CIRM Board Approves Two New Discovery Research Projects for COVID-19

Dr. Karen Christman (left) and Dr. Lili Yang (right)

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two new discovery research project as part of the $5 million in emergency funding for COVID-19 related projects.  This brings the number of COVID-19 projects CIRM is supporting to 17, including three clinical trials.

$249,974 was awarded to Dr. Karen Christman at UC San Diego to develop a treatment for Acute Respiratory Distress Syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs and is prevalent in COVID-19 patients.  Dr. Christman and her team will develop extracellular matrix (ECM) hydrogels, a kind of structure that provides support to surrounding cells.  The goal is to develop a treatment that can be delivered directly to site of injury, where the ECM would recruit stem cells, treat lung inflammation, and promote lung healing.

$250,000 was awarded to Dr. Lili Yang at UCLA to develop a treatment for COVID-19.  Dr. Yang and her team will use blood stem cells to create invariant natural killer T (iNKT) cells, a powerful kind of immune cell with the potential to clear virus infection and mitigate harmful inflammation.  The goal is to develop these iNKT cells as an off the shelf therapy to treat patients with COVID-19.

These awards are part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“The harmful lung inflammation caused by COVID-19 can be dangerous and life threatening,” says Maria T. Millan, M.D., the President and CEO of CIRM. “Early stage discovery projects like the ones approved today are vital in developing treatments for patients severely affected by the novel coronavirus.”

Earlier in the week the Board also approved changes to both DISC2 and clinical trial stage projects (CLIN2). These were in recognition of the Agency’s remaining budget and operational timeline and the need to launch the awards as quickly as possible.

For DISC2 awards the changes include:

  • Award limit of $250,000
  • Maximum award duration of 12 months
  • Initiate projects within 30 days of approval
  • All proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.
  • All proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.

Under the CLIN2 awards, to help projects carry out a clinical trial, the changes include:

  • Adjust award limit to the following:
Applicant typePhase 1, Phase 1/2, Feasability Award CapPhase 2 Award CapPhase 3 Award Cap
Non-profit$9M$11.25M$7.5M
For-profit$6M$11.25M$7.5M
  • Adjust the award duration to not exceed 3 years with award completion no later than November 2023
  • Initiate projects within 30 days of approval
  • All proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard.

The changes outlined above for CLIN2 awards do not apply to sickle cell disease projects expected to be funded under the CIRM/NHLBI Cure Sickle Cell Disease joint Initiative.

Stem cells used to look at how COVID-19 attacks heart muscle

Human induced pluripotent stem cell-derived cardiomyocytes (heart cells) shown in green and blue, are infected by the novel coronavirus SARS-CoV-2 (red). Image provided by Cedars-Sinai Board of Governors Regenerative Medicine Institute.

There is still a lot that we don’t understand about SARS-CoV-2 (COVID-19), the new coronavirus that has caused a worldwide pandemic. Some patients that contract the virus experiences heart problems, but the reasons are not entirely clear. Pre-existing heart conditions or inflammation and oxygen deprivation that result from COVID-19 have all been implicated but more evidence needs to be collected.

To evaluate this, a joint study between Cedars-Sinai Board of Governors Regenerative Medicine Institute and the UCLA Broad Stem Cell Research Center used human induced pluripotent stem cells (iPSCs), a kind of stem cell that can become any kind of cell in the body and is usually made from skin cells. The iPSCS were converted into heart cells and infected with COVID-19 in order to study the effects of the virus.

The results of this study showed that the iPSC-derived heart cells are susceptible to COVID-19 infection and that the virus can quickly divide inside the heart cells. Furthermore, the infected heart cells showed changes in their ability to beat 72 hours after infection.

In a press release, Dr. Clive Svendsen, senior and co-corresponding author of the study and director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, elaborated on the results.

“This viral pandemic is predominately defined by respiratory symptoms, but there are also cardiac complications, including arrhythmias, heart failure and viral myocarditis. While this could be the result of massive inflammation in response to the virus, our data suggest that the heart could also be directly affected by the virus in COVID-19.”

