Some good news for people with dodgy knees

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST

Graphic contrasting a healthy knee with one that has osteoarthritis

About 10% of Americans suffer from knee osteoarthritis, a painful condition that can really impair mobility and quality of life. It’s often caused by an injury to cartilage, say when you were playing sports in high school or college, and over time it continues to degenerate and ultimately results in the  loss of both cartilage and bone in the joint.

Current treatments involve either medication to control the pain or surgery. Medication works up to a point, but as the condition worsens it loses effectiveness.  Knee replacement surgery can be effective, but is a serious, complicated procedure with a long recovery time.  That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $6 million in an innovative stem cell therapy approach to helping restore articular cartilage in the knee.

Dr. Frank Petrigliano, Chief of the Epstein Family Center for Sports Medicine at Keck Medicine of the University of Southern California (USC), is using pluripotent stem cells to create chondrocytes (the cells responsible for cartilage formation) and then seeding those onto a scaffold. The scaffold is then surgically implanted at the site of damage in the knee. Based on scientific data, the seeded scaffold has the potential to regenerate the damaged cartilage, thus decreasing the likelihood of progression to knee osteoarthritis.  In contrast to current methods, this new treatment could be an off-the-shelf approach that would be less costly, easier to administer, and might also reduce the likelihood of progression to osteoarthritis.

This is a late-stage pre-clinical program. The goals are to manufacture clinical grade product, carry out extensive studies to demonstrate safety of the approach, and then file an IND application with the FDA, requesting permission to test the product in a clinical trial in people.

“Damage to the cartilage in our knees can have a big impact on quality of life,” says Dr. Maria T. Millan, MD, President and CEO of CIRM. “It doesn’t just cause pain, it also creates problems carrying out simple, everyday activities such as walking, climbing stairs, bending, squatting and kneeling. Developing a way to repair or replace the damaged cartilage to prevent progression to knee osteoarthritis could make a major difference in the lives of millions of Americans. This program is a continuation of earlier stage work funded by CIRM at the Basic Biology and Translational stages, illustrating how CIRM supports scientific programs from early stages toward the clinic.”

Looking back and looking forward: good news for two CIRM-supported studies

Dr. Rosa Bacchetta on the right with Brian Lookofsky (left) and Taylor Lookofsky after CIRM funded Dr. Bacchetta’s work in October 2019. Taylor has IPEX syndrome

It’s always lovely to end the week on a bright note and that’s certainly the case this week, thanks to some encouraging news about CIRM-funded research targeting blood disorders that affect the immune system.

Stanford’s Dr. Rosa Bacchetta and her team learned that their proposed therapy for IPEX Syndrome had been given the go-ahead by the Food and Drug Administration (FDA) to test it in people in a Phase 1 clinical trial.

IPEX Syndrome (it’s more formal and tongue twisting name is Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome) is a life-threatening disorder that affects children. It’s caused by a mutation in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood. 

Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

This approach has already been accorded an orphan drug and rare pediatric disease designation by the FDA (we blogged about it last year)

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

Congratulations to the team and we wish them luck as they begin the trial.

Dr. Donald Kohn, Photo courtesy UCLA

Someone who needs no introduction to regular readers of this blog is UCLA’s Dr. Don Kohn. A recent study in the New England Journal of Medicine highlighted how his work in developing a treatment for severe combined immune deficiency (SCID) has helped save the lives of dozens of children.

Now a new study in the journal Blood shows that those benefits are long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

In a news release Dr. Kohn said: “What we saw in the first few years was that this therapy worked, and now we’re able to say that it not only works, but it works for more than 10 years. We hope someday we’ll be able to say that these results last for 80 years.”

Ten children received the treatment between 2009 and 2012. Nine were babies or very young children, one was 15 years old at the time. That teenager was the only one who didn’t see their immune system restored. Dr. Kohn says this suggests that the therapy is most effective in younger children.

Dr. Kohn has since modified the approach his team uses and has seen even more impressive and, we hope, equally long-lasting results.

