Stem Cell Agency Approves Funding for Clinical Trials Targeting Parkinson’s Disease and Blindness

The governing Board of the California Institute for Regenerative Medicine (CIRM) yesterday invested $32.92 million to fund the Stem Cell Agency’s first clinical trial in Parkinson’s disease (PD), and to support three clinical trials targeting different forms of vision loss.

This brings the total number of clinical trials funded by CIRM to 60.

The PD trial will be carried out by Dr. Krystof Bankiewicz at Brain Neurotherapy Bio, Inc. He is using a gene therapy approach to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The approach seeks to increase dopamine production in the brain, alleviating PD symptoms and potentially slowing down the disease progress.

David Higgins, PhD, a CIRM Board member and patient advocate for Parkinson’s says there is a real need for new approaches to treating the disease. In the US alone, approximately 60,000 people are diagnosed with PD each year and it is expected that almost one million people will be living with the disease by 2020.

“Parkinson’s Disease is a serious unmet medical need and, for reasons we don’t fully understand, its prevalence is increasing. There’s always more outstanding research to fund than there is money to fund it. The GDNF approach represents one ‘class’ of potential therapies for Parkinson’s Disease and has the potential to address issues that are even broader than this specific therapy alone.”

The Board also approved funding for two clinical trials targeting retinitis pigmentosa (RP), a blinding eye disease that affects approximately 150,000 individuals in the US and 1.5 million people around the world. It is caused by the destruction of light-sensing cells in the back of the eye known as photoreceptors.  This leads to gradual vision loss and eventually blindness.  There are currently no effective treatments for RP.

Dr. Henry Klassen and his team at jCyte are injecting human retinal progenitor cells (hRPCs), into the vitreous cavity, a gel-filled space located in between the front and back part of the eye. The proposed mechanism of action is that hRPCs secrete neurotrophic factors that preserve, protect and even reactivate the photoreceptors, reversing the course of the disease.

CIRM has supported early development of Dr. Klassen’s approach as well as preclinical studies and two previous clinical trials.  The US Food and Drug Administration (FDA) has granted jCyte Regenerative Medicine Advanced Therapy (RMAT) designation based on the early clinical data for this severe unmet medical need, thus making the program eligible for expedited review and approval.

The other project targeting RP is led by Dr. Clive Svendsen from the Cedars-Sinai Regenerative Medicine Institute. In this approach, human neural progenitor cells (hNPCs) are transplanted to the back of the eye of RP patients. The goal is that the transplanted hNPCs will integrate and create a protective layer of cells that prevent destruction of the adjacent photoreceptors. 

The third trial focused on vision destroying diseases is led by Dr. Sophie Deng at the University of California Los Angeles (UCLA). Dr. Deng’s clinical trial addresses blinding corneal disease by targeting limbal stem cell deficiency (LSCD). Under healthy conditions, limbal stem cells (LSCs) continuously regenerate the cornea, the clear front surface of the eye that refracts light entering the eye and is responsible for the majority of the optical power. Without adequate limbal cells , inflammation, scarring, eye pain, loss of corneal clarity and gradual vision loss can occur. Dr. Deng’s team will expand the patient’s own remaining LSCs for transplantation and will use  novel diagnostic methods to assess the severity of LSCD and patient responses to treatment. This clinical trial builds upon previous CIRM-funded work, which includes early translational and late stage preclinical projects.

“CIRM funds and accelerates promising early stage research, through development and to clinical trials,” says Maria T. Millan, MD, President and CEO of CIRM. “Programs, such as those funded today, that were novel stem cell or gene therapy approaches addressing a small number of patients, often have difficulty attracting early investment and funding. CIRM’s role is to de-risk these novel regenerative medicine approaches that are based on rigorous science and have the potential to address unmet medical needs. By de-risking programs, CIRM has enabled our portfolio programs to gain significant downstream industry funding and partnership.”

