CIRM stories that caught our eye: UCSD team stops neuromuscular disease in mice, ALS trial enrolls 1st patients and Q&A with CIRM Prez

Ordinarily, we end each week at the Stem Cellar with a few stem cell stories that caught our eye. But, for the past couple of weeks we’ve been busy churning out stories related to our Month of CIRM blog series, which we hope you’ve found enlightening. To round out the series, we present this “caught our eye” blog of CIRM-specific stories from the last half of October.

Stopping neurodegenerative disorder with blood stem cells. (Karen Ring)

CIRM-funded scientists at the UC San Diego School of Medicine may have found a way to treat a progressive neuromuscular disorder called Fredreich’s ataxia (FA). Their research was published last week in the journal Science Translational Medicine.

FA is a genetic disease that attacks the nervous tissue in the spinal cord leading to the loss of sensory nerve cells that control muscle movement. Early on, patients with FA experience muscle weakness and loss of coordination. As the disease progresses, FA can cause scoliosis (curved spine), heart disease and diabetes. 1 in 50,000 Americans are afflicted with FA, and there is currently no effective treatment or cure for this disease.

cherqui

In this reconstituted schematic, blood stem cells transplanted in a mouse model of Friedreich’s ataxia differentiate into microglial cells (red) and transfer mitochondrial protein (green) to neurons (blue), preventing neurodegeneration. Image courtesy of Stephanie Cherqui, UC San Diego School of Medicine.

UCSD scientists, led by CIRM grantee Dr. Stephanie Cherqui, found in a previous study that transplanting blood stem and progenitor cells was an effective treatment for preventing another genetic disease called cystinosis in mice. Cherqui’s cystinosis research is currently being funded by a CIRM late stage preclinical grant.

In this new study, the UCSD team was curious to find out whether a similar stem cell approach could also be an effective treatment for FA. The researchers used an FA transgenic mouse model that was engineered to harbor two different human mutations in a gene called FXN, which produces a mitochondrial protein called frataxin. Mutations in FXN result in reduced expression of frataxin, which eventually leads to the symptoms experienced by FA patients.

When they transplanted healthy blood stem and progenitor cells (HSPCs) from normal mice into FA mice, the cells developed into immune cells called microglia and macrophages. They found the microglia in the brain and spinal cord and the macrophages in the spinal cord, heart and muscle tissue of FA mice that received the transplant. These normal immune cells produced healthy frataxin protein, which was transferred to disease-affected nerve and muscle cells in FA mice.

Cherqui explained their study’s findings in a UC San Diego Health news release:

“Transplantation of wildtype mouse HSPCs essentially rescued FA-impacted cells. Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy.”

In the news release, Cherqui’s team acknowledged that the FA mouse model they used does not perfectly mimic disease progression in humans. In future studies, the team will test their method on other mouse models of FA to ultimately determine whether blood stem cell transplants will be an effective treatment option for FA patients.

Brainstorm’s CIRM funded clinical trial for ALS enrolls its first patients
“We have been conducting ALS clinical trials for more than two decades at California Pacific Medical Center (CPMC) and this is, by far, the most exciting trial in which we have been involved to date.”

Those encouraging words were spoken by Dr. Robert Miller, director of CPMC’s Forbes Norris ALS Research Center in an October 16th news release posted by Brainstorm Cell Therapeutics. The company announced in the release that they had enrolled the first patients in their CIRM-funded, stem cell-based clinical trial for the treatment of amyotrophic lateral sclerosis (ALS).

BrainStorm

Also known as Lou Gehrig’s disease, ALS is a cruel, devastating disease that gradually destroys motor neurons, the cells in the brain or spinal cord that instruct muscles to move. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy leading to paralysis. Most people with ALS die within 3 to 5 years from the onset of symptoms and there is no effective therapy for the disease.