Although this study does not perfectly replicate the conditions inside the human body, the iPSC heart cells may also help identify and screen new potential drugs that could alleviate viral infection of the heart.

The research team has already found that treatment with an antibody called ACE2 was able to decrease viral replication on the iPSC heart cells.

In the same press release Dr. Arun Sharma, first author and another co-corresponding author of the study and a research fellow at the Cedars-Sinai Board of Governors Regenerative Medicine Institute, had this to say about the ACE2 antibody.

“By blocking the ACE2 protein with an antibody, the virus is not as easily able to bind to the ACE2 protein, and thus cannot easily enter the cell. This not only helps us understand the mechanisms of how this virus functions, but also suggests therapeutic approaches that could be used as a potential treatment for SARS-CoV-2 infection.”

The study’s third co-corresponding author was Dr. Vaithilingaraja Arumugaswami, an associate professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The full results of this study were published in Cell Reports Medicine.

A ready-made approach to tackling COVID-19

Coronavirus particles, illustration.

In late March the CIRM Board approved $5 million in emergency funding for COVID-19 research. The idea was to support great ideas from California’s researchers, some of which had already been tested for different conditions, and see if they could help in finding treatments or a vaccine for the coronavirus.

Less than a month later we were funding a clinical trial and two other projects, one that targeted a special kind of immune system cell that has the potential to fight the virus.

Our friends at UCLA have just written a terrific piece on this project and the team that came up with the idea. Here is that article.

Researchers use stem cells to model the immune response to COVID-19

By Tiare Dunlap

Cities across the United States are opening back up, but we’re still a long way from making the COVID-19 pandemic history. To truly accomplish that, we need to have a vaccine that can stop the spread of infection.

But to develop an effective vaccine, we need to understand how the immune system responds to SARS-CoV-2, the virus that causes COVID-19.

Vaccines work by imitating infection. They expose a person’s immune system to a weakened version or component of the virus they are intended to protect against. This essentially prepares the immune system to fight the virus ahead of time, so that if a person is exposed to the real virus, their immune system can quickly recognize the enemy and fight the infection. Vaccines need to contain the right parts of the virus to provoke a strong immune response and create long-term protection.

Most of the vaccines in development for SARS CoV-2 are using part of the virus to provoke the immune system to produce proteins called antibodies that neutralize the virus. Another way a vaccine could create protection against the virus is by activating the T cells of the immune system.

T cells specifically “recognize” virus-infected cells, and these kinds of responses may be especially important for providing long-term protection against the virus. One challenge for researchers is that they have only had a few months to study how the immune system protects against SARS CoV-2, and in particular, which parts of the virus provoke the best T-cell responses.

This is where immunotherapy researchers and UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research members Dr. Gay Crooks and Dr. Christopher Seet come in.

Dr. Gay Crooks: Photo courtesy UCLA

For years, they have been perfecting an innovative technology that uses blood-forming stem cells — which can give rise to all types of blood and immune cells — to produce a rare and powerful subset of immune cells called type 1 dendritic cells. Type 1 dendritic cells play an essential role in the immune response by devouring foreign proteins, termed antigens, from virus-infected cells and then chopping them into fragments. Dendritic cells then use these protein fragments to trigger T cells to mount an immune response.

Dr. Christopher Seet: Photo courtesy UCLA

Using this technology, Crooks and Seet are working to pinpoint which specific parts of the SARS-CoV-2 virus provoke the strongest T-cell responses.

Building long-lasting immunity

“We know from a lot of research into other viral infections and also in cancer immunotherapy, that T-cell responses are really important for long-lasting immunity,” said Seet, an assistant professor of hematology-oncology at the David Geffen School of Medicine at UCLA. “And so this approach will allow us to better characterize the T-cell response to SARS-CoV-2 and focus vaccine and therapeutic development on those parts of the virus that induce strong T-cell immunity.”

This project was recently awarded $150,000 from the California Institute for Regenerative Medicine, the state’s stem cell agency. The award was matched by the UCLA Broad Stem Cell Research Center.

