How stem cells helped Veronica fight retinitis pigmentosa and regain her vision

Veronica and Elliott

Growing up Veronica McDougall thought everyone saw the world the way she did; blurry, slightly out-of-focus and with tunnel vision.  As she got older her sight got worse and even the strongest prescription glasses didn’t help. When she was 15 her brother tried teaching her to drive. One night she got into the driver’s seat to practice and told him she couldn’t see anything. Everything was just black. After that she stopped driving.   

Veronica says high school was really hard for her, but she managed to graduate and go to community college. As her vision deteriorated, she found it was increasingly hard to read the course work and impossible to see the assignments on the blackboard. Veronica says she was lucky to have some really supportive teachers — including the now First Lady Jill Biden — but eventually she had to drop out.  

Getting a diagnosis

When she was 24, she went to see a specialist who told her she had retinitis pigmentosa, a rare degenerative condition that would eventually leave her legally blind. She says it felt like a death sentence. “All of my dreams of becoming a nurse, of getting married, of having children, of traveling – it all just shattered in that moment.” 

Veronica says she went from being a happy, positive person to an angry depressed one. She woke up each morning terrified, wondering, “Is this the day I go blind?” 

Then her mother learned about a CIRM-funded clinical trial with a company called jCyte. Veronica applied to be part of it, was accepted and was given an injection of stem cells in her left eye. She says over the course of a few weeks, her vision steadily improved. 

“About a month after treatment, I was riding in the car with my mom and suddenly, I realized I could see her out of the corner of my eye while looking straight ahead. That had never, ever happened to me before. Because, I had been losing my peripheral vision at a young age without realizing that until up to that point, I had never had that experience.” 

A second chance at life

She went back to college, threw herself into her studies, started hiking and being more active. She says it was as if she was reborn. But in her senior year, just as she was getting close to finishing her degree, her vision began to deteriorate again. Fortunately, she was able to take part in a second clinical trial, and this time her vision came back stronger than ever. 

“I’m so grateful to the researchers who gave me my sight back with the treatment they have worked their entire lives to develop. I am forever grateful for the two opportunities to even receive these two injections and to be a part of an amazing experience to see again. I feel so blessed! Thank you for giving me my life back.” 

And in getting her life back, Veronica had a chance to give life. When she was at college she met and starting dating Robert, the man who was to become her partner. They now have a little boy, Elliott.  

As for the future, Veronica hopes to get a second stem cell therapy to improve her vision even further. Veronica’s two treatments were in her left eye. She is hoping that the Food and Drug Administration will one day soon approve jCyte’s therapy, so that she can get the treatment in her right eye. Then, she says, she’ll be able to see the world as the rest of us can.  

CIRM has invested more than $150 million in programs targeting vision loss, including four clinical trials for retinitis pigmentosa

From our house to the White House. Kinda

Jackie Ward, PhD. Photo courtesy National Institute of Neurological Diseases and Stroke

It’s always fun to meet someone early in their career and see how they grow and evolve and take on new challenges.

I first met Jackie Ward when she received a training grant from CIRM while she studied for her PhD at the University of California, San Diego. Jackie offered to write blogs for us about her experience and they were always fun, informative, elegantly written and very engaging. Fast forward a few years and Jackie became a part of Americans For Cures, then she became Chief of Staff at the National Institute of Neurological Disorders and Stroke (NINDS), and finally – at least so far – she took on the role of Assistant Director at the White House Office of Science and Technology Policy (OSTP).

Not too shabby eh.

So, I reached out to Jackie and asked her some questions about her work and career. She generously put aside keeping the nation healthy to answer them. Enjoy.

  1. What made you decide to move from research into government.

I think if you asked my high school government teacher (shout out to Mr. Bell!), he would be the least surprised person that I have ended up where I am currently. I was always interested in topics and activities beyond science, but at a certain point you have to choose a path. When it came time to deciding my undergraduate major, I figured that if I pursued my interest in biology it would still keep my options open to do something different in my career, but if I chose to be a French major, or Political Science major, or English major – I might close the door in my ability to pursue scientific research. When I got to graduate school, I saw the impact of government (both state and federal) decisions on work in the lab. This takes the form of where funding goes, but also in the rules you have to follow while doing research. Though I liked the pursuit of new knowledge and being the one designing and performing experiments, I was interested in understanding more about how those government decisions are made upstream of the lab bench.

  1. What’s the most surprising thing you have learned in your time at the White House Office of Science and Technology Policy (OSTP).

