Making transplants easier for kids, and charting a new approach to fighting solid tumors.

Every year California performs around 100 kidney transplants in children but, on average, around 50 of these patients will have their body reject the transplant. These children then have to undergo regular dialysis while waiting for a new organ. Even the successful transplants require a lifetime of immunosuppression medications. These medications can prevent rejection but they also increase the risk of infection, gastrointestinal disease, pancreatitis and cancer.

Dr. Alice Bertaina and her team at Stanford University were awarded $11,998,188 to test an approach that uses combined blood stem cell (HSC) and kidney transplantation with the goal to improve outcomes with kidney transplantation in children. This approach seeks to improve on the blood stem cell preparation through an immune-based purification process.

In this approach, the donor HSC are transplanted into the patient in order to prepare for the acceptance of the donor kidney once transplanted. Donor HSC give rise to cells and conditions that re-train the immune system to accept the kidney. This creates a “tolerance” to the transplanted kidney providing the opportunity to avoid long-term need for medications that suppress the immune system.

Pre-clinical data support the idea that this approach could enable the patient to stop taking any immunosuppression medications within 90 days of the surgery.

Dr. Maria T. Millan, President and CEO of CIRM, a former pediatric transplant surgeon and tolerance researcher states that “developing a way to ensure long-term success of organ transplantation by averting immune rejection while avoiding the side-effects of life-long immunosuppression medications would greatly benefit these children.”

The CIRM Board also awarded $7,141,843 to Dr. Ivan King and Tachyon Therapeutics, Inc to test a drug showing promise in blocking the proliferation of cancer stem cells in solid tumors such as colorectal and gastrointestinal cancer.

Patients with late-stage colorectal cancer are typically given chemotherapy to help stop or slow down the progression of the disease. However, even with this intervention survival rates are low, usually not more than two years.

Tachyon’s medication, called TACH101, is intended to target colorectal cancer (CRC) stem cells as well as the bulk tumor by blocking an enzyme called KDM4, which cancer stem cells need to grow and proliferate.

In the first phase of this trial Dr. King and his team will recruit patients with advanced or metastatic solid tumors to assess the safety of TACH101, and determine what is the safest maximum dose. In the second phase of the trial, patients with gastrointestinal tumors and colorectal cancer will be treated using the dose determined in the first phase, to determine how well the tumors respond to treatment.  

The CIRM Board also awarded $5,999,919 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene. Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs. There is no effective treatment and life expectancy for many of these children is only around ten years.

Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.

Finally the Board awarded $20,401,260 to five programs as part of its Translational program. The goal of the Translational program is to support promising stem cell-based or gene projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use. Those can include therapeutic candidates, diagnostic methods  or devices and novel tools that address critical bottlenecks in research.

The successful applicants are:

APPLICATIONTITLEPRINCIPAL INVESTIGATOR – INSTITUTIONAMOUNT  
TRAN4-14124Cell Villages and Clinical Trial in a Dish with Pooled iPSC-CMs for Drug DiscoveryNikesh Kotecha — Greenstone Biosciences  $1,350,000
TRAN1-14003Specific Targeting Hypoxia Metastatic Breast Tumor with Allogeneic Off-the-Shelf Anti-EGFR CAR NK Cells Expressing an ODD domain of HIF-1αJianhua Yu — Beckman Research Institute of City of Hope  $6,036,002  
TRAN1-13983CRISPR/Cas9-mediated gene editing of Hematopoietic
stem and progenitor cells for Friedreich’s ataxia
Stephanie Cherqui — University of California, San Diego  $4,846,579
TRAN1-13997Development of a Gene Therapy for the Treatment of
Pitt Hopkins Syndrome (PHS) – Translating from Animal Proof of Concept to Support Pre-IND Meeting
Allyson Berent — Mahzi Therapeutics  $4,000,000
TRAN1-13996Overcoming resistance to standard CD19-targeted CAR
T using a novel triple antigen targeted vector
William J Murphy — University of California, Davis  $4,168,679

A timeless message about stem cells

Dr. Daniel Kota

The world of stem cell research is advancing rapidly, with new findings and discoveries seemingly every week. And yet some things that we knew years ago are still every bit as relevant today as they were then.