Crooks’ and Seet’s project uses blood-forming stem cells taken from healthy donors and infected with a virus containing antigens from SARS-CoV-2. They then direct these stem cells to produce large numbers of type 1 dendritic cells using a new method developed by Seet and Suwen Li, a graduate student in Crooks’ lab. Both Seet and Li are graduates of the UCLA Broad Stem Cell Research Center’s training program.

“The dendritic cells we are able to make using this process are really good at chopping up viral antigens and eliciting strong immune responses from T cells,” said Crooks, a professor of pathology and laboratory medicine and of pediatrics at the medical school and co-director of the UCLA Broad Stem Cell Research Center.

When type 1 dendritic cells chop up viral antigens into fragments, they present these fragments on their cell surfaces to T cells. Our bodies produce millions and millions of T cells each day, each with its own unique antigen receptor, however only a few will have a receptor capable of recognizing a specific antigen from a virus.

When a T cell with the right receptor recognizes a viral antigen on a dendritic cell as foreign and dangerous, it sets off a chain of events that activates multiple parts of the immune system to attack cells infected with the virus. This includes clonal expansion, the process by which each responding T cell produces a large number of identical cells, called clones, which are all capable of recognizing the antigen.

“Most of those T cells will go off and fight the infection by killing cells infected with the virus,” said Seet, who, like Crooks, is also a member of the UCLA Jonsson Comprehensive Cancer Center. “However, a small subset of those cells become memory T cells — long-lived T cells that remain in the body for years and protect from future infection by rapidly generating a robust T-cell response if the virus returns. It’s immune memory.”

Producing extremely rare immune cells

This process has historically been particularly challenging to model in the lab, because type 1 dendritic cells are extremely rare — they make up less than 0.1% of cells found in the blood. Now, with this new stem cell technology, Crooks and Seet can produce large numbers of these dendritic cells from blood stem cells donated by healthy people, introduce them to parts of the virus, then see how T cells  taken from the blood can respond in the lab. This process can be repeated over and over using cells taken from a wide range of healthy people.

“The benefit is we can do this very quickly without the need for an actual vaccine trial, so we can very rapidly figure out in the lab which parts of the virus induce the best T-cell responses across many individuals,” Seet said.

The resulting data could be used to inform the development of new vaccines for COVID-19 that improve T-cell responses. And the data about which viral antigens are most important to the T cells could also be used to monitor the effectiveness of existing vaccine candidates, and an individual’s immune status to the virus.

“There are dozens of vaccine candidates in development right now, with three or four of them already in clinical trials,” Seet said. “We all hope one or more will be effective at producing immediate and long-lasting immunity. But as there is so much we don’t know about this new virus, we’re still going to need to really dig in to understand how our immune systems can best protect us from infection.”

Supporting basic research into our body’s own processes that can inform new strategies to fight disease is central to the mission of the Broad Stem Cell Research Center.

“When we started developing this project some years ago, we had no idea it would be so useful for studying a viral infection, any viral infection,” Crooks said. “And it was only because we already had these tools in place that we could spring into action so fast.”

CIRM Board Approves Two Additional COVID-19 Projects

Dr. Vaithilingaraja Arumugaswami (left) and Dr. Song Li (right), UCLA

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional projects as part of the $5 million in emergency funding for COVID-19 related projects. This brings the number of projects CIRM is supporting to 11, including two clinical trials.

The Board awarded $349,999 to Dr. Vaithilingaraja Arumugaswami at UCLA.  The focus of this project will be to study Berzosertib, a therapy targeting viral replication and damage in lung stem cells.  The ultimate goal would be to use this agent as a therapy to prevent COVID-19 viral replication in the lungs, thereby reducing lung injury, inflammation, and subsequent lung disease caused by the virus.  

This award is part of CIRM’s Translational Stage Research Program (TRAN1), which promotes the activities necessary for advancement to clinical study of a potential therapy.

The Board also awarded $149,916 to Dr. Song Li at UCLA.  This project will focus on developing an injectable biomaterial that can induce the formation of T memory stem cells (TMSCs), an important type of stem cell that plays a critical role in generating an immune response to combat viruses. In vaccine development, there is a major challenge that the elderly may not be able to mount a strong enough immunity.  This innovative approach seeks to address this challenge by increasing TMSCs in order to boost the immune response to vaccines against COVID-19.

