Stem cell stories that caught our eye: 3 blind mice no more and a tale of two tails

Stem cell image of the week: The demise of Three Blind Mice nursery rhyme (Todd Dubnicoff)
Our stem cell image of the week may mark the beginning of the end of the Three Blind Mice nursery rhyme and, more importantly, usher in a new treatment strategy for people suffering from vision loss. That’s because researchers from Icahn School of Medicine at Mount Sinai, New York report in Nature the ability to reprogram support cells in the eyes of blind mice to become photoreceptors, the light-sensing cells that enable sight. The image is an artistic rendering of the study results by team led Dr. Bo Chen, PhD.

Aug16_2018_BoChen_MullerGlia_Eye3930249103

An artist’s rendering incorporates the images of the Müller glia-derived rod photoreceptors. Image credit: Bo Chen, Ph.D.

The initial inspiration for this project came from an observation in zebrafish. These creatures have the remarkable ability to restore vision after severe eye injuries. It turns out that, in response to injury, a type of cell in the eye called Muller glia – which helps maintain the structure and function of the zebrafish retina – transforms into rod photoreceptors, which allow vision in low light.

Now, Muller glia are found in humans and mice too, so the research team sought to harness this shape-shifting, sight-restoring ability of the Muller glia but in the absence of injury. They first injected a gene into the eyes of mice born blind that stimulated the glia cells to divide and grow. Then, to mimic the reprogramming process seen in zebrafish, specific factors were injected to cause the glia to change identity into photoreceptors.

The researchers showed that the glia-derived photoreceptors functioned just like those observed in normal mice and made the right connections with nerve cells responsible for sending visual information to the brain. The team’s next steps are to not only show the cells are functioning properly in the eye and brain but to also do behavioral studies to confirm that the mice can do tasks that require vision.

If these studies pan out, it could lead to a new therapeutic strategy for blinding diseases like retinitis pigmentosa and macular degeneration. Rather than transplanting replacement cells, this treatment approach would spur our own eyes to repair themselves. In the meantime, CIRM-funded researchers have studies currently in clinical trials testing stem cell-based treatments for retinitis pigmentosa and macular degeneration.

A tale of two tails: one regenerates, the other, not quite so much (Kevin McCormack) One of the wonders of nature, well two if you want to be specific, is how both salamanders and lizards are able to regrow their tails if they lose them. But there is a difference. While salamanders can regrow a tail that is almost identical to the original, lizard’s replacements are rather less impressive. Now researchers have found out why.

081518_LR_regeneration_inline_730

In these fluorescence microscopy images, cross sections of original lizard and salamander tails (left) show cartilage (green) and nerve cells (red). In the regenerated tails (right), the lizard’s is made up mostly of cartilage, while the salamander also has developed new nerve cells. Image: Thomas Lozito

The study, published in the Proceedings of the National Academy of Sciences, shows how a lizard’s new tail doesn’t have bone but instead has cartilage, and also lacks nerve cells. The key apparently is the stem cells both use to regenerate the tail. Salamanders use neural stem cells from their spinal cord and turn them into other types of nervous system cell, such as neurons. Lizards neural stem cells are not able to do this.

The researchers, from the University of Pittsburgh, tested their findings by placing neural stem cells from the axolotl salamander into tail stumps from geckos. They noted that, as those tails regrew, some of those transplanted cells turned into neurons.

In an interview in Science News, study co-author Thomas Lozito says the team hope to take those findings and, using the CRISPR/Cas9 gene-editing tool, see if they can regenerate body parts in other animals:

 “My goal is to make the first mouse that can regenerate its tail. We’re kind of using lizards as a stepping-stone.”

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

Stem Cell Agency’s Diane Winokur hailed as Visionary

Diane and JT

CIRM Board member Diane Winokur with CIRM Board Chair Jonathan Thomas at FFB Awards dinner

Generally speaking, I am not a huge fan of gala dinners. It’s not that I don’t like seeing people who do remarkable things getting a well-deserved honor. It’s just that the dinners often go on too long and the food is usually not very good (hey, this is San Francisco, those things matter). But last night’s Foundation Fighting Blindness Visionary Awards in San Francisco was definitely an exception to that rule.

Academy of Sciences Grand Opening

Academy of Sciences in San Francisco

Now it may be that the awards were held in the spectacular Academy of Sciences building in Golden Gate Park, or that the food was delicious. But I think the real reason is that CIRM Board member Diane Winokur was one of those being honored. The other honoree was Dr. Jacque Duncan, an amazing physician at UC San Francisco who has dedicated her life to battling diseases of the retina. The whole event was deeply emotional, and truly inspiring.

