A model for success

Dr. Maria Millan, CIRM’s President & CEO

Funding models are rarely talked about in excited tones.  It’s normally relegated to the dry tomes of academia. But in CIRM’s case, the funding model we have created is not just fundamental to our success in advancing regenerative medicine in California, it’s also proving to be a model that many other agencies are looking at to see if they can replicate it.

A recent article in the journal Cell & Gene Therapy Insights looks at what the CIRM model does and how it has achieved something rather extraordinary.

Full disclosure. I might be a tad biased here as the article was written by my boss, Dr. Maria Millan, and two of my colleagues, Dr. Sohel Talib and Dr. Shyam Patel.

I won’t go into huge detail here (you can get that by reading the article itself) But the article “highlights 3 elements of CIRM’s funding model that have enabled California academic researchers and companies to de-risk development of novel regenerative medicine therapies and attract biopharma industry support.”

Those three elements are:

1. Ensuring that funding mechanisms bridge the entire translational “Valley of Death”

2. Constantly optimizing funding models to meet the needs of a rapidly evolving industry

3. Championing the portfolio and proactively engaging potential industry partners

As an example of the first, they point to our Disease Team awards. These were four-year investments that gave researchers with promising projects the time, support and funds they needed to not only develop a therapy, but also move it out of academia into a company and into patients.  Many of these projects had struggled to get outside investment until CIRM stepped forward. One example they offer is this one.

“CIRM Disease Team award funding also enabled Dr. Irving Weissman and the Stanford University team to discover, develop and obtain first-in-human clinical data for the innovative anti-CD47 antibody immunotherapy approach to cancer. The spin-out, Forty Seven, Inc., then leveraged CIRM funding as well as venture and public market financing to progress clinical development of the lead candidate until its acquisition by Gilead Sciences in April 2020 for $4.9B.”

But as the field evolved it became clear CIRM’s funding model had to evolve too, to better meet the needs of a rapidly advancing industry. So, in 2015 we changed the way we worked. For example, with clinical trial stage projects we reduced the average time from application to funding from 22 months to 120 days. In addition to that applications for new clinical stage projects were able to be submitted year-round instead of only once or twice a year as in the past.

We also created hard and fast milestones for all programs to reach. If they met their milestone funding continued. If they didn’t, funding stopped. And we required clinical trial stage projects, and those for earlier stage for-profit companies, to put up money of their own. We wanted to ensure they had “skin in the game” and were as committed to the success of their project as we were.

Finally, to champion the portfolio we created our Industry Alliance Program. It’s a kind of dating program for the researchers CIRM funds and companies looking to invest in promising projects. Industry partners get a chance to look at our portfolio and pick out projects they think are interesting. We then make the introductions and see if we can make a match.

And we have.

“To date, the IAP has also formally enrolled 8 partners with demonstrated commitment to cell and gene therapy development. The enrolled IAP partners represent companies both small and large, multi-national venture firms and innovative accelerators.

Over the past 18 months, the IAP program has enabled over 50 one-on-one partnership interactions across CIRM’s portfolio from discovery stage pluripotent stem cell therapies to clinical stage engineered HSC therapies.”

As the field continues to mature there are new problems emerging, such as the need to create greater manufacturing capacity to meet the growth in demand for high quality stem cell products. CIRM, like all other agencies, will also have to evolve and adapt to these new demands. But we feel with the model we have created, and the flexibility we have to pivot when needed, we are perfectly situated to do just that.

CIRM Board Approves Two New Discovery Research Projects for COVID-19

Dr. Karen Christman (left) and Dr. Lili Yang (right)

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two new discovery research project as part of the $5 million in emergency funding for COVID-19 related projects.  This brings the number of COVID-19 projects CIRM is supporting to 17, including three clinical trials.

$249,974 was awarded to Dr. Karen Christman at UC San Diego to develop a treatment for Acute Respiratory Distress Syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs and is prevalent in COVID-19 patients.  Dr. Christman and her team will develop extracellular matrix (ECM) hydrogels, a kind of structure that provides support to surrounding cells.  The goal is to develop a treatment that can be delivered directly to site of injury, where the ECM would recruit stem cells, treat lung inflammation, and promote lung healing.

$250,000 was awarded to Dr. Lili Yang at UCLA to develop a treatment for COVID-19.  Dr. Yang and her team will use blood stem cells to create invariant natural killer T (iNKT) cells, a powerful kind of immune cell with the potential to clear virus infection and mitigate harmful inflammation.  The goal is to develop these iNKT cells as an off the shelf therapy to treat patients with COVID-19.