This award is under CIRM’s Discovery Stage Research Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“CIRM continues to support novel COVID-19 projects that build on previous knowledge acquired,” says Dr. Maria T. Millan, the President & CEO of CIRM. “These two projects represent the much-needed multi-pronged approach to the COVID-19 crisis, one addressing the need for effective vaccines to prevent disease and the other to treat the severe illness resulting from infection.”

Parkinson’s Disease and Stem Cells

Lila Collins, PhD

A few weeks ago we held a Facebook Live “Ask the Stem Cell Team About Parkinson’s Disease” event. As you can imagine we got lots of questions but, because of time constraints, only had time to answer a few. Thanks to my fabulous CIRM colleagues, Dr. Lila Collins and Dr. Kent Fitzgerald, for putting together answers to some of the other questions. Here they are.

Kent Fitzgerald, PhD

Q: It seems like we have been hearing for years that stem cells can help people with Parkinson’s, why is it taking so long?

A: Early experiments in Sweden using fetal tissue did provide a proof of concept for the strategy of replacing dopamine producing cells damaged or lost in Parkinson’s disease (PD) . At first, this seemed like we were on the cusp of a cell therapy cure for PD, however, we soon learned based on some side effects seen with this approach (in particular dyskinesias or uncontrollable muscle movements) that the solution was not as simple as once thought. 

While this didn’t produce the answer it did provide some valuable lessons.

The importance of dopaminergic (DA) producing cell type and the location in the brain of the transplant.  Simply placing the replacement cells in the brain is not enough. It was initially thought that the best site to place these DA cells is a region in the brain called the SN, because this area helps to regulate movement. However, this area also plays a role in learning, emotion and the brains reward system. This is effectively a complex wiring system that exists in a balance, “rewiring” it wrong can have unintended and significant side effects. 

Another factor impacting progress has been understanding the importance of disease stage. If the disease is too advanced when cells are given then the transplant may no longer be able to provide benefit.  This is because DA transplants replace the lost neurons we use to control movement, but other connected brain systems have atrophied in response to losing input from the lost neurons. There is a massive amount of work (involving large groups and including foundations like the Michael J Fox Foundation) seeking to identify PD early in the disease course where therapies have the best chance of showing an effect.   Clinical trials will ultimately help to determine the best timing for treatment intervention.

Ideally, in addition to the cell therapies that would replace lost or damaged cells we also want to find a therapy that slows or stops the underlying biology causing progression of the disease.

So, I think we’re going to see more gene therapy trials including those targeting the small minority of PD that is driven by known mutations.  In fact, Prevail Therapeutics will soon start a trial in patients with GBA1 mutations. Hopefully, replacing the enzyme in this type of genetic PD will prevent degeneration.

And, we are also seeing gene therapy approaches to address forms of PD that we don’t know the cause, including a trial to rescue sick neurons with GDNF which is a neurotrophic factor (which helps support the growth and survival of these brain cells) led by Dr Bankiewicz  and trials by Axovant and Voyager, partnered with Neurocrine aimed at restoring dopamine generation in the brain.

 A small news report came out earlier this year about a recently completed clinical trial by Roche Pharma and Prothena. This addressed the build up in the brain of what are called lewy bodies, a problem common to many forms of PD. While the official trial results aren’t published yet, a recent press release suggests reason for optimism.  Apparently, the treatment failed to statistically improve the main clinical measurement, but other measured endpoints saw improvement and it’s possible an updated form of this treatment will be tested again in the hopes of seeing an improved effect.

Finally, I’d like to call attention to the G force trials. Gforce is a global collaborative effort to drive the field forward combining lessons learned from previous studies with best practices for cell replacement in PD.  These first-in-human safety trials to replace the dopaminergic neurons (DANs) damaged by PD have shared design features including identifying what the best goals are and how to measure those.

The CIRA trial, Dr Jun Takahashi

The NYSTEM PD trial, Dr Lorenz Studer

The EUROSTEMPD trial, Dr Roger Barker.