CIRM Board also awarded $5.53 million to Dr. Rosa Bacchetta at Stanford to complete work necessary to conduct a clinical trial for IPEX syndrome, a rare disease caused by mutations in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood.  Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

The CIRM Board also approved investing $15.80 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

The TRAN1 Awards are summarized in the table below:

ApplicationTitleInstitutionAward Amount
TRAN1 11536Ex Vivo Gene Editing of Human Hematopoietic Stem Cells for the Treatment of X-Linked Hyper IgM Syndrome  UCLA $4,896,628
TRAN1 11555BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma  UCLA $3,176,805
TRAN1 11544 Neural Stem cell-mediated oncolytic immunotherapy for ovarian cancer  City of Hope $2,873,262
TRAN1 11611Development of a human stem cell-derived inhibitory neuron therapeutic for the treatment of chronic focal epilepsyNeurona Therapeutics$4,848,750

Stem cell treatment restores man’s sight in right eye after 25 years

James O’Brien, recipient of a stem cell treatment that restored the vision in his right eye

At 18 years old, there are several life-changing moments that young people look forward to. For some, it involves graduating from high school, starting college, and being able to cast a vote in an election. For others, this momentous occasion symbolizes the official start of adulthood.

For James O’ Brien, this milestone was marked by a rather unfortunate event where ammonia was thrown at his face in a random attack. As a result of this incident, the surface of his right eye was burned and he was left completely blind in his right eye.

Fast forward 25 years and thanks to an experimental stem cell treatment, James is able to see out of his right eye for the first time since the attack.

“Being able to see with both eyes – it’s a small thing that means the world. Basically I went from near-blindness in that eye to being able to see everything.” said O’Brien in a news release from Daily Heralds.

Dr. Sajjad Ahmad and a team of surgeons at the Moorfields Eye Hospital in London removed healthy stem cells from O’Brien’s left eye and grew these cells in a lab for months. After an adequate number of healthy stem cells from O’Briens left eye were grown, the surgeons then cut the scar tissue in his right eye and replaced it with the healthy stem cells.

They then waited a year after the procedure for the cells to settle down before inserting a cornea – which plays a key role in vision and focuses light – from a deceased donor.

“This is going to have a huge impact. A lot of these patients are young men so it affects their work, their lives, those around them. It’s not just the vision that drops, it’s the pain.” said Dr. Ahmad in the news release previously mentioned.

The procedure used took over 20 years to develop and Dr. Ahmad hopes to continue to develop the procedure for patients that have been blinded in both eyes by chemicals or have lost their vision through degenerative conditions.

CIRM has funded three clinical trials in vision loss to date. Two of these trials are being conducted by Dr. Henry Klassen for an eye condition known as retinitis pigmentosa and have shown promising results. The third trial is being conducted by Dr. Mark Humayun for another eye condition known as age-related macular degeneration (AMD) which has also shown promising results.

See video below for a news segment of James O’Brien on BBC News:

The most popular Stem Cellar posts of 2018

The blog

You never know when you write something if people are going to read it. Sometimes you wonder if anyone is going to read it. So, it’s always fun, and educational, to look back at the end of the year and see which pieces got the most eyeballs.

It isn’t always the ones you think will draw the biggest audiences. Sometimes it is diseases that are considered “rare” (those affecting fewer than 200,000 people) that get the most attention.

Maybe it’s because those diseases have such a powerful online community which shares news, any news, about their condition of interest with everyone they know. Whatever the reason, we are always delighted to share encouraging news about research we are funding or encouraging research that someone else is funding.

That was certainly the case with the top two stories this year. Both were related to ALS or Lou Gehrig’s disease.  It’s a particularly nasty condition. People diagnosed with ALS have a life expectancy of just 2 to 5 years. So it’s probably not a big surprise that stories suggesting stem cells could expand that life span got a big reception.

Whatever the reason, we’re just happy to share hopeful news with everyone who comes to our blog.