Maybe not “surprising” but the thing that may not be obvious to outsiders: OSTP’s budget is tiny compared to other Executive Branch agencies (like where I came from previously at NIH). The work we accomplish in this office is solely by forming partnerships and collaborations with others across the government. We are not typically the rowers of the boat, but we can be the steerer or navigator. (Is the term coxswain? I have never been on a crew team obviously.)

  1. Was it hard making the transition from research to advocacy and now policy?

Honestly I feel like my training in research set me up well for the jobs I’ve had in policy. There is often not someone telling you exactly how to do something – you have to do the work yourself to search the literature, talk to other people, find collaborators, and keep at it. And the skills that you hone in research – from keeping an organized lab notebook the whole way through to writing scientific papers – are some of the same skills you need in government. 

  1. At a time when so many people seem so skeptical of science how do you get your message out.

We have to meet people where they are. As a government official, I have great respect for messages that come from experts within the government – but that is not the only way the message should be getting out. Scientists and other experts within communities should also be spokespeople for science. I would urge scientists at every level – whether you are a citizen scientist, a medical doctor, a PhD student, or some other kind of expert – to engage with their communities and put the work in to understand how to effectively communicate at levels beyond just speaking to your colleagues.

  1. One of the issues that so many of us, including here at CIRM, are working on is improving our performance in diversity, equity and inclusion. How big an issue is that for you and your colleagues at OSTP and what are you doing to try and address it.

The mission of our office is to “maximize the benefits of science and technology to advance health, prosperity, security, environmental quality, and justice for all Americans.” Those final two words are key: “all Americans.” It is the policy of this Office and our Administration that it is not okay for the benefits of science & technology to only reach a select few – who can afford it or who live in a certain zip code or who know the right people. 

This takes different forms depending on what kind of S&T work we are talking about, but I will give you an example from my own work. I have been leading an effort that aims to explore and act upon how digital health care delivery technologies can be used to increase access to healthcare in community-based health settings. We know that these cutting edge technologies are most likely to get to people who, for example, get their care at academic medical centers, or who have primo health insurance plans, or who are already tech savvy. We feel that as these technologies continue to grow within the healthcare system, that it is an imperative to ensure that they are accessible to practitioners and patients at community health centers, or to people who may not be tech geeks, or that they can be interoperable with the systems used by community health workers.

  1. During a time of Covid and now Monkeypox, what’s it like to have a front row seat and watch how government responds to public health emergencies.

My colleagues who work on outbreaks and pandemic responses are some of the most dedicated public servants I know. They will be the first to admit that we are continually learning and integrating new tools and technologies into our toolbox, and that is a constant effort. Emergent issues like outbreaks force decisions when there may not be a lot of information – that is a hard job.  

  1. I’ve always felt that DC would be a fun place to live and work (except during the height of summer!) what do you most like about it.

DC is a city full of people who care deeply (almost to a pathological extent) about the work they do and how to make the world a better place. There’s also incredible diversity here – which means a variety of viewpoints, languages, and food! I love that.

Jackie is not just a good writer. She’s also a great speaker. Here’s a clip of her responding to our Elevator Challenge many years ago, when she was still a fledgling researcher. Her explanation of what she does, is a master class in turning a complex subject into something easy to understand.

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Stem cells help researchers map out glaucoma in search for new treatments

Glaucoma is the world’s leading cause of irreversible blindness. There is no cure and current treatments are only able to slow down the progression of the disease. Now research using stem cells to create a genetic blueprint of glaucoma is giving scientist a powerful new tool to combat the disease.

Glaucoma occurs when healthy retinal ganglion cells, which relay information from the eyes to the brain, are damaged and die. However, researchers were unable to really understand what was happening because the only way to look at retinal ganglion cells was through very invasive procedures.

So, researchers in Australia took skin cells from people with glaucoma and people with healthy eyes and, using the iPSC method, turned them into retinal ganglion cells. They were then able to map the genetic expression of these cells and compare the healthy cells with the diseased ones.

In an interview with Science Daily, Professor Joseph Powell , who led the team, says they were able to identify more than 300 unique genetic features which could provide clues as to what is causing the vision loss.

“The sequencing identifies which genes are turned on in a cell, their level of activation and where they are turned on and off like a road network with traffic lights. This research gives us a genetic roadmap of glaucoma and identifies 312 sites in the genome where these lights are blinking. Understanding which of these traffic lights should be turned off or on will be the next step in developing new therapies to prevent glaucoma.”