And the Summit PD trial, Dr Jeanne Loring of Aspen Neuroscience.

Taken together these should tell us quite a lot about the best way to replace these critical neurons in PD.

As with any completely novel approach in medicine, much validation and safety work must be completed before becoming available to patients

The current approach (for cell replacement) has evolved significantly from those early studies to use cells engineered in the lab to be much more specialized and representing the types believed to have the best therapeutic effects with low probability of the side effects (dyskinesias) seen in earlier trials. 

If we don’t really know the cause of Parkinson’s disease, how can we cure it or develop treatments to slow it down?

PD can now be divided into major categories including 1. Sporadic, 2. Familial. 

For the sporadic cases, there are some hallmarks in the biology of the neurons affected in the disease that are common among patients.  These can be things like oxidative stress (which damages cells), or clumps of proteins (like a-synuclein) that serve to block normal cell function and become toxic, killing the DA neurons. 

The second class of “familial” cases all share one or more genetic changes that are believed to cause the disease.  Mutations in genes (like GBA, LRRK2, PRKN, SNCA) make up around fifteen percent of the population affected, but the similarity in these gene mutations make them attractive targets for drug development.

CIRM has funded projects to generate “disease in a dish” models using neurons made from adults with Parkinson’s disease.   Stem cell-derived models like this have enabled not only a deep probing of the underlying biology in Parkinson’s, which has helped to identify new targets for investigation, but have also allowed for the testing of possible therapies in these cell-based systems. 

iPSC-derived neurons are believed to be an excellent model for this type of work as they can possess known familial mutations but also show the rest of the patients genetic background which may also be a contributing factor to the development of PD. They therefore contain both known and unknown factors that can be tested for effective therapy development.

I have heard of scientists creating things called brain organoids, clumps of brain cells that can act a little bit like a brain. Can we use these to figure out what’s happening in the brain of people with Parkinson’s and to develop treatments?

There is considerable excitement about the use of brain organoids as a way of creating a model for the complex cell-to-cell interactions in the brain.  Using these 3D organoid models may allow us to gain a better understanding of what happens inside the brain, and develop ways to treat issues like PD.

The organoids can contain multiple cell types including microglia which have been a hot topic of research in PD as they are responsible for cleaning up and maintaining the health of cells in the brain.  CIRM has funded the Salk Institute’s Dr. Fred Gage’s to do work in this area.

If you go online you can find lots of stem cells clinics, all over the US, that claim they can use stem cells to help people with Parkinson’s. Should I go to them?

In a word, no! These clinics offer a wide variety of therapies using different kinds of cells or tissues (including the patient’s own blood or fat cells) but they have one thing in common; none of these therapies have been tested in a clinical trial to show they are even safe, let alone effective. These clinics also charge thousands, sometimes tens of thousands of dollars these therapies, and because it’s not covered by insurance this all comes out of the patient’s pocket.

These predatory clinics are peddling hope, but are unable to back it up with any proof it will work. They frequently have slick, well-designed websites, and “testimonials” from satisfied customers. But if they really had a treatment for Parkinson’s they wouldn’t be running clinics out of shopping malls they’d be operating huge medical centers because the worldwide need for an effective therapy is so great.

Here’s a link to the page on our website that can help you decide if a clinical trial or “therapy” is right for you.

Is it better to use your own cells turned into brain cells, or cells from a healthy donor?

This is the BIG question that nobody has evidence to provide an answer to. At least not yet.

Let’s start with the basics. Why would you want to use your own cells? The main answer is the immune system.  Transplanted cells can really be viewed as similar to an organ (kidney, liver etc) transplant. As you likely know, when a patient receives an organ transplant the patient’s immune system will often recognize the tissue/organ as foreign and attack it. This can result in the body rejecting what is supposed to be a life-saving organ. This is why people receiving organ transplants are typically placed on immunosuppressive “anti-rejection “drugs to help stop this reaction. 