These awards are part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“The harmful lung inflammation caused by COVID-19 can be dangerous and life threatening,” says Maria T. Millan, M.D., the President and CEO of CIRM. “Early stage discovery projects like the ones approved today are vital in developing treatments for patients severely affected by the novel coronavirus.”

Earlier in the week the Board also approved changes to both DISC2 and clinical trial stage projects (CLIN2). These were in recognition of the Agency’s remaining budget and operational timeline and the need to launch the awards as quickly as possible.

For DISC2 awards the changes include:

  • Award limit of $250,000
  • Maximum award duration of 12 months
  • Initiate projects within 30 days of approval
  • All proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.
  • All proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.

Under the CLIN2 awards, to help projects carry out a clinical trial, the changes include:

  • Adjust award limit to the following:
Applicant typePhase 1, Phase 1/2, Feasability Award CapPhase 2 Award CapPhase 3 Award Cap
Non-profit$9M$11.25M$7.5M
For-profit$6M$11.25M$7.5M
  • Adjust the award duration to not exceed 3 years with award completion no later than November 2023
  • Initiate projects within 30 days of approval
  • All proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard.

The changes outlined above for CLIN2 awards do not apply to sickle cell disease projects expected to be funded under the CIRM/NHLBI Cure Sickle Cell Disease joint Initiative.

CIRM Board Approves Two Discovery Research Projects for COVID-19

Dr. Steven Dowdy (left), Dr. Evan Snyder (center), and Dr. John Zaia (right)

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional discovery research projects as part of the $5 million in emergency funding for COVID-19 related projects.  This brings the number of COVID-19 projects CIRM is supporting to 15, including three clinical trials.

The Board awarded $249,999 to Dr. Evan Snyder at the Sanford Burnham Prebys Medical Discovery Institute.  The study will use induced pluripotent stem cells (iPSCs), a type of stem cell that can be created by reprogramming skin or blood cells, to create lung organoids.  These lung organoids will then be infected with the novel coronavirus in order to test two drug candidates for treatment of the virus. The iPSCs and the subsequent lung organoids created will reflect diversity by including male and female patients from the Caucasian, African-American, and Latinx population.

This award is part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

The Board also awarded $150,000 to Dr. Steven Dowdy at UC San Diego for development of another potential treatment for COVID-19.  

Dr. Dowdy and his team are working on developing a new, and hopefully more effective, way of delivering a genetic medicine, called siRNA, into the lungs of infected patients. In the past trying to do this proved problematic as the siRNA did not reach the appropriate compartment in the cell to become effective. However, the team will use an iPSC lung model to help them identify ways past this barrier so the siRNA can attack the virus and stop it replicating and spreading throughout the lungs.

This award is part of CIRM’s Inception Awards Program (DISC1), which supports transformational ideas that require the generation of additional data.

A supplemental award of $250,000 was approved for Dr. John Zaia at City of Hope to continue support of a CIRM funded clinical study that is using convalescent plasma to treat COVID-19 patients.  The team recently launched a website to enroll patients, recruit plasma donors, and help physicians enroll their patients.

“The use of induced pluripotent stem cells has expanded the potential for personalized medicine,” says Dr. Maria T. Millan, the President & CEO of CIRM. “Using patient derived cells has enabled researchers to develop lung organoids and lung specific cells to test numerous COVID-19 therapies.”

CIRM Board Approves Clinical Trials Targeting COVID-19 and Sickle Cell Disease

Coronavirus particles, illustration.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved new clinical trials for COVID-19 and sickle cell disease (SCD) and two earlier stage projects to develop therapies for COVID-19.

Dr. Michael Mathay, of the University of California at San Francisco, was awarded $750,000 for a clinical trial testing the use of Mesenchymal Stromal Cells for respiratory failure from Acute Respiratory Distress Syndrome (ARDS). In ARDS, patients’ lungs fill up with fluid and are unable to supply their body with adequate amounts of oxygen. It is a life-threatening condition and a major cause of acute respiratory failure. This will be a double-blind, randomized, placebo-controlled trial with an emphasis on treating patients from under-served communities.

This award will allow Dr. Matthay to expand his current Phase 2 trial to additional underserved communities through the UC Davis site.