Powell says by identifying underlying causes for glaucoma researchers may be able to develop new, more effective therapies.

The study is published in Cell Genomics.

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

How a tiny patch is helping restore lasting vision

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Researchers are working on a stem cell-based retinal implant that could be used for people with with advanced dry age-related macular degeneration. (Photo/ Britney O. Pennington)

When Anna Kuehl began losing her vision, she feared losing the ability to read and go on long walks in nature—two of her favorite pastimes. Anna had been diagnosed with age-related macular degeneration, the leading cause of vision loss in the US. She lost the central vision in her left eye, which meant she could no longer make out people’s faces clearly, drive a car, or read the time on her watch.

Anna Kuehl

But a clinical trial funded by the California Institute for Regenerative Medicine  (CIRM) helped change that. And now, new data from that trial shows the treatment appears to be long lasting.

The treatment sprang out of research done by Dr. Mark Humayun and his team at USC. In collaboration with Regenerative Patch Technologies they developed a stem cell-derived implant using cells from a healthy donor. The implant was then placed under the retina in the back of the eye. The hope was those stem cells would then repair and replace damaged cells and restore some vision.

Dr. Mark Humayun, photo courtesy USC

In the past, using donor cells meant that patients often had to be given long-term immunosuppression to stop their body’s immune system attacking and destroying the patch. But in this trial, the patients were given just two months of immunosuppression, shortly before and after the implant procedure.

In a news story on the USC website, Dr. Humayun said this was an important advantage. “There’s been some debate on whether stem cells derived from a different, unrelated person would survive in the retina without long-term immunosuppression. For instance, if you were to receive a kidney transplant, long-term immunosuppression would be required to prevent organ rejection. This study indicates the cells on the retinal implant can survive for up to two years without long-term immunosuppression.”

Cells show staying power

When one of the patients in the clinical trial died from unrelated causes two years after getting the implant, the research team were able to show that even with only limited immunosuppression, there was no evidence that the patient’s body was rejecting the donor cells.

“These findings show the implant can improve visual function in some patients who were legally-blind before treatment and that the cells on the implant survive and remain functional for at least two years despite not being matched with those of the patient,” Humayun said.

For Anna Kuehl, the results have been remarkable. She was able to read an additional 17 letters on a standard eye chart. Even more importantly, she is able to read again, and able to walk and enjoy nature again.

Dr. Humayun says the study—published in the journal Stem Cell Reports—may have implications for treating other vision-destroying diseases. “This study addresses the debate over the viability of using mismatched stem cells — this shows that a mismatched stem cell derived implant can be safe and viable over multiple years.”

Reprogramming brain cells to restore vision after a stroke

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

About one third of stroke survivors experience vision loss. It can be a devastating side effect as most patients will not fully recover their vision and there are currently no reliable treatments available. But thanks to a collaborative effort by two teams of researchers from Purdue University and Jinan University in China, there may be a way to use gene therapy to recover lost vision after a stroke.

A stroke happens when part of the brain is starved of oxygen which can result in death of brain cells or neurons. Oftentimes this is caused by a blockage in an artery in the brain. Given the location of these vital arteries, most strokes lead to loss of motor function and in some cases, permanent vision loss.

The brain is an incredible machine and capable of remapping its neural pathways enough to restore some visual function, but this isn’t always the case. The neurons that are destroyed in the process of experiencing a stroke do not regenerate and lose their ability to communicate/transmit information between different areas of the brain, and between the brain and the rest of the nervous system.

Two research teams, one led by Alexander Chubykin at Purdue University’s and the other led by Gong Chen at Jinan University, have taken a different approach to neural regeneration by reprogramming local glial cells into neurons, therefore restoring connections between the old neurons and the newly reprogrammed neurons.

In a news release, Dr. Chubykin says the results in the lab look promising. “We can watch the mice get their vision back. We don’t have to implant new cells, so there’s no immunogenic rejection. This process is easier to do than stem cell therapy, and there’s less damage.”

The collaborative research, published in the journal Frontiers in Cell and Developmental Biology, is promising not only in aiding with vision restoration after a stroke but could also lead to similar treatment for reestablishing motor function. Visual function is easier than motor skills to measure accurately and the scientists are looking into the effectiveness of this procedure in live mice using advanced optical imaging tools. If the study continues to provide positive results, it might not be long before human trials are started. 

CIRM is also funding clinical trials to help repair vision loss and to help people recovering from a stroke.

