Overcoming obstacles and advancing treatments to patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

UC Davis GMP Manufacturing facility: Photo courtesy UC Davis

When you are trying to do something that has never been done before, there are bound to be challenges to meet and obstacles to overcome. At the California Institute for Regenerative Medicine (CIRM) we are used to coming up with great ideas and hearing people ask “Well, how are you going to do that?”

Our new 5-year Strategic Plan is how. It’s the roadmap that will help guide us as we work to overcome critical bottlenecks in bringing regenerative medicine therapies to people in need.

Providing more than money

People often think of CIRM as a funding agency, providing the money needed to do research. That’s true, but it’s only part of the story. With every project we fund, we also offer a lot of support. That’s particularly true at the clinical stage, where therapies are being tested in people. Projects we fund in clinical trials don’t just get money, they also have access to:

  • Alpha Stem Cells Clinic Network – This is a group of specialized medical centers that have the experience and expertise to deliver new stem cell and gene therapies.
  • The CIRM Cell and Gene Therapy Center – This helps with developing projects, overcoming manufacturing problems, and offers guidance on working with the US Food and Drug Administration (FDA) to get permission to run clinical trials.
  • CIRM Clinical Advisory Panels (CAPs) – These are teams put together to help advise researchers on a clinical trial and to overcome problems. A crucial element of a CAP is a patient advocate who can help design a trial around the needs of the patients, to help with patient recruitment and retention.

Partnering with key stakeholders

Now, we want to build on this funding model to create new ways to support researchers in bringing their work to patients. This includes earlier engagement with regulators like the FDA to ensure that projects match their requirements. It includes meetings with insurers and other healthcare stakeholders, to make sure that if a treatment is approved, that people can get access to it and afford it.

In the past, some in the regenerative medicine field thought of the FDA as an obstacle to approval of their work. But as David Martin, a CIRM Board member and industry veteran says, the FDA is really a key ally.

“Turning a promising drug candidate into an approved therapy requires overcoming many bottlenecks… CIRM’s most effective and committed partner in accelerating this is the FDA.”

Removing barriers to manufacturing

Another key area highlighted in our Strategic Plan is overcoming manufacturing obstacles. Because these therapies are “living medicines” they are complex and costly to produce. There is often a shortage of skilled technicians to do the jobs that are needed, and the existing facilities may not be able to meet the demand for mass production once the FDA gives permission to start a clinical trial. 

To address all these issues CIRM wants to create a California Manufacturing Network that combines academic innovation and industry expertise to address critical manufacturing bottlenecks. It will also coordinate training programs to help build a diverse and expertly trained manufacturing workforce.

CIRM will work with academic institutions that already have their own manufacturing facilities (such as UC Davis) to help develop improved ways of producing therapies in sufficient quantities for research and clinical trials. The Manufacturing Network will also involve industry partners who can develop facilities capable of the large-scale production of therapies that will be needed when products are approved by the FDA for wider use.

CIRM, in collaboration with this network, will also help develop education and hands-on training programs for cell and gene therapy manufacturing at California community colleges and universities. By providing internships and certification programs we will help create a talented, diverse workforce that is equipped to meet the growing demands of the industry.

You can read more about these goals in our 2022-27 Strategic Plan.

Now-Defunct For-Profit Stem Cell Clinic Ordered to Pay $5.1 Million for Scamming Patients Through False Advertising

This blog is also available as an AUDIO CAST

Photo of New York Attorney General Letitia James courtesy Wikimedia commons

A now-defunct New York City for-profit stem cell clinic — Park Avenue Stem Cell — was order by court to pay $5.1 million in potential consumer restitution, penalties, and costs for fraudulently and illegally advertising their stem cell procedures. The judgment resolves a 2019 lawsuit by New York State Attorney General Letitia James which claimed the defendants’ scammed patients out of thousands of dollars each for unproven and potentially harmful medical treatments involving stem cells. 