Take for example a TEDx talk by Dr. Daniel Kota, a stem cell researcher and the Director, Cellular Therapy – Research and Development at Houston Methodist.

Dr. Kota’s talk is entitled: “Promises and Dangers of Stem Cell Therapies”. In it he talks about the tremendous potential of stem cells to reverse the course of disease and help people battle previously untreatable conditions.

But he also warns about the gap between what the science can do, and what people believe it can do. He says too many people have unrealistic expectations of what is available right now, fueled by many unscrupulous snake oil salesmen who open clinics and offer “treatments” that are both unproven and unapproved by the Food and Drug Administration.

He says we need to “bridge the gap between stem cell science and society” so that people have a more realistic appreciation of what stem cells can do.

Sadly, as the number of clinics peddling these unproven therapies grows in the US, Dr. Kota’s message remains all too timely.

Sweet 16 and counting for stem cell clinical trial

Dr. Judy Shizuru: Photo courtesy Jasper Therapeutics

Over the years the California Institute for Regenerative Medicine (CIRM) has invested a lot in helping children born with severe combined immunodeficiency (SCID), a fatal immune disorder. And we have seen great results with some researchers reporting a 95 percent success rate in curing these children.

Now there’s more encouraging news from a CIRM-funded clinical trial with Jasper Therapeutics. They have announced that they have tested their approach in 16 patients, with encouraging results and no serious adverse events.

Let’s back up a little. Children born with SCID have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life. Several of the approaches CIRM has funded use the child’s own blood stem cells to help fix the problem. But at Jasper Therapeutics they are using another approach. They use a bone marrow or hematopoietic stem cell transplant (HCT).   This replaces the child’s own blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, there’s a problem. Most bone marrow transplants use chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. It can be effective, but it is also toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To get around that problem Jasper Therapeutics is using an antibody called JSP191 – developed with CIRM funding – that directs the patient’s own immune cells to kill diseased blood stem cells, creating room to transplant new, healthy cells. To date the therapy has already been tested in 16 SCID patients.

In addition to treating 16 patients treated without any apparent problems,  Jasper has also been granted Fast Track Designation by the US Food and Drug Administration. This can help speed up the review of treatments that target serious unmet conditions. They’ve also been granted both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics said:

“The FDA’s Fast Track designation granted for JSP191 in Severe Combined Immunodeficiency (SCID) reinforces the large unmet medical need for patients with this serious disease. Along with its previous designations of Orphan and Rare Pediatric Disease for JSP191, the FDA’s Fast Track recognizes JSP191’s potential role in improving clinical outcomes for SCID patients, many of whom are too fragile to tolerate the toxic chemotherapy doses typically used in a transplant.”

Fast Track Designation for a therapy making transplants safer for children with a fatal immune disorder

Bone marrow transplant

For children born with severe combined immunodeficiency (SCID) life can be very challenging. SCID means they have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life.

There are stem cell/gene therapies funded by the California Institute for Regenerative Medicine (CIRM), such as ones at UCLA and UCSF/St. Judes, but an alternative method of treating, and even curing the condition, is a bone marrow or hematopoietic stem cell transplant (HCT). This replaces the child’s blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, current HCT methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To change that, Dr. Judy Shizuru at Stanford University, with CIRM funding, developed an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells, creating the room needed to transplant new, healthy cells. The goal was to make stem cell transplants safer and more effective for the treatment of many life-threatening blood disorders.

That approach, JSP191, is now being championed by Jasper Therapeutics and they just got some very good news from the Food and Drug Administration (FDA). The FDA has granted JSP191 Fast Track Designation, which can speed up the review of therapies designed to treat serious conditions and fill unmet medical needs.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics, said this is good news for the company and patients: “This new Fast Track designation recognizes the potential role of JSP191 in improving clinical outcomes for these patients and will allow us to more closely work with the FDA in the upcoming months to determine a path toward a Biologics License Application (BLA) submission.”

Getting a BLA means Jasper will be able to market the antibody in the US and make it available to all those who need it.