Brainstorm’s therapy product, called NurOwn®, is made from mesenchymal stem cells that are taken from the patient’s own bone marrow. These stem cells are then modified to boost their production and release of factors, which are known to help support and protect the motor neurons destroyed by the disease. Because the cells are derived directly from the patient, no immunosuppressive drugs are necessary, which avoids potentially dangerous side effects. The trial aims to enroll 200 patients and is a follow up of a very promising phase 2 trial. CIRM’s $16 million grant to the Israeli company which also has headquarters in the United States will support clinical studies at multiple centers in California. And Abla Creasey, CIRM’s Senior Director of Strategic Infrastructure points out in the press release, the Agency support of this trial goes beyond this single grant:

“Brainstorm will conduct this trial at multiple sites in California, including our Alpha Clinics Network and will also manufacture its product in California using CIRM-funded infrastructure.”

An initial analysis of the effectiveness of NurOwn® in this phase 3 trial is expected in 2019.

CIRM President Maria Millan reflects on her career, CIRM’s successes and the outlook for stem cell biology 

MariaMillan-085_600px

Maria T. Millan, M.D., CIRM President and CEO

RegMedNet a networking website that provides content related to the regenerative medicine community, published an interview this morning with Maria Millan, M.D., CIRM’s new President and CEO. The interview covers the impressive accomplishments that Dr. Millan had achieved before coming to CIRM, with details that even some of us CIRM team members may not have been aware of. In addition to describing her pre-CIRM career, Dr. Millan also describes the Agency’s successes during her term as Vice President of CIRM’s Therapeutics group and she gives her take on future of Agency and the stem cell biology field in general over the next five years and beyond. File this article under “must read”.

Advertisements

Can Stem Cell Therapies Help ALS Patients?

A scientist’s fifteen-year journey to develop a stem cell-based therapy that could one day help ALS patients.

Jan Kaufman

Photo of Clive Svendsen (top left) and Jan & Jeff Kaufman

“Can stem cells help me Clive?”

The sentence appeared slowly on a computer screen, each character separated by a pause while its author searched for the next character using a device controlled by his eye muscle.

The person asking the question was Jeff Kaufman, a Wisconsin man in his 40s completely paralyzed by amyotrophic lateral sclerosis (ALS). On the receiving end was Clive Svendsen, PhD, then a scientist at the University of Wisconsin-Madison, determined to understand how stem cells could help patients like Jeff.

Also known as Lou Gehrig’s disease, ALS is a rapid, aggressive neurodegenerative disease with a two to four-year life expectancy. ALS destroys the nerve cells that send signals from the brain and spinal cord to the muscles that control movement. Denervation, or loss of nerves, causes muscle weakness and atrophy, leaving patients unable to control their own bodies. Currently there are two FDA-approved ALS drugs in the US – riluzole and a new drug called edaravone (Radicava). However, they only slow disease progression in some ALS patients by a few months and there are no effective treatments that stop or cure the disease.

Given this poor prognosis, making ALS the focus of his research career was an easy decision. However, developing a therapeutic strategy was challenging to Svendsen. “The problem with ALS is we don’t know the cause,” he said. “Around 10% of ALS cases are genetic, and we know some of the genes involved, but 90% of cases are sporadic.” He explained that this black box makes it difficult for scientists to know where to start when trying to develop treatments for sporadic ALS cases that have no drug targets.

From Parkinson’s disease to ALS

Svendsen, who moved to Cedars-Sinai in Los Angeles to head the Cedars-Sinai Board of Governors Regenerative Medicine Institute in 2010, has worked on ALS for the past 15 years. Before that, he studied Parkinson’s disease, a long-term neurodegenerative disorder that affects movement, balance and speech. Unlike ALS, Parkinson’s patients have a longer life expectancy and more treatment options that alleviate symptoms of the disease, making their quality of life far better than ALS patients.

Clive Svendsen, PhD, Director, Regenerative Medicine Institute. (Image courtesy of Cedars-Sinai)

“I chose to work on ALS mainly because of the effects it has on ALS families,” explained Svendsen. “Being normal one day, and then becoming rapidly paralyzed was hard to see.”

The transition from Parkinson’s to ALS was not without a scientific reason however. Svendsen was studying how an important growth factor in the brain called Glial Cell Line-Derived Neurotrophic Factor or GDNF could be used to protect dopamine neurons in order to treat Parkinson’s patients. However other research suggested that GDNF was even more effective at protecting motor neurons, the nerve cells destroyed by ALS.