According to the lawsuit, the clinic falsely advertised on their website, social media, television, and foreign language newspapers that they could treat a variety of serious medical conditions — including erectile dysfunction and Parkinson’s disease — using patients’ own stem cells. Consumers paid the clinic nearly $4,000 per procedure, with some consumers paying more than $20,000 for multiple procedures. Most of the procedures involved adipose stem cells, which are derived from a patient’s own fat tissues.   

The court says the defendants misrepresented that their procedures were approved by the U.S. Food and Drug Administration (FDA), that their patients were participating in an established research study, and that their procedures had been endorsed by several scientific and medical organizations.   

As a state agency, CIRM’s duty is to educate the public about the concerns over “stem cell tourism” and the growing number of predatory clinics that advertise unproven stem cell therapies at great cost to the patient.  

In addition to hosting public forums on stem cell tourism concerns and resources for patients seeking stem cell treatments, CIRM partnered with California State Senator Ed Hernandez (D-West Covina) to create a new law that attempts to address the issue. The bill, SB 512, was passed in 2017 and now requires medical clinics whose stem cell treatments are not FDA approved to post notices and provide handouts to patients warning them about the potential risk.  

Read more about this lawsuit at the New York Attorney general’s website. 

The Evolution of World AIDS Day: Then and Now 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

TIME cover stories on AIDS through the years

A truly modern epidemic, HIV/AIDS has hit every continent on the planet and affects nearly 40 million people worldwide. Today, we celebrate World AIDS Day by commemorating those who have died from AIDS-related illness, showing support for people living with HIV, and fighting for a cure. 

World AIDS Day was first observed in 1988 and takes place on December 1st each year. The first ever global health day, the path to acceptance and scientific advancements towards HIV/AIDS hasn’t been easy. Over the past four decades, the epidemic has changed enormously and so, too, has the global agenda. Universal testing is the main key to halting the number of new infections. Scientific advances in HIV treatment have prolonged lives and, in many cases, even made the virus undetectable. But this battle is far from over. 

40 years ago, in the spring of 1981, a mystery illness began exploding across the gay communities of New York, Los Angeles and San Francisco. Men were inexplicably coming down with cancer and other mysterious illnesses. Many of them would be dead within weeks. As more cases were confirmed across the Atlantic, it become known as the ‘gay plague’. It wasn’t until 1982 that this mysterious plague earned a name: Acquired Immune Deficiency Syndrome or AIDS. The following year, scientists uncovered the culprit behind AIDS. It was a virus, which they eventually called HIV: the human immunodeficiency virus

And the disease wasn’t just targeting homosexuals. Anyone could be infected through blood, sexual intercourse, pregnancy, and breastfeeding. However, word was to slow get out and ignorance about HIV remained rampant. By 1984, as the death toll climbs, the top priority become preventing the spread of AIDS.

As the science progressed, activism intensified. AIDS patients and their loved ones began uniting all over the world to demand greater access to experimental drugs and plead their governments for more funding. In 1990, Congress passed the largest federally funded program in the US for people living with HIV/AIDS through the Ryan White CARE Act. In 1993, President Clinton set up the White House Office of National AIDS Policy and the National Institute of Health (NIH) expanded its AIDS research.

With great funding came great scientific breakthroughs for the treatment and prevention of HIV. FDA’s approval of Atripla in 2006 marked a watershed in HIV treatment. By combining three different antiviral medications- efavirenz, emtricitabine and tenofovir- into a single fixed-dose combination pill, HIV treatment became a once-daily single tablet regimen. Between 2005 and 2018, there was a 45% decline in AIDS related deaths worldwide.

Despite tremendous biomedical and scientific progress, there’s still no cure for AIDS. As people with HIV live longer, AIDS is a topic that has drifted from the headlines. When World AIDS Day was first established in 1988, the world looked very different to how it is today. As we celebrate the progress of the past four decades on this historic day, we mustn’t lose sight of the ultimate goal that lays ahead of us. CIRM has committed nearly $80 million to HIV/AIDS research including funding four separate clinical trials.