Now, Diane is a remarkable woman in many respects. She’s the Board’s Patient Advocate member for ALS (better known as Lou Gehrig’s disease) and multiple sclerosis. But Diane also considers herself a Patient Advocate for all Californians and works hard to help advance the research that could help them. She has a personal connection to vision loss as well; one of her dear friends has lost his sight because of retinitis pigmentosa, and his daughter is losing hers because of the same disease.

Diane at podiumDiane highlighted the work that CIRM is doing to help battle vision destroying diseases; how we have invested more than $125 million in 25 different projects. She talked about the encouraging news from clinical trials we are funding targeting retinitis pigmentosa and dry age-related macular degeneration. Diane said:

“These stem cell clinical trials show that progress is being made. Not as fast as we would like, but as everyone here knows, good science takes time. As a patient advocate on the CIRM Board it’s my role to represent the patient, to be their voice in making decisions about what projects to fund.

Patients are at the heart of everything we do at CIRM, from deciding on funding issues to supporting clinical trials. That’s why I feel so honored to get this award. It comes from an organization, that is equally committed to doing all it can to help people in need, to putting the patient at the center of everything they do.”

It’s clear that patients really are at the heart of the work the Foundation Fighting Blindness (FFB) does. As the organizations CEO Benjamin Yerxa said:

“We support 77 labs in the US, often funding projects no one else would. We do this because we know it is necessary to advance the field. And we are going to keep doing this as best we can, as fast as we can, for as long as we can, because we know so many people are depending on us to help them.”

The other honoree, Jacque Duncan, said after attending many previous Visionary Award dinners and seeing the people being honored it was humbling to be in that company. She talked about the exciting progress being made in the field and the people who are making it possible.

“None of this happens by chance. The path to developing new treatments takes the passion of scientists and doctors, and the commitment of patients to raising the funds needed to do this research. One gala dinner at a time, one Vision Walk at a time. All of this creates community and a common purpose. I truly believe that because of this, tomorrow will be brighter than today.”

Perhaps it’s only appropriate to leave the last word to Diane, who ended her speech saying:

“The Nobel prize winning physicist Heinrich Rohrer once said that science means constantly walking a tightrope between blind faith and curiosity; between expertise and creativity; between bias and openness; between experience and epiphany; in short, between an old today and a new tomorrow.

I believe that working together, CIRM and the Foundation Fighting Blindness, we can create that new tomorrow.”

The moment of truth. A video about the stem cell therapy that could help millions of people going blind.

“No matter how much one prepares, the first patient is always something very special.” That’s how Dr. Mark Humayun describes his feelings as he prepared to deliver a CIRM-funded stem cell therapy to help someone going blind from dry age-related macular degeneration (AMD).

Humayun, an ophthalmologist and stem cell researcher at USC, spent years developing this therapy and so it’s understandable that he might be a little nervous finally getting a chance to see if it works in people.

It’s quite a complicated procedure, involving turning embryonic stem cells into the kind of cells that are destroyed by AMD, placing those cells onto a specially developed synthetic scaffold and then surgically implanting the cells and scaffold onto the back of the eye.

There’s a real need for a treatment for AMD, the leading cause of vision loss in the US. Right now, there is no effective therapy for AMD and some three million Americans are facing the prospect of losing their eyesight.

The first, preliminary, results of this trial were released last week and they were encouraging. You can read about them on our blog.

Thanks to USC you can also see the team that developed and executed this promising approach. They created a video capturing the moment the team were finally taking all that hard work and delivering it where it matters, to the patient.

Watching the video it’s hard not to think you are watching a piece of history, something that has the potential to do more than just offer hope to people losing their vision, it has the potential to stop and even reverse that process.

The video is a salute to the researchers who developed the therapy, and the doctors, nurses and Operating Room team who delivered it. It’s also a salute to the person lying down, the patient who volunteered to be the first to try this. Everyone in that room is a pioneer.

Encouraging news about CIRM-funded clinical trial targeting vision loss

dry AMD

An eye affected by dry age-related macular degeneration

Dry age-related macular degeneration (AMD) is the leading cause of vision loss in the U.S. By 2020 it’s estimated that as many as three million Americans will be affected by the disease. Right now, there is no effective therapy. But that could change. A new CIRM-funded clinical trial is showing promise in helping people battling the disease not just in stabilizing their vision loss, but even reversing it.

In AMD, cells in the retina, the light-sensitive tissue at the back of the eye, are slowly destroyed affecting a person’s central vision. It can make it difficult to do everyday activities such as reading or watching TV and make it impossible for a person to drive.

Researchers at the University of Southern California (USC) Roski Eye Institute at the Keck School of Medicine, and Regenerative Patch Technologies, have developed a therapy using embryonic stem cells that they turned into retinal pigment epithelium (RPE) cells – the kind of cell destroyed by AMD. These cells were then placed on a synthetic scaffold which was surgically implanted in the back of the eye.