Armed with the knowledge of GDNF’s ability to protect motor neurons, Svendsen and his team developed an experimental stem cell-based therapy that they hoped would treat patients with the sporadic form of ALS. Instead of using stem cells to replace the motor neurons lost to ALS, Svendsen placed his bets on making another cell type in the brain, the astrocyte.

Rooting for the underdog

Astrocytes are the underdog cells of the brain, often overshadowed by neurons that send and receive information from the central nervous system to our bodies. Astrocytes have many important roles, one of the most critical being to support the functions of neurons. In ALS, astrocytes are also affected but in a different way than motor neurons. Instead of dying, ALS astrocytes become dysfunctional and thereby create a toxic environment inhospitable to the motors neurons they are supposed to assist.

Fluorescent microscopy of astrocytes (red) and cell nuclei (blue). Image: Wikipedia.

“While the motor neurons clearly die in ALS, the astrocytes surrounding the motor neurons are also sick,” said Svendsen. “It’s a huge challenge to replace a motor neuron and make it grow a cable all the way to the muscle in an adult human. We couldn’t even get this to work in mice. So, I knew a more realistic strategy would be to replace the sick astrocytes in an ALS patients with fresh, healthy astrocytes. This potentially would have a regenerative effect on the environment around the existing motor neurons.”

The big idea was to combine both GDNF and astrocyte replacement. Svendsen set out to make healthy astrocytes from human brain stem cells that also produce therapeutic doses of GDNF and transplant these cells into the ALS patient spinal cord. Simply giving patients GDNF via pill wouldn’t work because the growth factor is unable to enter the brain or spinal cord tissue where it is needed. The hope, instead, was that the astrocytes would secrete the protective factor that would keep the patients’ motor neurons healthy and alive.

With critical funding from a CIRM Disease Team grant, Svendsen and his colleagues at Cedars-Sinai tested the feasibility of transplanting human brain stem cells (also referred to as neural progenitor cells) that secreted GDNF into a rat model of ALS. Their results were encouraging – the neural progenitor cells successfully developed into astrocytes and secreted GDNF, which collectively protected the rat motor neurons.

Svendsen describes the strategy as “a double whammy”: adding both healthy astrocytes and GDNF secretion to protect the motor neurons. “Replacing astrocytes has the potential to rejuvenate the niche where the motor neurons are. I think that’s a very powerful experimental approach to ALS.”

A fifteen year journey from bench to bedside

With promising preclinical data under his belt, Svendsen and his colleagues, including Robert Baloh, MD, PhD, director of neuromuscular medicine at the Cedars-Sinai Department of Neurology, and neurosurgeon J. Patrick Johnson, MD, designed a clinical trial that would test this experimental therapy in ALS patients. In October 2016, CIRM approved funding for a Phase I/IIa clinical trial assessing the safety of this novel human neural progenitor cell and gene therapy.

Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, director of neuromuscular medicine in the Cedars-Sinai Department of Neurology, in the lab. Svendsen is the sponsor of a current ALS clinical trial at Cedars-Sinai and the overall director of the program. Baloh is the principal investigator for the clinical trial. (Image courtesy of Cedars-Sinai)

This is a first-in-human study, and as such, the U.S. Food and Drug Administration (FDA) required the team to transplant the cells into only one side of the lumbar spinal cord, which effectively means that only one of the patient’s legs will get the treatment. This will allow for a comparison of the function and progression of ALS in the leg on the treated side of the spinal cord compared with the leg on the untreated side.

The trial was approved to treat a total of 18 patients and started in May 2017.

 Svendsen, who first started working on ALS back in 2002, describes his path to the clinic as a “very long and windy road.” He emphasized that this journey wouldn’t be possible without the hard work of his team, Cedars-Sinai and financial support from CIRM.