Some good news for people with dodgy knees

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST

Graphic contrasting a healthy knee with one that has osteoarthritis

About 10% of Americans suffer from knee osteoarthritis, a painful condition that can really impair mobility and quality of life. It’s often caused by an injury to cartilage, say when you were playing sports in high school or college, and over time it continues to degenerate and ultimately results in the  loss of both cartilage and bone in the joint.

Current treatments involve either medication to control the pain or surgery. Medication works up to a point, but as the condition worsens it loses effectiveness.  Knee replacement surgery can be effective, but is a serious, complicated procedure with a long recovery time.  That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $6 million in an innovative stem cell therapy approach to helping restore articular cartilage in the knee.

Dr. Frank Petrigliano, Chief of the Epstein Family Center for Sports Medicine at Keck Medicine of the University of Southern California (USC), is using pluripotent stem cells to create chondrocytes (the cells responsible for cartilage formation) and then seeding those onto a scaffold. The scaffold is then surgically implanted at the site of damage in the knee. Based on scientific data, the seeded scaffold has the potential to regenerate the damaged cartilage, thus decreasing the likelihood of progression to knee osteoarthritis.  In contrast to current methods, this new treatment could be an off-the-shelf approach that would be less costly, easier to administer, and might also reduce the likelihood of progression to osteoarthritis.

This is a late-stage pre-clinical program. The goals are to manufacture clinical grade product, carry out extensive studies to demonstrate safety of the approach, and then file an IND application with the FDA, requesting permission to test the product in a clinical trial in people.

“Damage to the cartilage in our knees can have a big impact on quality of life,” says Dr. Maria T. Millan, MD, President and CEO of CIRM. “It doesn’t just cause pain, it also creates problems carrying out simple, everyday activities such as walking, climbing stairs, bending, squatting and kneeling. Developing a way to repair or replace the damaged cartilage to prevent progression to knee osteoarthritis could make a major difference in the lives of millions of Americans. This program is a continuation of earlier stage work funded by CIRM at the Basic Biology and Translational stages, illustrating how CIRM supports scientific programs from early stages toward the clinic.”

Looking back and looking forward: good news for two CIRM-supported studies

Dr. Rosa Bacchetta on the right with Brian Lookofsky (left) and Taylor Lookofsky after CIRM funded Dr. Bacchetta’s work in October 2019. Taylor has IPEX syndrome

It’s always lovely to end the week on a bright note and that’s certainly the case this week, thanks to some encouraging news about CIRM-funded research targeting blood disorders that affect the immune system.

Stanford’s Dr. Rosa Bacchetta and her team learned that their proposed therapy for IPEX Syndrome had been given the go-ahead by the Food and Drug Administration (FDA) to test it in people in a Phase 1 clinical trial.

IPEX Syndrome (it’s more formal and tongue twisting name is Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome) is a life-threatening disorder that affects children. It’s caused by a mutation in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood. 

Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

This approach has already been accorded an orphan drug and rare pediatric disease designation by the FDA (we blogged about it last year)

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

Congratulations to the team and we wish them luck as they begin the trial.

Dr. Donald Kohn, Photo courtesy UCLA

Someone who needs no introduction to regular readers of this blog is UCLA’s Dr. Don Kohn. A recent study in the New England Journal of Medicine highlighted how his work in developing a treatment for severe combined immune deficiency (SCID) has helped save the lives of dozens of children.

Now a new study in the journal Blood shows that those benefits are long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

In a news release Dr. Kohn said: “What we saw in the first few years was that this therapy worked, and now we’re able to say that it not only works, but it works for more than 10 years. We hope someday we’ll be able to say that these results last for 80 years.”