This is the third boost from the FDA for Jasper. Previously the agency granted JSP191 both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

How stem cells helped Veronica fight retinitis pigmentosa and regain her vision

Veronica and Elliott

Growing up Veronica McDougall thought everyone saw the world the way she did; blurry, slightly out-of-focus and with tunnel vision.  As she got older her sight got worse and even the strongest prescription glasses didn’t help. When she was 15 her brother tried teaching her to drive. One night she got into the driver’s seat to practice and told him she couldn’t see anything. Everything was just black. After that she stopped driving.   

Veronica says high school was really hard for her, but she managed to graduate and go to community college. As her vision deteriorated, she found it was increasingly hard to read the course work and impossible to see the assignments on the blackboard. Veronica says she was lucky to have some really supportive teachers — including the now First Lady Jill Biden — but eventually she had to drop out.  

Getting a diagnosis

When she was 24, she went to see a specialist who told her she had retinitis pigmentosa, a rare degenerative condition that would eventually leave her legally blind. She says it felt like a death sentence. “All of my dreams of becoming a nurse, of getting married, of having children, of traveling – it all just shattered in that moment.” 

Veronica says she went from being a happy, positive person to an angry depressed one. She woke up each morning terrified, wondering, “Is this the day I go blind?” 

Then her mother learned about a CIRM-funded clinical trial with a company called jCyte. Veronica applied to be part of it, was accepted and was given an injection of stem cells in her left eye. She says over the course of a few weeks, her vision steadily improved. 

“About a month after treatment, I was riding in the car with my mom and suddenly, I realized I could see her out of the corner of my eye while looking straight ahead. That had never, ever happened to me before. Because, I had been losing my peripheral vision at a young age without realizing that until up to that point, I had never had that experience.” 

A second chance at life

She went back to college, threw herself into her studies, started hiking and being more active. She says it was as if she was reborn. But in her senior year, just as she was getting close to finishing her degree, her vision began to deteriorate again. Fortunately, she was able to take part in a second clinical trial, and this time her vision came back stronger than ever. 

“I’m so grateful to the researchers who gave me my sight back with the treatment they have worked their entire lives to develop. I am forever grateful for the two opportunities to even receive these two injections and to be a part of an amazing experience to see again. I feel so blessed! Thank you for giving me my life back.” 

And in getting her life back, Veronica had a chance to give life. When she was at college she met and starting dating Robert, the man who was to become her partner. They now have a little boy, Elliott.  

As for the future, Veronica hopes to get a second stem cell therapy to improve her vision even further. Veronica’s two treatments were in her left eye. She is hoping that the Food and Drug Administration will one day soon approve jCyte’s therapy, so that she can get the treatment in her right eye. Then, she says, she’ll be able to see the world as the rest of us can.  

CIRM has invested more than $150 million in programs targeting vision loss, including four clinical trials for retinitis pigmentosa

Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

The power of the patient advocate: how a quick visit led to an $11M grant to fund a clinical trial

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Members of NFOSD visiting UC Davis in 2013

At the California Institute for Regenerative Medicine (CIRM) we are fortunate in having enough money to fund the most promising research to be tested in a clinical trial. Those are expensive projects, often costing tens of millions of dollars. But sometimes the projects that come to our Board start out years before in much more humble circumstances, raising money through patient advocates, tapping into the commitment and ingenuity of those affected by a disease, to help advance the search for a treatment.

That was definitely the case with a program the CIRM Board voted to approve yesterday, investing more than $11 million dollars to fund a Phase 2 clinical trial testing a cell therapy for dysphagia. That’s a debilitating condition that affects many people treated for head and neck cancer.

Patients with head and neck cancer often undergo surgery and/or radiation to remove the tumors. As a result, they may develop problems swallowing and this can lead to serious complications such as malnutrition, dehydration, social isolation, or a dependence on using a feeding tube. Patients may also inhale food or liquids into their lungs causing infections, pneumonia and death. The only effective therapy is a total laryngectomy where the larynx or voice box is removed, leaving the person unable to speak.

Dr. Peter Belafsky and his team at the University of California at Davis are developing a therapeutic approach using Autologous Muscle Derived Progenitor Cells (AMDC), cells derived from a biopsy of the patient’s own muscle, elsewhere in the body. Those AMDCs are injected into the tongue of the patient, where they fuse with existing muscle fibers to increase tongue strength and ability to swallow.

The $11,015,936 that Dr. Belafsky is getting from CIRM will enable them to test this approach in patients. But without grass roots support the program might never have made it this far.