“It took ten years of preclinical studies and an enormous amount of work from many different people. Just producing the cells that we’re going to use took three years and a lot of trials and tribulations to make it a clinically viable product. It was really thanks to CIRM’s funding and the support of Cedars-Sinai that we got through it all. Without that kind of infrastructure, I can safely say we wouldn’t be here today.”

This “behind-the-scenes” view of how much time and effort it takes to translate a stem cell therapy from basic research into the clinic isn’t something that the public is often exposed to or aware of. Just as “Rome wasn’t built in a day,” Svendsen stressed that good quality stem cell trials take time, and that it’s important for people know how complicated these trials are.

It’s all about the patients

So, what motivates Svendsen to continue this long and harrowing journey to develop a treatment for ALS? He said the answer is easy. “I’m doing it for the patients,” he explained. “I’m not doing this for the money or glory. I just want to develop something that works for ALS, so we can help these patients.”

Svendsen revisited his story about Jeff Kaufman, a man he befriended at the Wisconsin ALS Chapter in 2003. Jeff had three daughters and a son, a wonderful wife, and was a successful lawyer when he was diagnosed with ALS.

“Jeff had basically everything, and then he was stricken with ALS. I still remember going to his house and he could only move his eyes at that point. He tapped out the words ‘Can stem cells help me Clive?’ on his computer screen. And my heart sank because I knew how much and how long it was going to take. I was very realistic so I said, ‘Yes Jeff, but it’s going to take time and money. And even then, it’s a long shot.’ And he told me to go for it, and that stuck in my brain.”

It’s people like Jeff that make Svendsen get out of bed every morning and doggedly pursue a treatment for ALS. Sadly, Jeff passed away due to complications from ALS in 2010. Svendsen says what Jeff and other patients go through is tragic and unfair.

“There’s a gene that goes along with ALS and it’s called the ‘nice person gene,’” he said. “People with ALS are nice. I can’t explain it, but neurologists would say the same thing. You feel like it’s just not fair that it happens to those people.”

The future of stem cell therapies for ALS

It’s clear from speaking with Svendsen, that he is optimistic about the future of stem cell-based therapies for ALS. Scientists still need to unravel the actual causes of ALS. But the experimental stem cell treatments currently in development, including Svendsen’s, will hopefully prove effective at delaying disease progression and give ALS patients more quality years to live.

In the meantime, what concerns Svendsen is how vulnerable ALS patients are to being misled by unapproved stem cell clinics that claim to have cures. “Unfortunately, there are a lot of charlatans out there, and there are a lot of false claims being made. People feed off the desperation that you have in ALS. It’s not fair, and it’s completely wrong. They’ll mislead patients by saying ‘For $40,000 you can get a cure!’”

Compelling stories of patients cured of knee pain or diseases like ALS with injections of their own adult stem cells pop up in the news daily. Many of these stories refer to unapproved treatments from clinics that don’t provide scientific evidence that these treatments are safe and effective. Svendsen said there are reasonable, research-backed trials that are attempting to use adult stem cells to treat ALS. He commented, “I think it’s hard for the public to wade through all of these options and understand what’s real and what’s not real.”

Svendsen’s advice for ALS patients interested in enrolling in a stem cell trial or trying a new stem cell treatment is to be cautious. If a therapy sounds too good to be true, it probably is, and if it costs a lot of money, it probably isn’t legitimate, he explained.

He also wants patients to understand the reality of the current state of ALS stem cell trials. The approved stem cell trials he is aware of are not at the treatment stage yet.

“If you’re enrolled in a stem cell trial that is funded and reputable, then they will tell you honestly that it’s not a treatment. There is currently no approved treatment using stem cells for ALS,” Svendsen said.

This might seem like discouraging news to patients who don’t have time to wait for these trials to develop into treatments, but Svendsen pointed out that the when he started his research 15 years ago, the field of stem cell research was still in its infancy. A lot has been accomplished in the past decade-and-a-half and with talented scientists dedicated to ALS research like Svendsen, the next 15 years will likely offer new insights into ALS and hopefully stem cell-based treatments for a devastating disease that has no cure.

Svendsen hopes that one day, when someone like Jeff Kaufman asks him “Can stem cells help me Clive?” He’ll be able to say, yes they can, yes they can.