Ten children received the treatment between 2009 and 2012. Nine were babies or very young children, one was 15 years old at the time. That teenager was the only one who didn’t see their immune system restored. Dr. Kohn says this suggests that the therapy is most effective in younger children.

Dr. Kohn has since modified the approach his team uses and has seen even more impressive and, we hope, equally long-lasting results.

Feds hit predatory stem cell clinics with a one-two punch

Federal Trade Commission

Stem cells have a number of amazing properties and tremendous potential to heal previously untreatable conditions. But they also have the potential to create a financial windfall for clinics that are more focused on lining their wallets than helping patients. Now the federal government is cracking down on some of these clinics in a couple of different ways.

The Food and Drug Administration (FDA) sent a warning letter to the Utah Cord Bank LLC and associated companies warning them that the products it sold – specifically “human umbilical cord blood, umbilical cord, and amniotic membrane derived cellular products” – were violating the law.

At the same time the Federal Trade Commission and the Georgia Office of the Attorney General began legal proceedings against Regenerative Medicine Institute of America. The lawsuit says the company claims its products can rebuild cartilage and help treat joint and arthritis pain, and is charging patients thousands of dollars for “treatments” that haven’t been shown to be either safe or effective.

Bloomberg Law reporter Jeannie Baumann recently wrote a fine, in-depth article on these latest steps against predatory stem cell clinics.

CIRM has been a fierce opponents of bogus stem cell clinics for years and has worked with California lawmakers to try and crack down on them. We’re delighted to see that the federal government is stepping up its efforts to stop them marketing their snake oil to unsuspecting patients and will support them every step along the way.

CIRM has produced a short video and other easy to digest information on questions people should ask before signing up for any clinical trial. You can find those resources here.

CIRM has also published findings in Stem Cells Translational Medicine that discuss the three R’s–regulated, reliable, and reputable–and how these can help protect patients with uniform standards for stem cell treatments .

Paving the way for a treatment for dementia

What happens in a stroke

When someone has a stroke, the blood flow to the brain is blocked. This kills some nerve cells and injures others. The damaged nerve cells are unable to communicate with other cells, which often results in people having impaired speech or movement.

While ischemic and hemorrhagic strokes affect large blood vessels and usually produce recognizable symptoms there’s another kind of stroke that is virtually silent. A ‘white’ stroke occurs in blood vessels so tiny that the impact may not be noticed. But over time that damage can accumulate and lead to a form of dementia and even speed up the progression of Alzheimer’s disease.

Now Dr. Tom Carmichael and his team at the David Geffen School of Medicine at UCLA have developed a potential treatment for this, using stem cells that may help repair the damage caused by a white stroke. This was part of a CIRM-funded study (DISC2-12169 – $250,000).

Instead of trying to directly repair the damaged neurons, the brain nerve cells affected by a stroke, they are creating support cells called astrocytes, to help stimulate the body’s own repair mechanisms.

In a news release, Dr. Irene Llorente, the study’s first author, says these astrocytes play an important role in the brain.

“These cells accomplish many tasks in repairing the brain. We wanted to replace the cells that we knew were lost, but along the way, we learned that these astrocytes also help in other ways.”

The researchers took skin tissue and, using the iPSC method (which enables researchers to turn cells into any other kind of cell in the body) turned it into astrocytes. They then boosted the ability of these astrocytes to produce chemical signals that can stimulate healing among the cells damaged by the stroke.

These astrocytes were then not only able to help repair some of the damaged neurons, enabling them to once again communicate with other neurons, but they also helped another kind of brain cell called oligodendrocyte progenitor cells or OPCs. These cells help make a protective sheath around axons, which transmit electrical signals between brain cells. The new astrocytes stimulated the OPCs into repairing the protective sheath around the axons.

Mice who had these astrocytes implanted in them showed improved memory and motor skills within four months of the treatment.  