Imaging studies showed that the RPE cells appeared to integrate well into the eye and remained in place during follow-up tests 120 to 365 days after implantation.

Encouraging results

Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

There were other indications the implants were proving beneficial.  People with normal vision have the ability to focus their gaze on a single location. People with advanced AMD lose that ability. In this trial, two of the patients recovered stable fixation. These improvements were maintained in follow-up tests.

Abla-8

Abla Creasey, Ph.D., CIRM’S Vice President of Therapeutics and Strategic Infrastructure says even these small benefits are important:

“Having a therapy with a favorable safety profile, that could slow down the progression, or even reverse the vision loss would benefit millions of Americans. That’s why these results, while still in an early stage are encouraging, because the people treated in the trial are ones most severely affected by the disease who have the least potential for visual recovery.”

This study reflects CIRM’s long-term commitment to supporting the most promising stem cell research. The Stem Cell Agency began supporting USC’s Dr. Mark Humayun, the lead inventor of the implant, in 2010 and has been a partner with him and his team since then.

Dr.MarkHumayun2 copy

In a news release Dr. Humayun said they plan to recruit another 15 patients to see if these results hold up:

“Our study shows that this unique stem cell–based retinal implant thus far is well-tolerated, and preliminary results suggest it may help people with advanced dry age-related macular degeneration.”

While the results, published in the journal Science Translational Medicine, are encouraging the researchers caution that this was a very early stage clinical trial, with a small number of patients. They say the next step is to continue to follow the four patients treated in this trial to see if there are any further changes to their vision, and to conduct a larger trial.

 

 

Stem Cell Agency Heads to Inland Empire for Free Patient Advocate Event

UCRiversidePatientAdvocateMtg_EventBrite copy

I am embarrassed to admit that I have never been to the Inland Empire in California, the area that extends from San Bernardino to Riverside counties.  That’s about to change. On Monday, April 16th CIRM is taking a road trip to UC Riverside, and we’re inviting you to join us.

We are holding a special, free, public event at UC Riverside to talk about the work that CIRM does and to highlight the progress being made in stem cell research. We have funded 45 clinical trials in a wide range of conditions from stroke and cancer, leukemia, lymphoma, vision loss, diabetes and sickle cell disease to name just a few. And will talk about how we plan on funding many more clinical trials in the years to come.

We’ll be joined by colleagues from both UC Riverside, and City of Hope, talking about the research they are doing from developing new imaging techniques to see what is happening inside the brain with diseases like Alzheimer’s, to using a patient’s own cells and immune system to attack deadly brain cancers.

It promises to be a fascinating event and of course we want to hear from you, our supporters, friends and patient advocates. We are leaving plenty of time for questions, so we can hear what’s on your mind.

So, join us at UC Riverside on Monday, April 16th from 12.30pm to 2pm. The doors open at 11am so you can enjoy a poster session (highlighting some of the research at UCR) and a light lunch before the event. Parking will be available on site.

Visit the Eventbrite page we have created for all the information you’ll need about the event, including a chance to RSVP and book your place.

The event is free so feel free to share this with anyone and everyone you think might be interested in joining us.

 

 

jCyte Shares Encouraging Update on Clinical Trial for Retinitis Pigmentosa

Stepping out of the darkness into light. That’s how patients are describing their experience after participating in a CIRM-funded clinical trial targeting a rare form of vision loss called retinitis pigmentosa (RP). jCyte, the company conducting the trial, announced 12 month results for its candidate stem cell-based treatment for RP.

RP is a genetic disorder that affects approximately 1 in 40,000 individuals and 1.5 million people globally. It causes the destruction of the light-sensing cells at the back of the eye called photoreceptors. Patients experience symptoms of vision loss starting in their teenage years and eventually become legally blind by middle age. While there is no cure for RP, there is hope that stem cell-based therapies could slow its progression in patients.

Photoreceptors look healthy in a normal retina (left). Cells are damaged in the retina of an RP patient (right). (Source National Eye Institute)

jCyte is one of the leaders in developing cell-based therapies for RP. The company, which was founded by UC Irvine scientists led by Dr. Henry Klassen, is testing a product called jCell, which is composed of pluripotent stem cell-derived progenitor cells that develop into photoreceptors. When transplanted into the back of the eye, they are believed to release growth factors that prevent further damage to the surviving cells in the retina. They also can integrate into the patient’s retina and develop into new photoreceptor cells to improve a patient’s vision.

Positive Results

At the Annual Ophthalmology Innovation Summit in November, jCyte announced results from its Phase 1/2a trial, which was a 12-month study testing two different doses of transplanted cells in 28 patients. The company reported a “favorable safety profile and indications of potential benefit” to patient vision.