CIRM-Funded Clinical Trials Targeting Brain and Eye Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

 This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Our Agency has funded a total of 40 trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan in 2016, bringing us close to the half way point of our goal to fund 50 new clinical trials by 2020.

Today we are featuring CIRM-funded trials in our neurological and eye disorders portfolio.  CIRM has funded a total of nine trials targeting these disease areas, and seven of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Stem Cell Stories That Caught our Eye: Duchenne muscular dystrophy and short telomeres, motor neurons from skin, and students today, stem cell scientists tomorrow

Short telomeres associated with Duchenne Muscular Dystrophy.

Duchenne Muscular Dystrophy (DMD) is a severe muscle wasting disease that typically affects young men. There is no cure for DMD and the average life expectancy is 26. These are troubling facts that scientists at the University of Pennsylvania are hoping to change with their recent findings in Stem Cell Reports.

Muscle stem cells with telomeres shown in red. (Credit: Penn Medicine)

The team discovered that the muscle stem cells in DMD patients have shortened telomeres, which are the protective caps on the ends of chromosomes that prevent the loss of precious genetic information during cell division. Each time a cell divides, a small section of telomere is lost. This typically isn’t a problem because telomeres are long enough to protect cells through many divisions.

But it turns out this is not the case for the telomeres in the muscle stem cells of DMD patients. Because DMD patients have weak muscles, they experience constant muscle damage and their muscle stem cells have to divide more frequently (basically non-stop) to repair and replace muscle tissue. This is bad news for the telomeres in their muscle stem cells. Foteini Mourkioti, senior author on the study, explained in a news release,

“We found that in boys with DMD, the telomeres are so short that the muscle stem cells are probably exhausted. Due to the DMD, their muscle stem cells are constantly repairing themselves, which means the telomeres are getting shorter at an accelerated rate, much earlier in life. Future therapies that prevent telomere loss and keep muscle stem cells viable might be able to slow the progress of disease and boost muscle regeneration in the patients.”

With these new insights, Mourkioti and his team believe that targeting muscle stem cells before their telomeres become too short is a good path to pursue for developing new treatments for DMD.

“We are now looking for signaling pathways that affect telomere length in muscle stem cells, so that in principle we can develop drugs to block those pathways and maintain telomere length.”

Making Motor Neurons from Skin.

Skin cells and brain cells are like apples and oranges, they look completely different and have different functions. However, in the past decade, researchers have developed methods to transform skin cells into neurons to study neurodegenerative disorders and develop new strategies to treat brain diseases.

Scientists at Washington University School of Medicine in St. Louis published new findings on this topic yesterday in the journal Cell Stem Cell. In a nut shell, the team discovered that a specific combination of microRNAs (molecules involved in regulating what genes are turned on and off) and transcription factors (proteins that also regulate gene expression) can turn human skin cells into motor neurons, which are the brain cells that degenerate in neurodegenerative diseases like ALS, also known as Lou Gehrig’s disease.

Human motor neurons made from skin. (Credit: Daniel Abernathy)

This magical cocktail of factors told the skin cells to turn off genes that make them skin and turn on genes that transformed them into motor neurons. The scientists used skin cells from healthy individuals but will soon use their method to make motor neurons from patients with ALS and other motor neuron diseases. They are also interested in generating neurons from older patients who are more advanced in their disease. Andrew Yoo, senior author on the study, explained in a news release,

“In this study, we only used skin cells from healthy adults ranging in age from early 20s to late 60s. Our research revealed how small RNA molecules can work with other cell signals called transcription factors to generate specific types of neurons, in this case motor neurons. In the future, we would like to study skin cells from patients with disorders of motor neurons. Our conversion process should model late-onset aspects of the disease using neurons derived from patients with the condition.”