And now the team have taken this approach one step further. They have developed a method of growing these astrocytes in large amounts, at very high quality, in a relatively short time. The importance of that is it means they can produce the number of cells needed to treat a person.

“We can produce the astrocytes in 35 days,” Llorente says. “This process allows rapid, efficient, reliable and clinically viable production of our therapeutic product.”

The next step is to chat with the Food and Drug Administration (FDA) to see what else they’ll need to do to show they are ready for a clinical trial.

The study is published in the journal Stem Cell Research.

Retooling a COVID drug to boost its effectiveness

Coronavirus particles, illustration.

When the COVID-19 pandemic broke out scientists scrambled to find existing medications that might help counter the life-threatening elements of the virus. One of the first medications that showed real promise was remdesivir. It’s an anti-viral drug that was originally developed to target novel, emerging viruses, viruses like COVID19. It was approved for use by the Food and Drug Administration (FDA) in October 2020.

Remdesivir showed real benefits for some patients, reducing recovery time for those in the hospital, but it also had problems. It had to be delivered intravenously, meaning it could only be used in a hospital setting. And it was toxic if given in too high a dose.

In a new study – partially funded by CIRM (DISC2 COVID19-12022 $228,229) – researchers at the University of California San Diego (UCSD) found that by modifying some aspects of remdesivir they were able to make it easier to take and less toxic.

In a news release about the work Dr. Robert Schooley, a first author on the study, says we still need medications like this.

“Although vaccine development has had a major impact on the epidemic, COVID-19 has continued to spread and cause disease — especially among the unvaccinated. With the evolution of more transmissible viral variants, breakthrough cases of COVID are being seen, some of which can be severe in those with underlying conditions. The need for effective, well-tolerated antiviral drugs that can be given to patents at high risk for severe disease at early stages of the illness remains high.”

To be effective remdesivir must be activated by several enzymes in the body. It’s a complex process and explains why the drug is beneficial for some areas, such as the lung, but can be toxic to other areas, such as the liver. So, the researchers set out to overcome those problems.

The team created what are called lipid prodrugs, these are compounds that do not dissolve in water and are used to improve how a drug interacts with cells or other elements; they are often used to reduce the bad side effects of a medication. By inserting a modified form of remdesivir into this lipid prodrug, and then attaching it to an enzyme called a lipid-phosphate (which acts as a delivery system, bringing along the remdesivir prodrug combo), they were able to create an oral form of remdesivir.

Dr. Aaron Carlin, a co-first author of the study, says they were trying to create a hybrid version of the medication that would work equally well regardless of the tissue it interacted with.

“The metabolism of remdesivir is complex, which may lead to variable antiviral activity in different cell types. In contrast, these lipid-modified compounds are designed to be activated in a simple uniform manner leading to consistent antiviral activity across many cell types.”

When they tested the lipid prodrugs in animal models and human cells they found they were effective against COVID-19 in different cell types, including the liver. They are now working on further developing and testing the lipid prodrug to make sure it’s safe for people and that it can live up to their hopes of reducing the severity of COVID-19 infections and speed up recovery.

The study is published in the journal Antimicrobial Agents and Chemotherapy.

Sometimes a cold stare is a good thing

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in the elderly in the U.S. It’s estimated that some 11 million Americans could have some form of the disease, a number that is growing every year. So if you are going to develop a treatment for this condition, you need to make sure it can reach a lot of people easily. And that’s exactly what some CIRM-supported researchers are doing.

Let’s back up a little first. AMD is a degenerative condition where the macular, the small central portion of your retina, is slowly worn away. That’s crucial because the retina is the light-sensing nerve tissue at the back of your eye. At first you notice that your vision is getting blurry and it’s hard to read fine print or drive a car. As it progresses you develop dark, blurry areas in the center of your vision.

There are two kinds of AMD, a wet form and a dry form. The dry form is the most common, affecting 90% of patients. There is no cure and no effective treatment. But researchers at the University of Southern California (USC), the University of California Santa Barbara (UCSB) and a company called Regenerative Patch Technologies are developing a method that is looking promising.