And so, without further ado, here is the list of the most popular Stem Cellar Blog Posts for 2018.

All of us in the Communications team at CIRM consider it an honor and privilege to be able to work here and to meet many of the people behind these stories; the researchers and the patients and patient advocates. They are an extraordinary group of individuals who help remind us why we do this work and why it is important. We love our work and we hope you enjoy it too. We plan to be every bit as active and engaged in 2019.

Stories that caught our eye: Is a Texas law opening up access to stem cell treatments working? Another CIRM-funded company gets good news from the FDA.

TexasCapitol_shutterstock_494317324

Texas Capitol. (Shutterstock)

In 2017 Texas passed a sweeping new law, HB 810, which allowed medical clinics to provide “investigational stem cell treatments to patients with certain severe chronic diseases or terminal illnesses.” Those in favor of the law argued that patients battling life-threatening or life-changing diseases should have the right to try stem cell therapies that were involved in a clinical trial.

Now a new study, published in the journal Stem Cells and Development, looks at the impact of the law. The report says that despite some recent amendments t there are still some concerns about the law including:

  • It allows treatment only if the patient has a “severe, chronic” illness but doesn’t define what that means
  • It doesn’t have clearly defined procedures on tracking and reporting procedures so it’s hard to know how many patients might be treated and what the outcomes are
  • There is no Food and Drug Administration (FDA) oversight of the patients being treated
  • Because the treatments are unproven there are fears this will “open up the state to unsavory and predatory practices by individuals preying on vulnerable patients”

The researchers conclude:

“While HB 810 opens up access to patients, it also increases significant risks for their safety and financial cost for something that might have no positive impact on their disease. Truly understanding the impact of stem cell based interventions (SCBI) requires scientific rigor, and accurate outcome data reporting must be pursued to ensure the safety and efficacy behind such procedures. This information must be readily available so that patients can make informed decisions before electing to pursue such treatments. The creation of the SCBI registry could allow for some level of scientific rigor, provide a centralized data source, and offer the potential for better informed patient choices, and might be the best option for the state to help protect patients.”

Another CIRM-funded company gets RMAT designation

Poseida

When Congress approved the 21st Century Cures Act a few years ago one of the new programs it created was the Regenerative Medicine Advanced Therapy (RMAT) designation. This was given to therapies that are designed to treat a serious or life-threatening condition, where early clinical stage trials show the approach is safe and appears to be effective.

Getting an RMAT designation is a big deal. It means the company or researchers are able to apply for an expedited review by the FDA and could get approval for wider use.

This week Poseida Therapeutics was granted RMAT designation by the Food and drug Administration (FDA) for P-BCMA-101, its CAR-T therapy for relapsed/refractory multiple myeloma. This is currently in a Phase 1 clinical trial that CIRM is funding

In this trial Poseida’s technology takes an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy cancerous myeloma cells.

In a news release Eric Ostertag, Poseida’s CEO, welcomed the news:

“Initial Phase 1 data presented at the CAR-TCR Summit earlier this year included encouraging response rates and safety data, including meaningful responses in a heavily pretreated population. We expect to have an additional data update by the end of the year and look forward to working closely with the FDA to expedite development of P-BCMA-101.”

This means that five CIRM-funded companies have now been granted RMAT designations:

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Stem cell stories that caught our eye: 3 blind mice no more and a tale of two tails

Stem cell image of the week: The demise of Three Blind Mice nursery rhyme (Todd Dubnicoff)
Our stem cell image of the week may mark the beginning of the end of the Three Blind Mice nursery rhyme and, more importantly, usher in a new treatment strategy for people suffering from vision loss. That’s because researchers from Icahn School of Medicine at Mount Sinai, New York report in Nature the ability to reprogram support cells in the eyes of blind mice to become photoreceptors, the light-sensing cells that enable sight. The image is an artistic rendering of the study results by team led Dr. Bo Chen, PhD.