This research will make it easier for other scientists to grow human motor neurons in the lab to model brain diseases and potentially develop new treatments. However, this is still early stage research and more work should be done to determine whether these transformed motor neurons are the “real deal”. A similar conclusion was shared by Julia Evangelou Strait, the author of the Washington University School of Medicine news release,

“The converted motor neurons compared favorably to normal mouse motor neurons, in terms of the genes that are turned on and off and how they function. But the scientists can’t be certain these cells are perfect matches for native human motor neurons since it’s difficult to obtain samples of cultured motor neurons from adult individuals. Future work studying neuron samples donated from patients after death is required to determine how precisely these cells mimic native human motor neurons.”

Students Today, Scientists Tomorrow.

What did you want to be when you were growing up? For Benjamin Nittayo, a senior at Cal State University Los Angeles, it was being a scientist researching a cure for acute myeloid leukemia (AML), a form of blood cancer that took his father’s life. Nittayo is making his dream into a reality by participating in a summer research internship through the Eugene and Ruth Roberts Summer Student Academy at the City of Hope in Duarte California.

Nittayo has spent the past two summers doing cancer research with scientists at the Beckman Research Institute at City of Hope and hopes to get a PhD in immunology to pursue his dream of curing AML. He explained in a City of Hope news release,

“I want to carry his memory on through my work. Being in this summer student program helped me do that. It influenced the kind of research I want to get into as a scientist and it connected me to my dad. I want to continue the research I was able to start here so other people won’t have to go through what I went through. I don’t wish that on anybody.”

The Roberts Academy also hosts high school students who are interested in getting their first experience working in a lab. Some of these students are part of CIRM’s high school educational program Summer Program to Accelerate Regenerative Medicine Knowledge or SPARK. The goal of SPARK is to train the next generation of stem cell scientists in California by giving them hands-on training in stem cell research at leading institutes in the state.

This year, the City of Hope hosted the Annual SPARK meeting where students from the seven different SPARK programs presented their summer research and learned about advances in stem cell therapies from City of Hope scientists.

Ashley Anderson, a student at Mira Costa High School in Manhattan Beach, had the honor of giving the City of Hope SPARK student talk. She shared her work on Canavan’s disease, a progressive genetic disorder that damages the brain’s nerve cells during infancy and can cause problems with movement and muscle weakness.

Under the guidance of her mentor Yanhong Shi, Ph.D., who is a Professor of Developmental and Stem Cell Biology at City of Hope, Ashley used induced pluripotent stem cells (iPSCs) from patients with Canavan’s to generate different types of brain cells affected by the disease. Ashley helped develop a protocol to make large quantities of neural progenitor cells from these iPSCs which the lab hopes to eventually use in clinical trials to treat Canavan patients.

Ashley has always been intrigued by science, but thanks to SPARK and the Roberts Academy, she was finally able to gain actual experience doing science.

“I was looking for an internship in biosciences where I could apply my interest in science more hands-on. Science is more than reading a textbook, you need to practice it. That’s what SPARK has done for me. Being at City of Hope and being a part of SPARK was amazing. I learned so much from Dr. Shi. It’s great to physically be in a lab and make things happen.”

You can read more about Ashley’s research and those of other City of Hope SPARK students here. You can also find out more about the educational programs we fund on our website and on our blog (here and here).

Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Stem cells stories that caught our eye: switching cell ID to treat diabetes, AI predicts cell fate, stem cell ALS therapy for Canada

Treating diabetes by changing a cell’s identity. Stem cells are an ideal therapy strategy for treating type 1 diabetes. That’s because the disease is caused by the loss of a very specific cell type: the insulin-producing beta cell in the pancreas. So, several groups are developing treatments that aim to replace the lost cells by transplanting stem cell-derived beta cells grown in the lab. In fact, Viacyte is applying this approach in an ongoing CIRM-funded clinical trial.

In preliminary animal studies published late last week, a Stanford research team has shown another approach may be possible which generates beta cells inside the body instead of relying on cells grown in a petri dish. The CIRM-funded Cell Metabolism report focused on alpha cells, another cell type in pancreas which produces the hormone glucagon.

glucagon

Microscopy of islet cells, round clusters of cells found in the pancreas. The brown stained cells are glucagon-producing alpha cells. Credit: Wikimedia Commons

After eating a meal, insulin is critical for getting blood sugar into your cells for their energy needs. But glucagon is needed to release stored up sugar, or glucose, into your blood when you haven’t eaten for a while. The research team, blocked two genes in mice that are critical for maintaining an alpha cell state. Seven weeks after inhibiting the activity of these genes, the researchers saw that many alpha cells had converted to beta cells, a process called direct reprogramming.