“Dr. Matthay indicated in his public comments that 12 patients with COVID-related ARDS have already been enrolled in San Francisco and this funding will allow him to enroll more patients suffering from COVID- associated severe lung injury,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM, in addition to the NIH and the Department of Defense, has supported Dr. Matthay’s work in ARDS and this additional funding will allow him to enroll more COVID-19 patients into this Phase 2 blinded randomized controlled trial and expand the trial to 120 patients.”

The Board also approved two early stage research projects targeting COVID-19.

  • Dr. Stuart Lipton at Scripps Research Institute was awarded $150,000 to develop a drug that is both anti-viral and protects the brain against coronavirus-related damage.
  • Justin Ichida at the University of Southern California was also awarded $150,00 to determine if a drug called a kinase inhibitor can protect stem cells in the lungs, which are selectively infected and killed by the novel coronavirus.

“COVID-19 attacks so many parts of the body, including the lungs and the brain, that it is important for us to develop approaches that help protect and repair these vital organs,” says Dr. Millan. “These teams are extremely experienced and highly renowned, and we are hopeful the work they do will provide answers that will help patients battling the virus.”

The Board also awarded Dr. Pierre Caudrelier from ExcellThera $2 million to conduct a clinical trial to treat sickle cell disease patients

SCD is an inherited blood disorder caused by a single gene mutation that results in the production of “sickle” shaped red blood cells. It affects an estimated 100,000 people, mostly African American, in the US and can lead to multiple organ damage as well as reduced quality of life and life expectancy.  Although blood stem cell transplantation can cure SCD fewer than 20% of patients have access to this option due to issues with donor matching and availability.

Dr. Caudrelier is using umbilical cord stem cells from healthy donors, which could help solve the issue of matching and availability. In order to generate enough blood stem cells for transplantation, Dr. Caudrelier will be using a small molecule to expand these blood stem cells. These cells would then be transplanted into twelve children and young adults with SCD and the treatment would be monitored for safety and to see if it is helping the patients.

“CIRM is committed to finding a cure for sickle cell disease, the most common inherited blood disorder in the U.S. that results in unpredictable pain crisis, end organ damage, shortened life expectancy and financial hardship for our often-underserved black community” says Dr. Millan. “That’s why we have committed tens of millions of dollars to fund scientifically sound, innovative approaches to treat sickle cell disease. We are pleased to be able to support this cell therapy program in addition to the gene therapy approaches we are supporting in partnership with the National Heart, Lung and Blood Institute of the NIH.”

From bench to bedside – CIRM plays a vital role in accelerating science

Dr. Maria T. Millan, President & CEO of CIRM

The field of stem cell research and regenerative medicine has exploded in the last few years with new approaches to treat a wide array of diseases. Although these therapies are quite promising, they face many challenges in trying to bring them from the laboratory and into patients. But why is this? What can we do to ensure that these approaches are able to cross the finish line?

A new article published in Cell Stem Cell titled Translating Science into the Clinic: The Role of Funding Agencies takes a deeper dive into these questions and how agencies like CIRM play an active role in helping advance the science. The article was written by Dr. Maria T. Millan, President & CEO of CIRM, and Dr. Gil Sambrano, Vice President of Portfolio Development and Review at CIRM.

Although funding plays an essential role in accelerating science, it is not by itself sufficient. The article describes how CIRM has established internal processes and procedures that aim to help accelerate projects in the race to the finish line. We are going to highlight a few of these in this post, but you can read about them in full by clicking on the article link here.

One example of accelerating the most promising projects was making sure that they make important steps along the way. For potential translational awards, which “translate” basic research into clinical trials, this means having existing data to support a therapeutic approach. For pre-clinical and clinical awards, it means meeting with the Food and Drug Administration (FDA) and having an active investigational new drug (IND) approved or pre-IND, important steps that need to be taken before these treatments can be tested in humans. Both of these measures are meant to ensure that the award is successful and progress quickly.

Another important example is not just giving these projects the funding in its entirety upfront, rather, tying it to milestones that guide a project to successful completion. Through this process, projects funded by CIRM become focused on achieving clear measurable objectives, and activities that detract from those goals are not supported.

Aside from requirements and milestones tied to funding, there are other ways that CIRM helps bolster its projects.

One of these is an outreach project CIRM has implemented that identifies investigators and projects with the potential to enhance already existing projects. This increases the number of people applying to CIRM projects as well as the quality of the applications.