National Academy of Medicine honors CIRM Grantees

YOU CAN ALSO LISTEN TO THIS BLOG AS AN AUDIO PODCAST ON SPOTIFY 

As someone who is not always as diligent as he would like to be about sending birthday cards on time, I’m used to sending belated greetings to people. So, I have no shame in sending belated greetings to four CIRM grantees who were inducted into the National Academy of Medicine in 2020.

I say four, but it’s really three and a half. I’ll explain that later.

Being elected to the National Academy of Medicine is, in the NAM’s own modest opinion, “considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.”

To be fair, NAM is right. The people elected are among the best and brightest in their field and membership is by election from the other members of NAM, so they are not going to allow any old schmuck into the Academy (which could explain why I am still waiting for my membership).

The CIRM grantees elected last year are:

Dr. Antoni Ribas: Photo courtesy UCLA

Antoni Ribas, MD, PhD, professor of medicine, surgery, and molecular and medical pharmacology, U. C. Los Angeles.

Dr. Ribas is a pioneer in cancer immunology and has devoted his career to developing new treatments for malignant melanoma. When Dr. Ribas first started malignant melanoma was an almost always fatal skin cancer. Today it is one that can be cured.

In a news release Dr. Ribas said it was a privilege to be honored by the Academy: “It speaks to the impact immunotherapy has played in cancer research. When I started treating cases of melanoma that had metastasized to other organs, maybe 1 in 20 responded to treatment. Nobody in their right mind wanted to be a specialist in this field. It was the worst of the worst cancers.”

Looks like he chose his career path wisely.

Dr. Jeffrey Goldberg: Photo courtesy Stanford

Jeffrey Louis Goldberg, MD, PhD, professor and chair of ophthalmology, Stanford University, Palo Alto, Calif.

Dr. Goldberg was honored for his contribution to the understanding of vision loss and ways to reverse it. His lab has developed artificial retinas that transmit images down the optic nerve to the brain through tiny silicon chips implanted in the eye. He has also helped use imaging technology to better improve our ability to detect damage in photoreceptor cells (these are cells in the retina that are responsible for converting light into signals that are sent to the brain and that give us our color vision and night vision)

In a news release he expressed his gratitude saying: “I look forward to serving the goals of the National Academies, and to continuing my collaborative research efforts with my colleagues at the Byers Eye Institute at Stanford and around the world as we further our efforts to combat needless blindness.”

Dr. Mark Anderson; photo courtesy UCSF

Mark S. Anderson, MD, PhD, professor in Diabetes Research, Diabetes Center, U. C. San Francisco.

Dr. Anderson was honored for being a leader in the study of autoimmune diseases such as type 1 diabetes. This focus extends into the lab, where his research examines the genetic control of autoimmune diseases to better understand the mechanisms by which immune tolerance is broken.

Understanding what is happening with the immune system, figuring out why it essentially turns on the body, could one day lead to treatments that can stop that, or even reverse it by boosting immune activity.

Dr. John Dick: Photo courtesy University Health Network, Toronto

Remember at the beginning I said that three and a half CIRM grantees were elected to the Academy, well, Canadian researcher, Dr. John Dick is the half. Why? Well, because the award we funded actually went to UC San Diego’s Dennis Carson but it was part of a Collaborative Funding Partnership Program with Dr. Dick at the University of Toronto. So, we are going to claim him as one of our own.

And he’s a pretty impressive individual to partner with. Dr. Dick is best known for developing a test that led to the discovery of leukemia stem cells. These are cells that can evade surgery, chemotherapy and radiation and which can lead to patients relapsing after treatment. His work helped shape our understanding of cancer and revealed a new strategy for curing it.

CIRM funded trial for AMD shows promising results

This upcoming July is healthy vision month, a time to remember the importance of making vision and eye health a priority. It’s also a time to think about the approximately 12 million people, 40 and over in the United States, that have a vision impairment. Vision can be something that many of us take for granted, but losing even a portion of it can have a profound impact on our everyday life. It can impact your ability to do everyday things, from basic hygiene routines and driving to hobbies such as reading, writing, or watching a film.

It is because of this that CIRM has made vision related problems a priority, providing over $69 million in funding for six clinical trials related to vision loss. There is reason to be hopeful as these trials have demonstrated promising results. One of these trials, conducted by Regenerative Patch Technologies LLC (RPT), announced today results from its CIRM funded clinical trial ($16.3 million) for advanced, dry age-related macular degeneration (AMD).