Does the same thing happen in humans? A study of cadaver donors who had been recently diagnosed with diabetes before their death suggests the answer is yes. An analysis of pancreatic tissue samples showed cells that produced both insulin and glucagon, and appeared to be in the process of converting from beta to alpha cells. Further genetic tests showed that diabetes donor cells had lost activity in the two genes that were blocked in the mouse studies.

It turns out that there’s naturally an excess of alpha cells so, as team lead Seung Kim mentioned in a press release, this strategy could pan out:

image-img-620-high

Seung Kim. Credit: Steve Fisch, Stanford University

“This indicates that it might be possible to use targeted methods to block these genes or the signals controlling them in the pancreatic islets of people with diabetes to enhance the proportion of alpha cells that convert into beta cells.”

Using computers to predict cell fate. Deep learning is a cutting-edge area of computer science that uses computer algorithms to perform tasks that border on artificial intelligence. From beating humans in a game of Go to self-driving car technology, deep learning has an exciting range of applications. Now, scientists at Helmholtz Zentrum München in Germany have used deep learning to predict the fate of cells.

170221081734_1_900x600

Using deep learning, computers can predict the fate of these blood stem cells.
Credit: Helmholtz Zentrum München.

The study, published this week in Nature Methods, focused on blood stem cells also called hematopoietic stem cells. These cells live in the bone marrow and give rise to all the different types of blood cells. This process can go awry and lead to deadly disorders like leukemia, so scientists are very interested in exquisitely understanding each step that a blood stem cell takes as it specializes into different cell types.

Researchers can figure out the fate of a blood stem cells by adding tags, which glow with various color, to the cell surface . Under a microscope these colors reveal the cells identity. But this method is always after the fact. There no way to look at a cell and predict what type of cell it is turning into. In this study, the team filmed the cells under a microscope as they transformed into different cell types. The deep learning algorithm processed the patterns in the cells and developed cell fate predictions. Now, compared to the typical method using the glowing tags, the researchers knew the eventual cell fates much sooner. The team lead, Carsten Marr, explained how this new technology could help their research:

“Since we now know which cells will develop in which way, we can isolate them earlier than before and examine how they differ at a molecular level. We want to use this information to understand how the choices are made for particular developmental traits.”

Stem cell therapy for ALS seeking approval in Canada. (Karen Ring) Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease that kills off the nerve cells responsible for controlling muscle movement. Patients with ALS suffer from muscle weakness, difficulty in speaking, and eventually breathing. There is no cure for ALS and the average life expectancy after diagnosis is just 2 – 5 years. But companies are pursuing stem cell-based therapies in clinical trials as promising treatment options.

One company in particular, BrainStorm Cell Therapeutics based in the US and Israel, is testing a mesenchymal stem cell-based therapy called NurOwn in ALS patients in clinical trials. In their Phase 2 trials, they observed clinical improvements in slowing down the rate of disease progression following the stem cell treatment.

In a recent update from our friends at the Signals Blog, BrainStorm has announced that it is seeking regulatory approval of its NurOwn treatment for ALS patients in Canada. They will be working with the Centre for Commercialization of Regenerative Medicine (CCRM) to apply for a special regulatory approval pathway with Health Canada, the Canadian government department responsible for national public health.

In a press release, BrainStorm CEO Chaim Lebovits, highlighted this new partnership and his company’s mission to gain regulatory approval for their ALS treatment:

“We are pleased to partner with CCRM as we continue our efforts to develop and make NurOwn available commercially to patients with ALS as quickly as possible. We look forward to discussing with Health Canada staff the results of our ALS clinical program to date, which we believe shows compelling evidence of safety and efficacy and may qualify for rapid review under Canada’s regulatory guidelines for drugs to treat serious or life-threatening conditions.”