Another example is CIRM’s Industry Alliance Program, which facilitates partnerships between promising CIRM-funded projects and companies capable of bringing an approved therapy to market. The ultimate goal is to have therapies become available to patients, which is generally made possible through commercialization of a therapeutic product by a pharmaceutical or biotechnology company.

CIRM has also established advisory panels for its clinical and translational projects, referred to as CAPs and TAPs. They are composed of external scientific advisors with expertise that complements the project team, patient advocate advisors, and CIRM Science Officers. The advisory panel provides guidance and brings together all available resources to maximize the likelihood of achieving the project objective on an accelerated timeline.

Lastly, and most importantly, CIRM has included patient advocates and patient voices in the process to help keep the focus on patient needs. In order to accelerate therapies to the clinic, funders and scientists need input on what ultimately matters to patients. Investing effort and money on potential therapies that will have little value to patients is a delay on work that really matters. Even if there is not a cure for some of these diseases, making a significant improvement in quality of life could make a big difference to patients. There is no substitute to hearing directly from patients to understand their needs and to assess the balance of risk versus benefit. As much as science drives the process of bringing these therapies to light, patients ultimately determine its relevance.

Rare Disease, Type 1 Diabetes, and Heart Function: Breakthroughs for Three CIRM-Funded Studies

This past week, there has been a lot of mention of CIRM funded studies that really highlight the importance of the work we support and the different disease areas we make an impact on. This includes important research related to rare disease, Type 1 Diabetes (T1D), and heart function. Below is a summary of the promising CIRM-funded studies released this past week for each one of these areas.

Rare Disease

Comparison of normal (left) and Pelizaeus-Merzbacher disease (PMD) brains (right) at age 2. 

Pelizaeus-Merzbacher disease (PMD) is a rare genetic condition affecting boys. It can be fatal before 10 years of age and symptoms of the disease include weakness and breathing difficulties. PMD is caused by a disruption in the formation of myelin, a type of insulation around nerve fibers that allows electrical signals in the brain to travel quickly. Without proper signaling, the brain has difficulty communicating with the rest of the body. Despite knowing what causes PMD, it has been difficult to understand why there is a disruption of myelin formation in the first place.

However, in a CIRM-funded study, Dr. David Rowitch, alongside a team of researchers at UCSF, Stanford, and the University of Cambridge, has been developing potential stem cell therapies to reverse or prevent myelin loss in PMD patients.

Two new studies, of which Dr. Rowitch is the primary author, published in Cell Stem Cell, and Stem Cell Reports, respectively report promising progress in using stem cells derived from patients to identify novel PMD drugs and in efforts to treat the disease by directly transplanting neural stem cells into patients’ brains. 

In a UCSF press release, Dr. Rowitch talks about the implications of his findings, stating that,

“Together these studies advance the field of stem cell medicine by showing how a drug therapy could benefit myelination and also that neural stem cell transplantation directly into the brains of boys with PMD is safe.”

Type 1 Diabetes

Viacyte, a company that is developing a treatment for Type 1 Diabetes (T1D), announced in a press release that the company presented preliminary data from a CIRM-funded clinical trial that shows promising results. T1D is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin, a hormone that enables our bodies to break down sugar in the blood. CIRM has been funding ViaCyte from it’s very earliest days, investing more than $72 million into the company.

The study uses pancreatic precursor cells, which are derived from stem cells, and implants them into patients in an encapsulation device. The preliminary data showed that the implanted cells, when effectively engrafted, are capable of producing circulating C-peptide, a biomarker for insulin, in patients with T1D. Optimization of the procedure needs to be explored further.

“This is encouraging news,” said Dr. Maria Millan, President and CEO of CIRM. “We are very aware of the major biologic and technical challenges of an implantable cell therapy for Type 1 Diabetes, so this early biologic signal in patients is an important step for the Viacyte program.”

Heart Function

Although various genome studies have uncovered over 500 genetic variants linked to heart function, such as irregular heart rhythms and heart rate, it has been unclear exactly how they influence heart function.

In a CIRM-funded study, Dr. Kelly Frazer and her team at UCSD studied this link further by deriving heart cells from induced pluripotent stem cells. These stem cells were in turn derived from skin samples of seven family members. After conducting extensive genome-wide analysis, the team discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

In a press release by UCSD, Dr. Frazer elaborated on the important role this protein plays by stating that,

“NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function. As a result, we are finding that multiple heart-related traits can share a common mechanism — in this case, differential binding of NKX2-5 due to DNA variants.”