Ed Steger is a long-term survivor of head and neck cancer, he’s also the President of the National Foundation of Swallowing Disorders (NFOSD). In 2007, after being treated for his cancer, Ed developed a severe swallowing disorder. It helped motivate him to push for better treatment options.

In 2013, a dozen swallowing disorder patients visited UC Davis to learn how stem cells might help people with dysphagia. (You can read about that visit here). Ed says: “We were beyond thrilled with the possibilities and drawing on patients and other UCD contacts our foundation raised enough funds to support a small UCD clinical trial under the guidance of Dr. Belafsky in mouse models that demonstrated these possibilities.”

A few years later that small funding by patients and their family members grew into a well-funded Phase I/II human clinical trial. Ed says the data that trial produced is helping advance the search for treatments.

“Skipping forward to the present, this has now blossomed into an additional $11 million grant, from CIRM, to continue the work that could be a game changer for millions of Americans who suffer annually from oral phase dysphagia. My hat is off to all those that have made this possible… the donors, patient advocates, and the dedicated committed researchers and physicians who are performing this promising and innovative research.”

Our hats are off to them too. Their efforts are making what once might have seemed impossible, a real possibility.

Google eases ban on ads for stem cell therapies

What started out as an effort by Google to crack down on predatory stem cell clinics advertising bogus therapies seems to be getting diluted. Now the concern is whether that will make it easier for these clinics to lure unsuspecting patients to pay good money for bad treatments?

A little background might help here. For years Google placed no restrictions on ads by clinics that claimed their stem cell “therapies” could cure or treat all manner of ailments. Then in September of 2019 Google changed its policy and announced it was going to restrict advertisements for stem cell clinics offering unproven, cellular and gene therapies.

This new policy was welcomed by people like Dr. Paul Knoepfler, a stem cell scientist at UC Davis and longtime critic of these clinics. In his blog, The Niche, he said it was great news:

“Google Ads for stem cell clinics have definitely driven hundreds if not thousands of customers to unproven stem cell clinics. It’s very likely that many of the patients who have ended up in the hospital due to bad outcomes from clinic injections first went to those firms because of Google ads. These ads and certain particularly risky clinics also are a real threat to the legitimate stem cell and gene therapy fields.”

Now the search-engine giant seems to be adjusting that policy. Google says that starting July 11 it will permit ads for stem cell therapies approved by the US Food and Drug Administration (FDA). That’s fine. Anything that has gone through the FDA’s rigorous approval process deserves to be allowed to advertise.

The real concern lies with another adjustment to the policy where Google says it will allow companies to post ads as long as they are “exclusively educational or informational in nature, regardless of regulatory approval status.” The problem is, Google doesn’t define what constitutes “educational or informational”. That leaves the door open for these clinics to say pretty much anything they want and claim it meets the new guidelines.

To highlight that point Gizmodo did a quick search on Google using the phrase “stem cells for neuropathy” and quickly came up with a series of ads that are offering “therapies” clearly not approved by the FDA. One ad claimed it was “FDA registered”, a meaningless phrase but one clearly designed to add an air of authenticity to whatever remedy they were peddling.

The intent behind Google’s change of policy is clearly good, to allow companies offering FDA-approved therapies to advertise. However, the outcome may not be quite so worthy, and might once again put patients at risk of being tricked into trying “therapies” that will almost certainly not do them any good, and might even put them in harm’s way.

Stem cell-derived retinal patch continues to show promising results two years post-implantation

Earlier this year we wrote about the promising results of a phase 1 clinical trial aimed at replacing the deteriorating cells in the retinas of people suffering from age-related macular degeneration- one of the leading causes of blindness worldwide for people over 50. Now there’s even more good news! Highlighted in a news story on the UC Santa Barbara (UCSB) website, researchers are continuing to make progress in their bid to secure approval from the Food and Drug Administration for the life-changing treatment.

Through the collaborative efforts of researchers at UCSB, University of Southern California and California Institute of Technology, a stem cell-derived implant using cells from a healthy donor was developed. The bioengineered implant, described as a scaffold, was then implanted under the retina of 16 participants. If the implant was to work, the new cells would then take up the functions of the old ones, and slow down or prevent further deterioration. In the best-case scenario, they could restore some lost vision.