Aug16_2018_BoChen_MullerGlia_Eye3930249103

An artist’s rendering incorporates the images of the Müller glia-derived rod photoreceptors. Image credit: Bo Chen, Ph.D.

The initial inspiration for this project came from an observation in zebrafish. These creatures have the remarkable ability to restore vision after severe eye injuries. It turns out that, in response to injury, a type of cell in the eye called Muller glia – which helps maintain the structure and function of the zebrafish retina – transforms into rod photoreceptors, which allow vision in low light.

Now, Muller glia are found in humans and mice too, so the research team sought to harness this shape-shifting, sight-restoring ability of the Muller glia but in the absence of injury. They first injected a gene into the eyes of mice born blind that stimulated the glia cells to divide and grow. Then, to mimic the reprogramming process seen in zebrafish, specific factors were injected to cause the glia to change identity into photoreceptors.

The researchers showed that the glia-derived photoreceptors functioned just like those observed in normal mice and made the right connections with nerve cells responsible for sending visual information to the brain. The team’s next steps are to not only show the cells are functioning properly in the eye and brain but to also do behavioral studies to confirm that the mice can do tasks that require vision.

If these studies pan out, it could lead to a new therapeutic strategy for blinding diseases like retinitis pigmentosa and macular degeneration. Rather than transplanting replacement cells, this treatment approach would spur our own eyes to repair themselves. In the meantime, CIRM-funded researchers have studies currently in clinical trials testing stem cell-based treatments for retinitis pigmentosa and macular degeneration.

A tale of two tails: one regenerates, the other, not quite so much (Kevin McCormack) One of the wonders of nature, well two if you want to be specific, is how both salamanders and lizards are able to regrow their tails if they lose them. But there is a difference. While salamanders can regrow a tail that is almost identical to the original, lizard’s replacements are rather less impressive. Now researchers have found out why.

081518_LR_regeneration_inline_730

In these fluorescence microscopy images, cross sections of original lizard and salamander tails (left) show cartilage (green) and nerve cells (red). In the regenerated tails (right), the lizard’s is made up mostly of cartilage, while the salamander also has developed new nerve cells. Image: Thomas Lozito

The study, published in the Proceedings of the National Academy of Sciences, shows how a lizard’s new tail doesn’t have bone but instead has cartilage, and also lacks nerve cells. The key apparently is the stem cells both use to regenerate the tail. Salamanders use neural stem cells from their spinal cord and turn them into other types of nervous system cell, such as neurons. Lizards neural stem cells are not able to do this.

The researchers, from the University of Pittsburgh, tested their findings by placing neural stem cells from the axolotl salamander into tail stumps from geckos. They noted that, as those tails regrew, some of those transplanted cells turned into neurons.

In an interview in Science News, study co-author Thomas Lozito says the team hope to take those findings and, using the CRISPR/Cas9 gene-editing tool, see if they can regenerate body parts in other animals:

 “My goal is to make the first mouse that can regenerate its tail. We’re kind of using lizards as a stepping-stone.”

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

Stem Cell Agency’s Diane Winokur hailed as Visionary

Diane and JT

CIRM Board member Diane Winokur with CIRM Board Chair Jonathan Thomas at FFB Awards dinner

Generally speaking, I am not a huge fan of gala dinners. It’s not that I don’t like seeing people who do remarkable things getting a well-deserved honor. It’s just that the dinners often go on too long and the food is usually not very good (hey, this is San Francisco, those things matter). But last night’s Foundation Fighting Blindness Visionary Awards in San Francisco was definitely an exception to that rule.

Academy of Sciences Grand Opening

Academy of Sciences in San Francisco

Now it may be that the awards were held in the spectacular Academy of Sciences building in Golden Gate Park, or that the food was delicious. But I think the real reason is that CIRM Board member Diane Winokur was one of those being honored. The other honoree was Dr. Jacque Duncan, an amazing physician at UC San Francisco who has dedicated her life to battling diseases of the retina. The whole event was deeply emotional, and truly inspiring.