The patients received a single injection of cells in their worst eye and their visual acuity (how well they can see) was then compared between the treated and untreated eye. Patients who received the lower dose of 0.5 million cells were able to see one extra letter on an eye chart with their treated eye compared to their untreated eye while patients that received the larger dose of 3 million cells were able to read 9 more letters. Importantly, none of the patients experienced any significant side effects from the treatment.

According to the company’s news release, “patient feedback was particularly encouraging. Many reported improved vision, including increased sensitivity to light, improved color discrimination and reading ability and better mobility. In addition, 22 of the 28 patients have been treated in their other eye as part of a follow-on extension study.”

One of these patients is Rosie Barrero. She spoke to us earlier this year about how the jCyte trial has not only improved her vision but has also given her hope. You can watch her video below.

Next Steps

These results suggest that the jCell therapy is safe (at least at the one year mark) to use in patients and that larger doses of jCell are more effective at improving vision in patients. jCyte CEO, Paul Bresge commented on the trial’s positive results:

Paul Bresge

“We are very encouraged by these results. Currently, there are no effective therapies to offer patients with RP. We are moving forward as quickly as possible to remedy that. The feedback we’ve received from trial participants has been remarkable. We look forward to moving through the regulatory process and bringing this easily-administered potential therapy to patients worldwide.”

Bresge and his company will be able to navigate jCell through the regulatory process more smoothly with the product’s recent Regenerative Medicine Advanced Therapy (RMAT) designation from the US Food and Drug Administration (FDA). The FDA grants RMAT to regenerative medicine therapies for serious diseases that have shown promise in early-stage clinical trials. The designation allows therapies to receive expedited review as they navigate their way towards commercialization.

jCyte is now evaluating the safety and efficacy of jCell in a Phase2b trial in a larger group of up to 85 patients. CIRM is also funding this trial and you can read more about it on our website.


Related Links:

 

A Patient Advocate’s Personal Manifesto

Janni and Obama

President Obama and Janni Lehrer-Stein

Janni Lehrer-Stein was just 26 when she was diagnosed with a degenerative eye disease and told she was going to be blind within six months. The doctor who gave her the news told her “But don’t worry, people like you are usually hit and killed by a bus long before they go completely blind.”

At the time she was recently married, had just graduated law school and landed her dream job with the government in Washington DC, litigating workplace discrimination. The news about her eyesight stopped her in her tracks.

But not for long. If you ever met Janni you would know that nothing stops her for long.

I was fortunate enough to hear Janni talk at a Foundation Fighting Blindness event in the San Francisco Bay Area last weekend. I was part of a panel discussion on new approaches to treating vision loss, including the research that CIRM is funding.

Janni didn’t talk about stem cells, instead she focused on the importance of the patient advocate voice, community, and their determination. She said one of the most important things anyone battling a life-threatening or life-changing disease or disorder needs to remember is that it’s not about disability, it’s about capability. It’s about what you can do rather than what you cannot.

Janni laid out her “manifesto” for things she says will help you keep that thought uppermost in your mind.

1) Show up. It’s that simple and that important. You have to show up. You have to get educated, you have to learn all you can about your condition so you know what you can do and what you can’t do. You have to share that information with others. You have to be there for others. Don’t just show up for yourself. Show up for others who can’t be there.

2) Share this information. Janni talked about a website called My Retina Tracker which is helping drive research into the causes of retinal diseases like retinitis pigmentosa and macular degeneration, and hopefully will lead to treatments and even cures. She says the more people work together, the more we combine our resources, the more effective we can be.

3) Support the researchers. Janni says while raising awareness is important, raising money is just as important. Without money there can be no research, and without research no treatments or cures. Janni says it doesn’t matter how you do it – a charity walk, a Go Fund me campaign, petitioning your state or federal elected representatives to urge them to fund research – everything counts, every dollar helps.

4) Remember you are part of a wider community. Janni says no one ever won a battle on their own; it takes a lot of people to fight and win the right to be treated equally. And it takes a lot of effort to stop those rights from being rolled back.

Janni hasn’t let losing her sight hold her back. In 2011, she was appointed by President Obama, and confirmed by the U.S. Senate, to the National Council on Disability where she served two terms advising the President and Congress on national disability policy.

Now she has returned home to the San Francisco Bay Area, but she is no less determined to make a difference and no less determined to fight for the rights of patients and patient advocates.

In an article on Medium she shares her feelings about being a patient advocate:

“The America that I so deeply respect is one that embraces, values and respects the contributions of us all. My America includes every one of us, regardless of our gender, race, age or disability. Our America is a place where, regardless of whether we are sighted or blind, we have the same opportunities, for which we are equally considered. Our America includes every one of us who wishes to make the world a more peaceful, responsible, and inclusive environment that is tolerant of all differences and abilities, physical or otherwise. To me, those differences make our lives richer, give our contributions more meaning, and lead to a brighter future for the next generation.”

 

Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.