Feds hit predatory stem cell clinics with a one-two punch

Federal Trade Commission

Stem cells have a number of amazing properties and tremendous potential to heal previously untreatable conditions. But they also have the potential to create a financial windfall for clinics that are more focused on lining their wallets than helping patients. Now the federal government is cracking down on some of these clinics in a couple of different ways.

The Food and Drug Administration (FDA) sent a warning letter to the Utah Cord Bank LLC and associated companies warning them that the products it sold – specifically “human umbilical cord blood, umbilical cord, and amniotic membrane derived cellular products” – were violating the law.

At the same time the Federal Trade Commission and the Georgia Office of the Attorney General began legal proceedings against Regenerative Medicine Institute of America. The lawsuit says the company claims its products can rebuild cartilage and help treat joint and arthritis pain, and is charging patients thousands of dollars for “treatments” that haven’t been shown to be either safe or effective.

Bloomberg Law reporter Jeannie Baumann recently wrote a fine, in-depth article on these latest steps against predatory stem cell clinics.

CIRM has been a fierce opponents of bogus stem cell clinics for years and has worked with California lawmakers to try and crack down on them. We’re delighted to see that the federal government is stepping up its efforts to stop them marketing their snake oil to unsuspecting patients and will support them every step along the way.

CIRM has produced a short video and other easy to digest information on questions people should ask before signing up for any clinical trial. You can find those resources here.

CIRM has also published findings in Stem Cells Translational Medicine that discuss the three R’s–regulated, reliable, and reputable–and how these can help protect patients with uniform standards for stem cell treatments .

Paving the way for a treatment for dementia

What happens in a stroke

When someone has a stroke, the blood flow to the brain is blocked. This kills some nerve cells and injures others. The damaged nerve cells are unable to communicate with other cells, which often results in people having impaired speech or movement.

While ischemic and hemorrhagic strokes affect large blood vessels and usually produce recognizable symptoms there’s another kind of stroke that is virtually silent. A ‘white’ stroke occurs in blood vessels so tiny that the impact may not be noticed. But over time that damage can accumulate and lead to a form of dementia and even speed up the progression of Alzheimer’s disease.

Now Dr. Tom Carmichael and his team at the David Geffen School of Medicine at UCLA have developed a potential treatment for this, using stem cells that may help repair the damage caused by a white stroke. This was part of a CIRM-funded study (DISC2-12169 – $250,000).

Instead of trying to directly repair the damaged neurons, the brain nerve cells affected by a stroke, they are creating support cells called astrocytes, to help stimulate the body’s own repair mechanisms.

In a news release, Dr. Irene Llorente, the study’s first author, says these astrocytes play an important role in the brain.

“These cells accomplish many tasks in repairing the brain. We wanted to replace the cells that we knew were lost, but along the way, we learned that these astrocytes also help in other ways.”

The researchers took skin tissue and, using the iPSC method (which enables researchers to turn cells into any other kind of cell in the body) turned it into astrocytes. They then boosted the ability of these astrocytes to produce chemical signals that can stimulate healing among the cells damaged by the stroke.

These astrocytes were then not only able to help repair some of the damaged neurons, enabling them to once again communicate with other neurons, but they also helped another kind of brain cell called oligodendrocyte progenitor cells or OPCs. These cells help make a protective sheath around axons, which transmit electrical signals between brain cells. The new astrocytes stimulated the OPCs into repairing the protective sheath around the axons.

Mice who had these astrocytes implanted in them showed improved memory and motor skills within four months of the treatment.  

And now the team have taken this approach one step further. They have developed a method of growing these astrocytes in large amounts, at very high quality, in a relatively short time. The importance of that is it means they can produce the number of cells needed to treat a person.

“We can produce the astrocytes in 35 days,” Llorente says. “This process allows rapid, efficient, reliable and clinically viable production of our therapeutic product.”

The next step is to chat with the Food and Drug Administration (FDA) to see what else they’ll need to do to show they are ready for a clinical trial.