Now, Diane is a remarkable woman in many respects. She’s the Board’s Patient Advocate member for ALS (better known as Lou Gehrig’s disease) and multiple sclerosis. But Diane also considers herself a Patient Advocate for all Californians and works hard to help advance the research that could help them. She has a personal connection to vision loss as well; one of her dear friends has lost his sight because of retinitis pigmentosa, and his daughter is losing hers because of the same disease.

Diane at podiumDiane highlighted the work that CIRM is doing to help battle vision destroying diseases; how we have invested more than $125 million in 25 different projects. She talked about the encouraging news from clinical trials we are funding targeting retinitis pigmentosa and dry age-related macular degeneration. Diane said:

“These stem cell clinical trials show that progress is being made. Not as fast as we would like, but as everyone here knows, good science takes time. As a patient advocate on the CIRM Board it’s my role to represent the patient, to be their voice in making decisions about what projects to fund.

Patients are at the heart of everything we do at CIRM, from deciding on funding issues to supporting clinical trials. That’s why I feel so honored to get this award. It comes from an organization, that is equally committed to doing all it can to help people in need, to putting the patient at the center of everything they do.”

It’s clear that patients really are at the heart of the work the Foundation Fighting Blindness (FFB) does. As the organizations CEO Benjamin Yerxa said:

“We support 77 labs in the US, often funding projects no one else would. We do this because we know it is necessary to advance the field. And we are going to keep doing this as best we can, as fast as we can, for as long as we can, because we know so many people are depending on us to help them.”

The other honoree, Jacque Duncan, said after attending many previous Visionary Award dinners and seeing the people being honored it was humbling to be in that company. She talked about the exciting progress being made in the field and the people who are making it possible.

“None of this happens by chance. The path to developing new treatments takes the passion of scientists and doctors, and the commitment of patients to raising the funds needed to do this research. One gala dinner at a time, one Vision Walk at a time. All of this creates community and a common purpose. I truly believe that because of this, tomorrow will be brighter than today.”

Perhaps it’s only appropriate to leave the last word to Diane, who ended her speech saying:

“The Nobel prize winning physicist Heinrich Rohrer once said that science means constantly walking a tightrope between blind faith and curiosity; between expertise and creativity; between bias and openness; between experience and epiphany; in short, between an old today and a new tomorrow.

I believe that working together, CIRM and the Foundation Fighting Blindness, we can create that new tomorrow.”

The moment of truth. A video about the stem cell therapy that could help millions of people going blind.

“No matter how much one prepares, the first patient is always something very special.” That’s how Dr. Mark Humayun describes his feelings as he prepared to deliver a CIRM-funded stem cell therapy to help someone going blind from dry age-related macular degeneration (AMD).

Humayun, an ophthalmologist and stem cell researcher at USC, spent years developing this therapy and so it’s understandable that he might be a little nervous finally getting a chance to see if it works in people.

It’s quite a complicated procedure, involving turning embryonic stem cells into the kind of cells that are destroyed by AMD, placing those cells onto a specially developed synthetic scaffold and then surgically implanting the cells and scaffold onto the back of the eye.

There’s a real need for a treatment for AMD, the leading cause of vision loss in the US. Right now, there is no effective therapy for AMD and some three million Americans are facing the prospect of losing their eyesight.

The first, preliminary, results of this trial were released last week and they were encouraging. You can read about them on our blog.

Thanks to USC you can also see the team that developed and executed this promising approach. They created a video capturing the moment the team were finally taking all that hard work and delivering it where it matters, to the patient.

Watching the video it’s hard not to think you are watching a piece of history, something that has the potential to do more than just offer hope to people losing their vision, it has the potential to stop and even reverse that process.

The video is a salute to the researchers who developed the therapy, and the doctors, nurses and Operating Room team who delivered it. It’s also a salute to the person lying down, the patient who volunteered to be the first to try this. Everyone in that room is a pioneer.