In the case of transplanted dopamine producing neurons from a donor other than the patient, it’s likely that the immune system would eliminate these cells after a short while and this would stop any therapeutic benefit from the cells.  A caveat to this is that the brain is a “somewhat” immune privileged organ which means that normal immune surveillance and rejection doesn’t always work the same way with the brain.  In fact analysis of the brains collected from the first Swedish patients to receive fetal transplants showed (among other things) that several patients still had viable transplanted cells (persistence) in their brains.

Transplanting DA neurons made from the patient themselves (the iPSC method) would effectively remove this risk of the immune system attack as the cells would not be recognized as foreign.

CIRM previously funded a discovery project with Jeanne Loring from Scripps Research Institute that sought to generate DA neurons from Parkinson’s patients for use as a potential transplant therapy in these same patients.   This project has since been taken on by a company formed, by Dr Loring, called Aspen Neuroscience.  They hope to bring this potential therapy into clinical trials in the near future.    

A commonly cited potential downside to this approach is that patients with genetic (familial) Parkinson’s would be receiving neurons generated with cells that may have the same mutations that caused the problem in the first place. However, as it can typically take decades to develop PD, these cells could likely function for a long time. and prove to be better than any current therapies.

Creating cells from each individual patient (called autologous) is likely to be very expensive and possibly even cost-prohibitive. That is why many researchers are working on developing an “off the shelf” therapy, one that uses cells from a donor (called allogeneic)would be available as and when it’s needed.

When the coronavirus happened, it seemed as if overnight the FDA was approving clinical trials for treatments for the virus. Why can’t it work that fast for Parkinson’s disease?

While we don’t know what will ultimately work for COVID-19, we know what the enemy looks like.  We also have lots of experience treating viral infections and creating vaccines.  The coronavirus has already been sequenced, so we are building upon our understanding of other viruses to select a course to interrupt it.  In contrast, the field is still trying to understand the drivers of PD that would respond to therapeutic targeting and therefore, it’s not precisely clear how best to modify the course of neurodegenerative disease.  So, in one sense, while it’s not as fast as we’d like it to be, the work on COVID-19 has a bit of a head start.

Much of the early work on COVID-19 therapies is also centered on re-purposing therapies that were previously in development.  As a result, these potential treatments have a much easier time entering clinical trials as there is a lot known about them (such as how safe they are etc.).  That said, there are many additional therapeutic strategies (some of which CIRM is funding) which are still far off from being tested in the clinic. 

The concern of the Food and Drug Administration (FDA) is often centered on the safety of a proposed therapy.  The less known, the more cautious they tend to be. 

As you can imagine, transplanting cells into the brain of a PD patient creates a significant potential for problems and so the FDA needs to be cautious when approving clinical trials to ensure patient safety.

Promising results from CIRM-funded projects

Severe Leukocyte Adhesion Deficiency-1 (LAD-1) is a rare condition that causes the immune system to malfunction and reduces its ability to fight off viruses and bacteria. Over time the repeated infections can take a heavy toll on the body and dramatically shorten a person’s life. But now a therapy, developed by Rocket Pharmaceuticals, is showing promise in helping people with this disorder.

The therapy, called RP-L201, targets white blood cells called neutrophils which ordinarily attack and destroy invading particles. In people with LAD-1 their neutrophils are dangerously low. That’s why the new data about this treatment is so encouraging.

In a news release, Jonathan Schwartz, M.D., Chief Medical Officer of Rocket, says early results in the CIRM-funded clinical trial, show great promise:

“Patients with severe LAD-I have neutrophil CD18 expression of less than 2% of normal, with extremely high mortality in early childhood. In this first patient, an increase to 47% CD18 expression sustained over six months demonstrates that RP-L201 has the potential to correct the neutrophil deficiency that is the hallmark of LAD-I. We are also pleased with the continued visible improvement of multiple disease-related skin lesions. The second patient has recently been treated, and we look forward to completing the Phase 1 portion of the registrational trial for this program.”

The results were released at the 23rd Annual Meeting of the American Society of Gene and Cell Therapy.