The study is published in the journal Stem Cell Research.

Retooling a COVID drug to boost its effectiveness

Coronavirus particles, illustration.

When the COVID-19 pandemic broke out scientists scrambled to find existing medications that might help counter the life-threatening elements of the virus. One of the first medications that showed real promise was remdesivir. It’s an anti-viral drug that was originally developed to target novel, emerging viruses, viruses like COVID19. It was approved for use by the Food and Drug Administration (FDA) in October 2020.

Remdesivir showed real benefits for some patients, reducing recovery time for those in the hospital, but it also had problems. It had to be delivered intravenously, meaning it could only be used in a hospital setting. And it was toxic if given in too high a dose.

In a new study – partially funded by CIRM (DISC2 COVID19-12022 $228,229) – researchers at the University of California San Diego (UCSD) found that by modifying some aspects of remdesivir they were able to make it easier to take and less toxic.

In a news release about the work Dr. Robert Schooley, a first author on the study, says we still need medications like this.

“Although vaccine development has had a major impact on the epidemic, COVID-19 has continued to spread and cause disease — especially among the unvaccinated. With the evolution of more transmissible viral variants, breakthrough cases of COVID are being seen, some of which can be severe in those with underlying conditions. The need for effective, well-tolerated antiviral drugs that can be given to patents at high risk for severe disease at early stages of the illness remains high.”

To be effective remdesivir must be activated by several enzymes in the body. It’s a complex process and explains why the drug is beneficial for some areas, such as the lung, but can be toxic to other areas, such as the liver. So, the researchers set out to overcome those problems.

The team created what are called lipid prodrugs, these are compounds that do not dissolve in water and are used to improve how a drug interacts with cells or other elements; they are often used to reduce the bad side effects of a medication. By inserting a modified form of remdesivir into this lipid prodrug, and then attaching it to an enzyme called a lipid-phosphate (which acts as a delivery system, bringing along the remdesivir prodrug combo), they were able to create an oral form of remdesivir.

Dr. Aaron Carlin, a co-first author of the study, says they were trying to create a hybrid version of the medication that would work equally well regardless of the tissue it interacted with.

“The metabolism of remdesivir is complex, which may lead to variable antiviral activity in different cell types. In contrast, these lipid-modified compounds are designed to be activated in a simple uniform manner leading to consistent antiviral activity across many cell types.”

When they tested the lipid prodrugs in animal models and human cells they found they were effective against COVID-19 in different cell types, including the liver. They are now working on further developing and testing the lipid prodrug to make sure it’s safe for people and that it can live up to their hopes of reducing the severity of COVID-19 infections and speed up recovery.

The study is published in the journal Antimicrobial Agents and Chemotherapy.

Sometimes a cold stare is a good thing

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in the elderly in the U.S. It’s estimated that some 11 million Americans could have some form of the disease, a number that is growing every year. So if you are going to develop a treatment for this condition, you need to make sure it can reach a lot of people easily. And that’s exactly what some CIRM-supported researchers are doing.

Let’s back up a little first. AMD is a degenerative condition where the macular, the small central portion of your retina, is slowly worn away. That’s crucial because the retina is the light-sensing nerve tissue at the back of your eye. At first you notice that your vision is getting blurry and it’s hard to read fine print or drive a car. As it progresses you develop dark, blurry areas in the center of your vision.

There are two kinds of AMD, a wet form and a dry form. The dry form is the most common, affecting 90% of patients. There is no cure and no effective treatment. But researchers at the University of Southern California (USC), the University of California Santa Barbara (UCSB) and a company called Regenerative Patch Technologies are developing a method that is looking promising.

They are using stem cells to grow retinal pigment epithelium (RPE) cells, the kind attacked by the disease, and putting them on a tiny synthetic scaffold which is then placed at the back of the eye. The hope is these RPE cells will help slow down the progression of the disease or even restore vision.