The full results of this study were published in Nature Genetics.

California Stem Cell and Regenerative Therapy Task Force holds meeting to consider options for patient protection

Dr. Maria Millan, President and CEO of CIRM, attended the meeting to discuss the importance of having systems in place for patient protection.

What procedures are in place to ensure the quality and safety of stem cell treatments? How can patients guard against deceptive promotional practices for treatments that have no basis in science? What new procedures are needed to support patients and the development of new treatments?

These questions and others were discussed this past Wednesday by the Medical Board of California’s Stem Cell and Regenerative Therapy Task Force. The task force  held an interested parties meeting to receive information and input on options to promote consumer protection.

CIRM, the Alpha Stem Cell Clinic Network, and the Department of Public Health gave formal presentations to the task force.

Dr. Maria Millan started by providing the task force with an overview of the field in general and the 56 CIRM funded Clinical Trials to illustrate the enormous promise of the field. She then contrasted this promise against numerous reports of patients being harmed by unproven and unregulated stem cell treatments provided by practitioners operating outside their field of training. Dr. Millan emphasized the critical importance of having systems in place to provide assurance to patients that treatments are appropriate for their particular disease.  She elaborated on CIRM’s core mantra that stem cell treatments be regulated, reputable and reliable. We discussed the three Rs in this posting. The fundamental aim is to put the patient interests at the center of a system that meets all regulatory and professional standards of care.

Dr. Mehrdad Abedi, Director of the UC Davis Alpha Stem Cell Clinic provided concrete examples of how they are implementing the 3Rs in their operations. Dr. Abedi emphasized the importance of best practices for manufacturing and processing stem cell products and for clinical care. He cited the operations at the UC Davis Institute for Regenerative Cures and the various oversight committees tasked with protecting the rights and interests of patients.  Collectively, this approach, embraced by all the CIRM Alpha Stem Cell Clinics, serves to ensure all clinical trials regulated, reputable and reliable.

State of the art materials processing at the UC Davis Center for Regenerative Cures

Dr. Charity Dean of the Department of Public Health described the role of the Food and Drug Branch in licensing facilities involved in the preparation, processing and labeling of drugs. This authority extends to facilities outside of California that ship products into the state. Dr. Dean illustrated how the Department of Public Health’s Food and Drug Branch licenses manufactures, and this licensing system is designed to protect patients using such products.

After discussion and public comment, the task force co-chair, Dr. Krauss suggested the Medical Board would consider options for patient protection, include:

  • Guidance and education materials for medical practitioners
  • Sample informed consent documents designed to inform patients about the potential risks and benefits of stem cell treatments
  • Public education materials
  • An adverse event reporting system

Rare Disease Gets Big Boost from California’s Stem Cell Agency

UC Irvine’s Dr. Leslie Thompson and patient advocate Frances Saldana after the CIRM Board vote to approve funding for Huntington’s disease

If you were looking for a poster child for an unmet medical need Huntington’s disease (HD) would be high on the list. It’s a devastating disease that attacks the brain, steadily destroying the ability to control body movement and speech. It impairs thinking and often leads to dementia. It’s always fatal and there are no treatments that can stop or reverse the course of the disease. Today the Board of the California Institute for Regenerative Medicine (CIRM) voted to support a project that shows promise in changing that.

The Board voted to approve $6 million to enable Dr. Leslie Thompson and her team at the University of California, Irvine to do the late stage testing needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people. The therapy involves transplanting stem cells that have been turned into neural stem cells which secrete a molecule called brain-derived neurotrophic factor (BDNF), which has been shown to promote the growth and improve the function of brain cells. The goal is to slow down the progression of this debilitating disease.

“Huntington’s disease affects around 30,000 people in the US and children born to parents with HD have a 50/50 chance of getting the disease themselves,” says Dr. Maria T. Millan, the President and CEO of CIRM. “We have supported Dr. Thompson’s work for a number of years, reflecting our commitment to helping the best science advance, and are hopeful today’s vote will take it a crucial step closer to a clinical trial.”

Another project supported by CIRM at an earlier stage of research was also given funding for a clinical trial.