=================================================

These microscopic images show gene expression in muscle stem and progenitor cells as they mature from early development to adulthood (left to right). As part of this process, the cells switch from actively expressing one key gene (green) to another (violet); this is accompanied by the growth of muscle fibers (red).
Photo courtesy: Cell Stem Cell/UCLA Broad Stem Cell Research Center

When you are going on a road-trip you need a map to help you find your way. It’s the same with stem cell research. If you are going to develop a new way to treat devastating muscle diseases, you need to have a map to show you how to build new muscle stem cells. And that’s what researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA – with help from CIRM funding – have done.

The team took muscle progenitor cells – which show what’s happening in development before a baby is born – and compared them to muscle stem cells – which control muscle development after a baby is born. That enabled them to identify which genes are active at what stage of development.

In a news release, April Pyle, senior author of the paper, says this could open the door to new therapies for a variety of conditions:

“Muscle loss due to aging or disease is often the result of dysfunctional muscle stem cells. This map identifies the precise gene networks present in muscle progenitor and stem cells across development, which is essential to developing methods to generate these cells in a dish to treat muscle disorders.”

The study is published in the journal Cell Stem Cell.

Two UCLA scientists receive CIRM funding for discovery research for COVID-19

Dr. Brigitte Gomperts (left) and Dr. Gay Crooks (right), UCLA
Image Credit: UCLA Broad Stem Cell Center

This past Friday, the CIRM Board approved funding for its first clinical study for COVID-19. In addition to this, the Board also approved two discovery stage research projects, which support promising new technologies that could be translated to enable broad use and improve patient care. Before we go into more detail, the two awards are summarized in the table below:

The discovery grant for $150,000 was given to Dr. Gay Crooks at UCLA to study how specific immune cells called T cells respond to COVID-19. The goal of this is to inform the development of vaccines and therapies that harness T cells to fight the virus. Typically, vaccine research involves studying the immune response using cells taken from infected people. However, Dr. Crooks and her team are taking T cells from healthy people and using them to mount strong immune responses to parts of the virus in the lab. They will then study the T cells’ responses in order to better understand how T cells recognize and eliminate the virus.

This method uses blood forming stem cells and then converts them into specialized immune cells called dendritic cells, which are able to devour proteins from viruses and chop them into fragments, triggering an immune response to the virus.

In a press release from UCLA, Dr. Crooks says that, “The dendritic cells we are able to make using this process are really good at chopping up the virus, and therefore eliciting a strong immune response”

The discovery grant for $149,998 was given to Dr. Brigitte Gomberts at UCLA to study a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19. Dr. Gomberts will be testing drugs that have been approved by the U.S. Food and Drug Administration (FDA) for other purposes or have been found to be safe in humans in early clinical trials. This increases the likelihood that if a successful drug is found, it can be approved more rapidly for widespread use.

In the same press release from UCLA, Dr. Gomberts discusses the potential drugs they are evaluating.

“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible.”

Living proof science can find a cure

Like many kids, let’s face it, many adults too, Ronav “Ronnie” Kashyap is getting a little bored stuck inside all day during the coronavirus pandemic. This video, shot by his dad Pawash, shows Ronnie trying to amuse himself by pretending to be hard at work.

https://www.instagram.com/p/B_BSQaonFXb/

It’s a lovely moment. It’s also a moment that just a few years ago seemed almost impossible. That’s because Ronnie was born with severe combined immunodeficiency (SCID). SCID kids have no functioning immune system so even a simple infection, such as a cold, can be life-threatening.

Many of those hardest hit by COVID-19 have compromised immune systems. But try fighting the virus if you have no immune system at all. The odds would not be good.

Happily, we don’t have to imagine it because Ronnie is one of around 60 children who have undergone CIRM-supported stem cell/gene therapies that have helped repair their immune system.

In Ronnie’s case he was rushed to UC San Francisco shortly after his birth when a newborn screening test showed he had SCID. He spent the next several months there, in isolation with his parents, preparing for the test. Doctors took his own blood stem cells and, in the lab, corrected the genetic mutation that causes SCID. The cells were then re-infused into Ronnie where they created a new blood supply and repaired his immune system.