AMD is a progressive disease resulting in death of the retinal pigment epithelium (RPE), an area of the eye that plays a key role in maintaining vision. Damage to the RPE causes distortion to central vision and eventually leads to legal blindness. Thanks to CIRM funding, RPT and scientists at the University of Southern California (USC) and UC Santa Barbara (UCSB) are growing specialized RPE cells from human embryonic stem cells (hESCs), placing them on a single layer scaffold, and implanting the combination device in the back of the eye to try to reverse the blindness caused by AMD.

One of the trial participants is Anna Kuehl, a USC alumna and avid nature lover. She was diagnosed with AMD in her mid 30s and gradually began losing the central vision in her left eye. Although her peripheral vision remained intact, she could no longer make out people’s faces clearly, drive a car, or read the time on her watch. This also meant she would have much more difficulty going on the nature hikes she enjoys so much. After receiving treatment, she noticed improvements in her vision.

Anna was not alone in these improvements post treatment. The implant, known as CPCB-RPE1, was delivered to the worst eye of 15 patients with AMD. All treated eyes were legally-blind having a best corrected visual acuity (BCVA) of 20/200 or worse (20/20 indicates perfect vision).

Patients in the clinical trial were assessed for visual function and the results were as follows:

  • At an average of 34 months post-implantation (range 12-48 months), 27% (4/15) showed a greater than 5 letter improvement in BCVA and 33% (5/15) remained stable with a BCVA within 5 letters of baseline value. The improvements ranged from 7-15 letters or 1-3 lines on an eye chart.
  • In contrast, BCVA in the fellow, untreated eye declined by more than 5 letters (range 8-21 letters or 1-4 lines on an eye chart) in 80% (12/15) of subjects. There was no improvement in BCVA in the untreated eye of any subject. 
  • The implant was delivered safely and remained stably in place throughout the trial.
  • Refinements to the implantation procedure during the trial further improved its efficiency and safety profile.

In a news release from RPT, Mark Humayun, M.D., Ph.D., founder and co-owner of RPT, Director of the USC Ginsburg Institute for Biomedical Therapeutics and Co-Director of the USC Roski Eye Institute, Keck Medicine of USC, had this to say about the trial results.

“The improvements in best corrected visual acuity observed in some eyes receiving the implant are very promising, especially considering the very late stage of their disease. Improvements in visual acuity are exceedingly rare in geographic atrophy as demonstrated by the large decline in vision in many of the untreated eyes which also had disease. There are currently no approved therapies for this level of advanced dry age-related macular degeneration”. 

The full presentation can be found on RPT’s website linked here.

Watch the video below to learn more about Anna’s story.

Sometimes a cold stare is a good thing

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in the elderly in the U.S. It’s estimated that some 11 million Americans could have some form of the disease, a number that is growing every year. So if you are going to develop a treatment for this condition, you need to make sure it can reach a lot of people easily. And that’s exactly what some CIRM-supported researchers are doing.

Let’s back up a little first. AMD is a degenerative condition where the macular, the small central portion of your retina, is slowly worn away. That’s crucial because the retina is the light-sensing nerve tissue at the back of your eye. At first you notice that your vision is getting blurry and it’s hard to read fine print or drive a car. As it progresses you develop dark, blurry areas in the center of your vision.

There are two kinds of AMD, a wet form and a dry form. The dry form is the most common, affecting 90% of patients. There is no cure and no effective treatment. But researchers at the University of Southern California (USC), the University of California Santa Barbara (UCSB) and a company called Regenerative Patch Technologies are developing a method that is looking promising.

They are using stem cells to grow retinal pigment epithelium (RPE) cells, the kind attacked by the disease, and putting them on a tiny synthetic scaffold which is then placed at the back of the eye. The hope is these RPE cells will help slow down the progression of the disease or even restore vision.

Early results from a CIRM-funded clinical trial are encouraging. Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

So now the team are taking this approach one step further. In a study published in Scientific Reports, they say they have developed a way to cryopreserve or freeze this cell and scaffold structure.

In a news release, Dr. Dennis Clegg of UCSB, says the frozen implants are comparable to the non-frozen ones and this technique will extend shelf life and enable on-demand distribution to distant clinical sites, increasing the number of patients able to benefit from such treatments.

“It’s a major advance in the development of cell therapies using a sheet of cells, or a monolayer of cells, because you can freeze them as the final product and ship them all over the world.”

Cool.