The Board approved almost $12 million to support a clinical trial to help people undergoing a kidney transplant. Right now, there are around 100,000 people in the US waiting to get a kidney transplant. Even those fortunate enough to get one face a lifetime on immunosuppressive drugs to stop the body rejecting the new organ, drugs that increase the risk for infection, heart disease and diabetes.  

Dr. Everett Meyer, and his team at Stanford University, will use a combination of healthy donor stem cells and the patient’s own regulatory T cells (Tregs), to train the patient’s immune system to accept the transplanted kidney and eliminate the need for immunosuppressive drugs.

The initial group targeted in this clinical trial are people with what are called HLA-mismatched kidneys. This is where the donor and recipient do not share the same human leukocyte antigens (HLAs), proteins located on the surface of immune cells and other cells in the body. Around 50 percent of patients with HLA-mismatched transplants experience rejection of the organ.

In his application Dr. Meyer said they have a simple goal: “The goal is “one kidney for life” off drugs with safety for all patients. The overall health status of patients off immunosuppressive drugs will improve due to reduction in side effects associated with these drugs, and due to reduced graft loss afforded by tolerance induction that will prevent chronic rejection.”

Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.

Hey, what’s the big idea? CIRM Board is putting up more than $16.4 million to find out

Higgins

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s disease; Photo courtesy San Diego Union Tribune

When you have a life-changing, life-threatening disease, medical research never moves as quickly as you want to find a new treatment. Sometimes, as in the case of Parkinson’s disease, it doesn’t seem to move at all.

At our Board meeting last week David Higgins, our Board member and Patient Advocate for Parkinson’s disease, made that point as he championed one project that is taking a new approach to finding treatments for the condition. As he said in a news release:

“I’m a fourth generation Parkinson’s patient and I’m taking the same medicines that my grandmother took. They work but not for everyone and not for long. People with Parkinson’s need new treatment options and we need them now. That’s why this project is worth supporting. It has the potential to identify some promising candidates that might one day lead to new treatments.”

The project is from Zenobia Therapeutics. They were awarded $150,000 as part of our Discovery Inception program, which targets great new ideas that could have a big impact on the field of stem cell research but need some funding to help test those ideas and see if they work.

Zenobia’s idea is to generate induced pluripotent stem cells (iPSCs) that have been turned into dopaminergic neurons – the kind of brain cell that is dysfunctional in Parkinson’s disease. These iPSCs will then be used to screen hundreds of different compounds to see if any hold potential as a therapy for Parkinson’s disease. Being able to test compounds against real human brain cells, as opposed to animal models, could increase the odds of finding something effective.

Discovering a new way

The Zenobia project was one of 14 programs approved for the Discovery Inception award. You can see the others on our news release. They cover a broad array of ideas targeting a wide range of diseases from generating human airway stem cells for new approaches to respiratory disease treatments, to developing a novel drug that targets cancer stem cells.

Dr. Maria Millan, CIRM’s President and CEO, said the Stem Cell Agency supports this kind of work because we never know where the next great idea is going to come from:

“This research is critically important in advancing our knowledge of stem cells and are the foundation for future therapeutic candidates and treatments. Exploring and testing new ideas increases the chances of finding treatments for patients with unmet medical needs. Without CIRM’s support many of these projects might never get off the ground. That’s why our ability to fund research, particularly at the earliest stage, is so important to the field as a whole.”

The CIRM Board also agreed to invest $13.4 million in three projects at the Translation stage. These are programs that have shown promise in early stage research and need funding to do the work to advance to the next level of development.

  • $5.56 million to Anthony Oro at Stanford to test a stem cell therapy to help people with a form of Epidermolysis bullosa, a painful, blistering skin disease that leaves patients with wounds that won’t heal.
  • $5.15 million to Dan Kaufman at UC San Diego to produce natural killer (NK) cells from embryonic stem cells and see if they can help people with acute myelogenous leukemia (AML) who are not responding to treatment.
  • $2.7 million to Catriona Jamieson at UC San Diego to test a novel therapeutic approach targeting cancer stem cells in AML. These cells are believed to be the cause of the high relapse rate in AML and other cancers.

At CIRM we are trying to create a pipeline of projects, ones that hold out the promise of one day being able to help patients in need. That’s why we fund research from the earliest Discovery level, through Translation and ultimately, we hope into clinical trials.

The writer Victor Hugo once said:

“There is one thing stronger than all the armies in the world, and that is an idea whose time has come.”

We are in the business of finding those ideas whose time has come, and then doing all we can to help them get there.