How good is his immune system today? Last year his parents, Upasana and Pawash, were concerned about taking Ronnie to a crowded shopping mall for fear he might catch a cold. Their doctor reassured them that he would be fine. So, they went. The doctor was right, Ronnie was fine. However, Upasana and Pawash both caught colds!

Just a few weeks ago Ronnie started pre-school. He loves it. He loves having other kids to play with and his parents love it because it helps him burn off some energy. But they also love it because it showed Ronnie is now leading a normal life, one where they don’t have to worry about everything he does, every person he comes into contact with.

Sounds a bit like how the rest of us are living right now doesn’t it. And the fears that Ronnie’s parents had, that even a casual contact with a friend, a family member or stranger, might prove life-threatening, are ones many of us are experiencing now.

When Ronnie was born he faced long odds. At the time there were only a handful of scientists working to find treatments for SCID. But they succeeded. Now, Ronnie, and all the other children who have been helped by this therapy are living proof that good science can overcome daunting odds to find treatments, and even cures, for the most life-threatening of conditions.

Today there are thousands, probably tens of thousands of scientists around the world searching for treatments and cures for COVID-19. And they will succeed.

Till then the rest of us will have to be like Ronnie. Stay at home, stay safe, and enjoy the luxury of being bored.

An advocate’s support for CIRM’s COVID-19 funding

Patient Advocates play an important role in everything we do at the stem cell agency, helping inform all the decisions we make. So it was gratifying to hear from one of our Advocates par excellence, Adrienne Shapiro, about her support for our Board’s decision to borrow $4.2 million from our Sickle Cell Cure fund to invest in rapid research for COVID-19. The money will be repaid but it’s clear from Adrienne’s email that she thinks the Board’s action is one that stands to benefit all of us.

Adrienne Shapiro and her daughter Marissa, who has sickle cell disease

Last Friday the CIRM Board voted to borrow $4.2 million dollars from the Sickle Cell Stem Cell Cure’s budget to fund Covid-19 research. The loan will be paid back at the end of the year from funds that are returned to the CIRM budget from projects that did not use them.  At first I thought “that makes sense, if the money is not being used …” then I thought how wonderful it was that the SCD budget was there and could be used for Covid-19 research.

Wonderful because Covid-19 is a great threat to the SCD community. Sickle cell patients are at risk of dying from the virus as many have no spleens, are immune-compromised and suffer from weakened lung function due to damage from sickling red blood cells and low oxygen levels. 

Wonderful because CIRM sponsored the first large clinical stem cell trials for a cure to SCD. Their funding and commitment to finding a universal cure for SCD opened what feels like a flood gate of research for a cure and new treatments.

Wonderful because it gives CIRM an opportunity to show the world what a government organization — that is committed to tackling complex medical problems — can accomplish using efficient, inclusive, responsible and agile methodologies.

I am eager to see what happens. We all hope that new treatments and even a cure will be found soon. If it does not come from CIRM funding we know that whatever is proven using these funds will help future researchers and patients. 

After all: the SCD community is living proof that science done well leads to a world with less suffering

Can stem cells help people who have had a stroke? Ask the experts.

Stroke is the third leading cause of death and disability in the US. Every 45 seconds someone in the US has a stroke. Every year around 275,000 people die from a stroke many more survive but are often impaired by the brain attack. The impact is not just physical, but psychological and emotional. It takes an enormous toll on individuals and their families. So, it’s not surprising that there is a lot of research underway to try and find treatments to help people, including using stem cells.

That’s why CIRM is hosting a special Facebook Live ‘Ask the Stem Cell Team About Stroke event on Wednesday, March 25th at noon PDT. Just head over to our Facebook Page on the 25th at noon to hear from two great guests.

We will be joined by Dr. Tom Carmichael, a Professor of Neurology and the Co-Director of the UCLA Broad Stem Cell Center. He has a number of CIRM grants focused on helping repair the damage caused by strokes.

CIRM Senior Science Officer, Dr. Lila Collins, will also join us to talk about other stem cell research targeting stroke, its promise and some of the problems that still need to be overcome.

You will have a chance to ask questions of both our experts, either live on the day or by sending us questions in advance at info@cirm.ca.gov.