They are using stem cells to grow retinal pigment epithelium (RPE) cells, the kind attacked by the disease, and putting them on a tiny synthetic scaffold which is then placed at the back of the eye. The hope is these RPE cells will help slow down the progression of the disease or even restore vision.

Early results from a CIRM-funded clinical trial are encouraging. Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

So now the team are taking this approach one step further. In a study published in Scientific Reports, they say they have developed a way to cryopreserve or freeze this cell and scaffold structure.

In a news release, Dr. Dennis Clegg of UCSB, says the frozen implants are comparable to the non-frozen ones and this technique will extend shelf life and enable on-demand distribution to distant clinical sites, increasing the number of patients able to benefit from such treatments.

“It’s a major advance in the development of cell therapies using a sheet of cells, or a monolayer of cells, because you can freeze them as the final product and ship them all over the world.”

Cool.

Call for a worldwide approach to regulating predatory stem cell clinics

You can’t fix a global problem at the local level. That’s the gist of a new perspective piece in the journal Stem Cell Reports that calls for a global approach to rogue stem cell clinics that offer bogus therapies.

The authors of the article are calling on the World Health Organization (WHO) to set up an advisory committee to draw up rules and regulations to help guide countries trying to shut these clinics down.

In a news release, senior author Mohamed Abou-el-Enein, the executive director of the joint University of Southern California/Children’s Hospital of Los Angeles Cell Therapy Program, says these clinics are trying to cash in on the promise of regenerative medicine.

“Starting in the early 2000s… unregulated stem cell clinics offering untested and poorly characterized treatments with insufficient information on their safety and efficacy began emerging all over the world, taking advantage of the media hype around stem cells and patients’ hope and desperation.”

Dr. Larry Goldstein

The authors include Lawrence Goldstein, PhD, a CIRM Board member and a Science Policy Fellows for the International Society for Stem Cell Research (ISSCR).

Zubin Master, an associate professor of biomedical ethics at the Mayo Clinic, says the clinics prey on vulnerable people who have serious medical conditions and who have often tried conventional medical approaches without success.

“We should aim to develop pathways to provide patients with evidenced-based experimental regenerative intervention as possible options where there is oversight, especially in circumstances where there is no suitable alternative left.”

The report says: “The unproven SCI (stem cell intervention) industry threatens the advancement of regenerative medicine. Reports of adverse events from unproven SCIs has the potential to affect funding and clinical trial recruitment, as well as increasing burdens among regulatory agencies to oversee the industry.

Permitting unregulated SCIs to flourish demonstrates a lack of concern over patient welfare and undermines the need for scientific evidence for medicinal product R&D. While some regulatory agencies have limited oversight or enforcement powers, or choose not to use them, unproven SCI clinics still serve to undermine authority given to regulatory agencies and may reduce public trust impacting the development of safe and effective therapies. Addressing the continued proliferation of clinics offering unproven SCIs is a problem worth addressing now.”

The authors say the WHO is uniquely positioned to help create a framework for the field that can help address these issues. They recommend setting up an advisory committee to develop global standards for regulations governing these clinics that could be applied in all countries. They also say we need more educational materials to let physicians as well as patients understand the health risks posed by bogus clinics.

This article comes out in the same week that reports by the Pew Charitable Trust and the FDA also called for greater regulation of these predatory clinics (we blogged about that here). Clearly there is growing recognition both in the US and worldwide that these clinics pose a threat not just to the health and safety of patients, but also to the reputation of the field of regenerative medicine as a whole.

“I believe that the global spread of unproven stem cell therapies reflects critical gaps in the international system for responding to health crises, which could put the life of thousands of patients in danger,” Abou-el-Enein says. “Urgent measures are needed to enhance the global regulatory capacity to detect and respond to this eminent crisis rapidly.”