Early results from a CIRM-funded clinical trial are encouraging. Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

So now the team are taking this approach one step further. In a study published in Scientific Reports, they say they have developed a way to cryopreserve or freeze this cell and scaffold structure.

In a news release, Dr. Dennis Clegg of UCSB, says the frozen implants are comparable to the non-frozen ones and this technique will extend shelf life and enable on-demand distribution to distant clinical sites, increasing the number of patients able to benefit from such treatments.

“It’s a major advance in the development of cell therapies using a sheet of cells, or a monolayer of cells, because you can freeze them as the final product and ship them all over the world.”

Cool.

Call for a worldwide approach to regulating predatory stem cell clinics

You can’t fix a global problem at the local level. That’s the gist of a new perspective piece in the journal Stem Cell Reports that calls for a global approach to rogue stem cell clinics that offer bogus therapies.

The authors of the article are calling on the World Health Organization (WHO) to set up an advisory committee to draw up rules and regulations to help guide countries trying to shut these clinics down.

In a news release, senior author Mohamed Abou-el-Enein, the executive director of the joint University of Southern California/Children’s Hospital of Los Angeles Cell Therapy Program, says these clinics are trying to cash in on the promise of regenerative medicine.

“Starting in the early 2000s… unregulated stem cell clinics offering untested and poorly characterized treatments with insufficient information on their safety and efficacy began emerging all over the world, taking advantage of the media hype around stem cells and patients’ hope and desperation.”

Dr. Larry Goldstein

The authors include Lawrence Goldstein, PhD, a CIRM Board member and a Science Policy Fellows for the International Society for Stem Cell Research (ISSCR).

Zubin Master, an associate professor of biomedical ethics at the Mayo Clinic, says the clinics prey on vulnerable people who have serious medical conditions and who have often tried conventional medical approaches without success.

“We should aim to develop pathways to provide patients with evidenced-based experimental regenerative intervention as possible options where there is oversight, especially in circumstances where there is no suitable alternative left.”

The report says: “The unproven SCI (stem cell intervention) industry threatens the advancement of regenerative medicine. Reports of adverse events from unproven SCIs has the potential to affect funding and clinical trial recruitment, as well as increasing burdens among regulatory agencies to oversee the industry.

Permitting unregulated SCIs to flourish demonstrates a lack of concern over patient welfare and undermines the need for scientific evidence for medicinal product R&D. While some regulatory agencies have limited oversight or enforcement powers, or choose not to use them, unproven SCI clinics still serve to undermine authority given to regulatory agencies and may reduce public trust impacting the development of safe and effective therapies. Addressing the continued proliferation of clinics offering unproven SCIs is a problem worth addressing now.”

The authors say the WHO is uniquely positioned to help create a framework for the field that can help address these issues. They recommend setting up an advisory committee to develop global standards for regulations governing these clinics that could be applied in all countries. They also say we need more educational materials to let physicians as well as patients understand the health risks posed by bogus clinics.

This article comes out in the same week that reports by the Pew Charitable Trust and the FDA also called for greater regulation of these predatory clinics (we blogged about that here). Clearly there is growing recognition both in the US and worldwide that these clinics pose a threat not just to the health and safety of patients, but also to the reputation of the field of regenerative medicine as a whole.

“I believe that the global spread of unproven stem cell therapies reflects critical gaps in the international system for responding to health crises, which could put the life of thousands of patients in danger,” Abou-el-Enein says. “Urgent measures are needed to enhance the global regulatory capacity to detect and respond to this eminent crisis rapidly.”

CIRM-catalyzed spinout files for IPO to develop therapies for genetic diseases

Graphite Bio, a CIRM-catalyzed spinout from Stanford University that launched just 14 months ago has now filed the official SEC paperwork for an initial public offering (IPO). The company was formed by CIRM-funded researchers Matt Porteus, M.D., Ph.D. and Maria Grazia Roncarolo, M.D.