Stacey Johnson who wrote the Signals Blog piece on this story explained that while BrainStorm is not starting a clinical trial for ALS in Canada, there will be significant benefits if its treatment is approved.

“If BrainStorm qualifies for this pathway and its market authorization request is successful, it is possible that NurOwn could be available for patients in Canada by early 2018.  True access to improved treatments for Canadian ALS patients would be a great outcome and something we are all hoping for.”

CIRM is also funding stem cell-based therapies in clinical trials for ALS. Just yesterday our Board awarded Cedars-Sinai $6.15 million dollars to conduct a Phase 1 trial for ALS patients that will use “cells called astrocytes that have been specially re-engineered to secrete proteins that can help repair and replace the cells damaged by the disease.” You can read more about this new trial in our latest news release.

Partnering with the best to help find cures for rare diseases

As a state agency we focus most of our efforts and nearly all our money on California. That’s what we were set up to do. But that doesn’t mean we don’t also look outside the borders of California to try and find the best research, and the most promising therapies, to help people in need.

Today’s meeting of the CIRM Board was the first time we have had a chance to partner with one of the leading research facilities in the country focusing on children and rare diseases; St. Jude Children’s Researech Hospital in Memphis, Tennessee.

a4da990e3de7a2112ee875fc784deeafSt. Jude is getting $11.9 million to run a Phase I/II clinical trial for x-linked severe combined immunodeficiency disorder (SCID), a catastrophic condition where children are born without a functioning immune system. Because they are unable to fight off infections, many children born with SCID die in the first few years of life.

St. Jude is teaming up with researchers at the University of California, San Francisco (UCSF) to genetically modify the patient’s own blood stem cells, hopefully creating a new blood system and repairing the damaged immune system. St. Jude came up with the method of doing this, UCSF will treat the patients. Having that California component to the clinical trial is what makes it possible for us to fund this work.

This is the first time CIRM has funded work with St. Jude and reflects our commitment to moving the most promising research into clinical trials in people, regardless of whether that work originates inside or outside California.

The Board also voted to fund researchers at Cedars-Sinai to run a clinical trial on ALS or Lou Gehrig’s disease. Like SCID, ALS is a rare disease. As Randy Mills, our President and CEO, said in a news release:

CIRM CEO and President, Randy Mills.

CIRM CEO and President, Randy Mills.

“While making a funding decision at CIRM we don’t just look at how many people are affected by a disease, we also look at the severity of the disease on the individual and the potential for impacting other diseases. While the number of patients afflicted by these two diseases may be small, their need is great. Additionally, the potential to use these approaches in treating other disease is very real. The underlying technology used in treating SCID, for example, has potential application in other areas such as sickle cell disease and HIV/AIDS.”

We have written several blogs about the research that cured children with SCID.

The Board also approved funding for a clinical trial to develop a treatment for type 1 diabetes (T1D). This is an autoimmune disease that affects around 1.25 million Americans, and millions more around the globe.

T1D is where the body’s own immune system attacks the cells that produce insulin, which is needed to control blood sugar levels. If left untreated it can result in serious, even life-threatening, complications such as vision loss, kidney damage and heart attacks.

Researchers at Caladrius Biosciences will take cells, called regulatory T cells (Tregs), from the patient’s own immune system, expand the number of those cells in the lab and enhance them to make them more effective at preventing the autoimmune attack on the insulin-producing cells.

The focus is on newly-diagnosed adolescents because studies show that at the time of diagnosis T1D patients usually have around 20 percent of their insulin-producing cells still intact. It’s hoped by intervening early the therapy can protect those cells and reduce the need for patients to rely on insulin injections.

David J. Mazzo, Ph.D., CEO of Caladrius Biosciences, says this is hopeful news for people with type 1 diabetes:

David Mazzo

David Mazzo

“We firmly believe that this therapy has the potential to improve the lives of people with T1D and this grant helps us advance our Phase 2 clinical study with the goal of determining the potential for CLBS03 to be an effective therapy in this important indication.”

 


Related Links: