarita)

Catia is a PhD student at MIT and is conducting research on programming & stem cells. She is originally from Portugal and has a personal blog about traveling and the PhD lifestyle.

Honorable Mention: Gladstone trainees (@Gladstone_GO)

Gladstone students and postdocs stepped up to the challenge and filmed stem cell resolutions about their research.

Blog

Winner: Sophie Arthur (@SophArthur)

Soph is a PhD student in Southampton, K studying embryonic stem cell metabolism. Her goal is to find ways to maintain the pluripotent quality of stem cells. She has a personal science communications blog called Soph Talks Science.

 An excerpt from Soph’s blog is below. I highly recommend reading the entire piece as it is very engaging and inspiring!

“For my Stem Cell Resolution – I couldn’t decide on one, so instead, I’ve made 4! Oops!

First, I want to raise awareness that stem cell biology is as important as stem cell treatments! There is lots of hype over stem cell treatments across the globe, but I want to stress that there are only a handful that have actually been approved! I could very well be biased as I’m studying stem cells and their biological mechanisms that exist normally in our bodies – but I want to stress the importance of this work. Simple biology – as I think it will hold the key to all the future stem cell medicine! Once we know how stem cells work in our bodies we can exploit that to make the treatments, or even learn more about our normal development!

 Honorable Mention: Stacey Johnson (@msstaceyerin)

Stacey is the Director of Communications and Marketing for CCRM, the Centre for Commercialization of Regenerative Medicine in Canada. She also is a regular contributor to CCRM’s Signals Blog.

“Since I’m not a scientist, a student or a patient, but I regularly communicate about stem cells to raise awareness and educate the public, my #stemcellresolution is to use this forum to spread the news – what I do best – about this fun and important challenge.”

Read Stacey’s full blog here.


 Thank you and see you next year!

Science communications is a vital tool that scientists and science enthusiasts need to leverage now more than ever to support stem cell research. Speaking out through social media or blogs is a great way to do this, and I want to congratulate all those that participated this year. I’m grateful for your support!

We look forward to doing this again next year and this time, you’ll have an entire year to ponder your next #StemCellResolution.

Discovering stem cells and science at Discovery Day

discoveryday

The CIRM booth at Discovery Day at AT&T Park

Someone stole my thigh bone. One minute it was there. The next, gone. I have narrowed down the list of suspects to the more than 25,000 people attending Discovery Day at San Francisco’s AT&T Park.

To be honest, the bone was just a laminated image of a bone, stuck to the image of a person drawn on a white board. We were using it, along with laminated images of a brain, liver, stomach and other organs and tissues, to show that there are many different kinds of stem cells in the body, and they all have different potential uses.

The white board and its body parts were gimmicks that we used to get kids to come up to the CIRM booth and ask what we were doing. Then, as they played with the images, and tried to guess which stem cells went where, we talked to their parents about stem cell research, and CIRM and the progress being made.

discoveryday-karen

Dr. Karen Ring explaining embryonic development to kids

We also used Play Doh so that the kids could model cell division and specialization during embryonic development. But mostly it was so the kids could play with the Play Doh while we talked to their parents.

It is shameless I know but when you are competing against more than 130 other booths for people’s attention – and some of these booths had live snakes, virtual reality devices, or they just let kids throw and hit things – you have to be creative.

And creativity was certainly the key word, because Discovery Day – part of the annual week-long Bay Area Science Fair – was filled with booths from companies and academic institutions promoting every imaginable aspect of science.

So why were we there? Well, first, education has been an important part of CIRM’s mission ever since we were created. Second, we’re a state agency that gets public funding so we feel we owe it to the public to explain how their money is being used. And third, it’s just a lot of fun.

NASA was there, talking about exploring deep space. And there were booths focused on exploring the oceans, and saving them from pollution and over-fishing. You could learn about mathematics and engineering by building wacky-looking paper airplanes that flew long distances, or you could just sit in the cockpit of a fighter jet.

discoveryday-victor

And everywhere you looked were families, with kids running up to the different booths to see what was there. All they needed was a little draw to get them to stick around for a few minutes, so you could talk to them and explain to them what stem cells are and why they are so amazing. Some of the kids were fascinated and wanted to know more: some just wanted to use the Play Doh;  at least one just wanted to eat the Play Doh, but fortunately we were able to stop that happening.

It was an amazing sight to see a baseball stadium filled with tens of thousands of people, all there to learn about science. At a time when we are told that kids don’t care about science, that they don’t like math, this was the perfect response. All you had to do was look around and see that kids were fascinated by science. They were hungry to learn how pouring carbon dioxide on a candle puts out the flame. They delighted in touching an otter pelt and feeling how silky smooth it is, and then looking at the pelt under a microscope to see just how extraordinarily dense the hairs are and how that helps waterproof the otter.