Six years ago, Dr. Porteus and Dr. Roncarolo, in conjunction with Stanford University, received a CIRM grant of approximately $875K to develop a method to use CRISPR gene editing technology to correct the blood stem cells of infants with X-linked severe combined immunodeficiency (X-SCID), a genetic condition that results in a weakened immune system unable to fight the slightest infection.

Recently, Dr. Porteus, in conjunction with Graphite, received a CIRM grant of approximately $4.85M to apply the CRISPR gene editing approach to correct the blood stem cells of patients with sickle cell disease, a condition that causes “sickle” shaped red blood cells. As a result of this shape, the cells clump together and clog up blood vessels, causing intense pain, damaging organs, and increasing the risk of strokes and premature death. The condition disproportionately affects members of the Black and Latin communities.

CIRM funding helped Stanford complete the preclinical development of the sickle cell disease gene therapy and it enabled Graphite to file an Investigational New Drug (IND) application with the U.S. Food and Drug Administration (FDA), one of the last steps necessary before conducting a human clinical trial of a potential therapy. Towards the end of 2020, Graphite got the green light from the FDA to conduct a trial using the gene therapy in patients with sickle cell disease.

In a San Francisco Business Times report, Graphite CEO Josh Lehrer stated that the company’s goal is to create a platform that can apply a one-time gene therapy for a broad range of genetic diseases.

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

Medeor Therapeutics Completes Enrollment in CIRM-Funded Clinical Trial for Kidney Transplant Patients

A CIRM-funded clinical trial to help kidney transplant patients avoid the need for anti-rejection or immunosuppressive medications has completed enrollment and transplantation of all patients.

Medeor Therapeutics’ MDR-101 Phase 3 multi-center clinical trial involved 30 patients; 20 of them were treated with MDR-101, and 10 control subjects were given standard care. CIRM awarded Medeor, based in South San Francisco, $18.8 million for this research in January 2018.

More than 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. For these people the best treatment option is a kidney transplant from a genetically matched, living donor. Even matched patients, however, face a lifetime on immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. These drugs can be effective at preventing rejection, but they come at a cost. Because they are toxic these medications increase a transplant patient’s life-time risk of cancer, diabetes, heart disease and infections.

Medeor Therapeutics developed its MDR-101 therapy to reprogram the patient’s immune system to accept a transplanted kidney without the need for long term use of immunosuppression drugs.

The company takes peripheral blood stem cells from the organ donor and infuses them into the patient receiving the donor’s kidney. This creates a condition called “mixed chimerism” where immune cells from the donor help the patient’s immune system adapt to and tolerate the donor’s kidney. 

After a standard kidney transplant, the patient is given a combination of three anti-rejection medications which they typically have to remain on for the rest of their lives. However, the Medeor patients, by day 40 post-transplant, are only taking one medication and the hope is that immunosuppression is discontinued at the end of one year.

“Chronic kidney disease and kidney failure are a growing problem in the US, that’s why it’s so important that we find new ways to reduce the burden on patients and increase the odds of a successful transplant with long term benefit,” says Maria T. Millan, M.D., President and CEO of CIRM. “Medeor’s approach may not only reduce the likelihood of a patient’s body rejecting the transplanted organ, but it can also improve the quality of life for these people and reduce overall health care costs by eliminating the need to stay on these immunosuppressive medications for life.”

In an earlier Phase 2 trial, a majority of patients achieved mixed chimerism. Approximately 74 percent of those patients have been off all immunosuppressive drugs for more than two years, including some who continue to be off immunosuppressive medications 15 years after their surgery.

“Today’s news is a tremendous milestone not only for Medeor but for the entire transplant community. This is the first randomized, multi-center pivotal study designed specifically to stop the use of all immunosuppressive anti-rejection drugs post-transplant. This therapy can be a true game changer in our efforts to transform transplant outcomes and help patients live healthier lives,” said Dan Brennan, MD, Chief Medical Officer at Medeor Therapeutics.

If the results from this pivotal clinical trial show that MDR-101 is both safe and effective, Medeor may apply to the Food and Drug Administration (FDA) for approval to market their approach to other patients in the U.S.