The first sets of trials, funded by the California Institute for Regenerative Medicine (CIRM), concentrated on establishing the safety of the patch and collecting data on its effectiveness. Parting ways with old practices, the participants in the trial were given just two months of immunosuppressants whereas in the past, using donor cells meant that patients often had to be given long-term immunosuppression to stop their body’s immune system attacking and destroying the implanted cells. The team found that after two years, the presence of the patch hadn’t triggered other conditions associated with implantation, such as the formation of new blood vessels or scar tissue that could cause a detachment of the retina.

Even more importantly, they found no sign of inflammation that indicated an immune response to the foreign cells even after the patient was taken off immunosuppressants two months post-implantation. “What really makes us excited is that there is some strong evidence to show that the cells are still there two years after implantation and they’re still functional,” said Mohamed Faynus, a graduate student researcher in the lab of stem cell biologist Dennis O. Clegg at UCSB.

Having passed the initial phase, the team of researchers now hopes to begin phase 2 of the trial. This time, they are aiming to more specifically assesses the effectiveness of the patch in participants. Looking even farther ahead, the Clegg Lab and colleagues are also exploring combining multiple cell types on the patch to treat patients at varying stages of the disease.

In addition, there have also been improvements made to extend the shelf life of the patch. “Cryopreservation of the therapy significantly extends the product’s shelf-life and allows us to ship the implant on demand all over the world, thus making it more accessible to patients across the globe,” said Britney Pennington, a research scientist in the Clegg Lab.

Chance discovery could lead to a treatment for skin ulcers

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Antoni Ribas in his research lab on the UCLA Campus: Photo courtesy Ann Johansson

When UCLA’s Dr. Antoni Ribas was researching a potential therapy for melanoma, a form of skin cancer, he stumbled upon something unexpected. That unexpected discovery has now resulted in him getting a $5 million dollar award from the the governing Board of the California Institute for Regenerative Medicine (CIRM) to develop a therapy to accelerate wound healing in legs.

Venous skin ulcers are open sores on the legs that can take weeks, sometimes even years, to heal and that can cause serious complications if not treated. Around 1% of Americans have venous skin ulcers. They are usually caused by insufficient blood flow from the veins of the legs back to the heart.  The resulting increased blood pressure and swelling in the legs can cause an open wound to form that is painful and difficult to heal, seriously impacting quality of life.   Those most at risk of developing venous leg ulcers are older people, women and non-white populations.

There are no drugs approved by the US Food and Drug Administration (FDA) for this condition and sometimes these ulcers can lead to serious skin and bone infections and, in rare cases, even skin cancer.

In a news release from UCLA, Dr. Ribas describes how his team were testing a drug called vemurafenib on patients with melanoma. Vemurafenib falls into a category of targeted cancer drugs called BRAF inhibitors, which can shrink or slow the growth of metastatic melanoma in people whose tumors have a mutation to the BRAF gene. 

“We noticed that in the first two months of taking this BRAF inhibitor, patients would begin showing a thickening or overgrowth of the skin. It was somewhat of a paradox – the drug stopped the growth of skin cancer cells with the BRAF mutation, but it stimulated the growth of healthy skin cells.”

That’s when the team realized that the drug’s skin stimulating effect could be put to good use for a whole other group of patients – those with chronic wounds. 

“Aside from a few famous cases, discovering a side effect that becomes a therapeutic isn’t that common,” Ribas said. “For this reason, I had to work hard to convince somebody in my lab to follow my crazy idea and take time away from immunotherapy research and do wound healing experiments.”

Thanks to that “crazy idea” Dr. Ribas and his team are now testing a gel called LUT017 that stimulates skin stem cells to proliferate and produce more keratinocytes, a kind of cell essential for repairing skin and accelerating wound healing.

The CLIN1 grant of $5,005,126 will help them manufacture and test LUT017 in pre-clinical models and apply to the FDA for permission to study it in a clinical trial in people.

Maria T. Millan, CIRM’s President and CEO says “This program adds to CIRM’s diverse portfolio of regenerative medicine approaches to tackle chronic, debilitating that lead to downstream complications, hospitalization, and a poor quality of life.”