And so yes, we used Play Doh and a white board person to lure the kids to us. But it worked.

There was another booth where they had a couple of the San Francisco 49er’s cheerleaders in full uniform. I don’t actually know what that had to do with teaching science but it was very popular with some of the men. Maybe next year I could try dressing up like that. It would certainly draw a crowd.


Check us out on Instagram to learn more about CIRM’s educational outreach efforts.

We had a lot of fun this weekend teaching young minds about what stem cells are and where they are located in the human body at the @bayareascience #DiscoveryDay festival. We had one activity where kids learned about embryonic stem cells and development using playdoh and another white board activity about adult stem cells. Students learned that each organ has its own set of adult stem cells that can regenerate lost or damaged cells in that specific organ. It was really fun to explain to kids and their parents why stem cells and regenerative medicine research are important. • • • #BASF2016 #stemcells #stemcellresearch #stemeducation #STEM #teaching #education #research #attpark #CIRM #development #embryonicstemcells

A post shared by California's Stem Cell Agency (@cirm_stemcells) on

Investing in student researchers now for future stem cell therapy homeruns

Even though my San Francisco Giants didn’t make it to the World Series this year, I still watched Game 1 two nights ago between the Cleveland Indians and the Chicago Cubs. As each batter stepped up to the plate for their first at bat, I thought about all the years of training and in-game experience it must have required for each athlete to reach this pinnacle of their profession. That training certainly relied on mentoring from great coaches and early financial support in the form of athletic scholarships, etc. Without that help, you could argue that the number of young, high-caliber baseball players would dwindle over the generations and the sport eventually would lose relevance.

eliana_lab

The CIRM Bridges Program: training the next generation of all-star stem cell researchers, like Eliana Ochoa-Bolton (pictured here)

I think the same can be said for stem cell research. The field is currently chock-full of veteran, superstar scientists who are leading the charge of bringing first-of-their-kind stem cell treatments to clinical trials (for example, check out Monday’s exciting blog). But the field is still in its infancy and will require a well-trained workforce of scientists, physicians and technicians throughout the 21st century and beyond to fully realize and implement the potential of stem cells to treat patients with unmet medical needs. But cuts in federal funding for research mean this is a particularly challenging time to get started on a scientific career, especially for economically disadvantaged students.

That’s where the Bridges to Stem Cell Research and Therapy Awards Program comes into the picture. Started in 2009, the program provides paid stem cell research internships to students at universities and colleges that don’t have major stem cell research programs. Each Bridges internship includes thorough hands-on training and education in stem cell research, and direct patient engagement and outreach activities that engage California’s diverse communities.

Earlier this year, the CIRM governing Board re-upped on their investment in the Bridges Program to the tune of $40 million. Each of the fourteen awarded schools will have enough funding to support up to ten trainees per year for up to five years. The program has become a source of pride for the CIRM team as well as for each campus. Case in point, this past Wednesday the news center at California State University, Northridge (CSUN) featured a story about the school’s new $2.77 million Bridges grant. Professor Cindy Malone, CSUN’s Bridges Program Director, looked back at the accomplishments from their previous round of funding which began in 2009:

malone-cindy2-287x300

Cindy Malone
CSUN biology professor

“When we first launched the [CSUN-UCLA Bridges to Stem Cell Research Program], we didn’t know how successful it would become. Our students are taking part in cutting-edge research alongside some of the greatest minds in stem cell research. They are presenting papers at some of the top professional conferences in the world. When they graduate, they are highly sought after by the top medical and graduate schools in the country, and rightly so.”

eliana

Eliana Ochoa-Bolton

One of those students is Eliana Ochoa-Bolton who spent much of her senior year at CSUN as a Bridges intern in the laboratory of Samantha Butler at UCLA. There, she contributed to the lab’s efforts to better understand the nerve signals that become damaged in spinal cord injury with the hope of eventually restoring them. Ochoa-Bolton, who is now a CSUN master’s student in biology and aspires to earn a doctorate, is very grateful for her Bridges experience: “It was such an amazing opportunity. I got to do work I didn’t think possible as an undergraduate.”

Now embarking on the second round of Bridges funding, Malone mapped out the plan for the program’s next five years:

“We will continue to partner with UCLA as our internship-host institution. There, our students will perform 10 months of intensive stem cell research. New research training courses will be launched in the next year to prepare our undergraduates for the new Stem Cell Scientist Training Program and for the increasingly technical job market in California.”

For us CIRM team members and the CIRM governing Board, the Bridges program and its high school counterpart, the CIRM Spark program, continue to be among our favorite awards because we’re continually amazed how much the student’s learn and we’re inspired by their unbounded enthusiasm for stem cell research.

It makes me very optimistic that these students are destined to hit some future stem cell treatments home runs.