Encouraging Progress for Two CIRM Supported Clinical Trials

This past Wednesday was Stem Cell Awareness Day, a day that is meant to remind us all of the importance of stem cell research and the potential it has to treat a wide variety of diseases. On this day, we also released an independent Economic Impact Report that showed how $10.7 Billion (yes, you read that right) was generated as a direct result of the the legacy we have built as a state agency that funds groundbreaking research.

Aside from the monetary incentive, which is an added bonus, the research we fund has made encouraging progress in the scientific field and has demonstrated the positive impact it can have on various disease areas. This week, two clinical trials supported by CIRM funding have released very promising updates.

Duchenne Muscular Dystrophy

Capricor Therapeutics, Inc. has presented positive results for a clinical trial related to a treatment for duchenne muscular dystrophy (DMD), a genetic disorder. DMD leads to progressive muscle degeneration and weakness due to its effect on a protein called dystrophin, which helps keep muscle cells intact.

The treatment that Capricor is testing is called CAP-1002 and consists of a unique population of cells that contain cardiac progenitor cells, a type of stem cell, that help encourage the regeneration of cells. CIRM funded an earlier clinical trial for this treatment.

The early results of this current trial describe how teens and young men in the advanced stages of DMD saw improvements in skeletal, lung, and heart measurements after receiving multiple doses of the treatment.

In a news release, Dr. Linda Marban, Chief Executive Officer of Capricor, expresses optimism for this clincial trial by saying,

“We are very pleased that the interim analysis from this double-blind placebo-controlled study, has demonstrated meaningful improvements across three clinically relevant endpoints in older patients with limited remaining treatment options.”

In the same news release, Dr. Craig McDonald, the national principal investigator for the trial, echoes the same sentiment by stating,

“The results from this trial to date are very promising in that the cells appear to positively impact skeletal, pulmonary and cardiac assessments in older DMD patients who have few, if any, remaining treatment options. We are eager to meet with the FDA to discuss the next steps for this promising program.”

Mantle Cell Lymphoma

Additionally, Oncternal Therapeutics has decided, because of positive results, to open an expansion of its CIRM-funded clinical trial aimed at treating patients with mantle cell lymphoma (MCL). The treatment involves an antibody called cirmtuzumab, named after us, in combination with a drug called ibrutinib.

The preliminary results were from the first six patients with MCL that were treated in the trial. One patient with MCL, who had relapsed following an allogeneic stem cell transplant, experienced a confirmed complete response (CR) after three months of cirmtuzumab plus ibrutinib treatment. This complete response appears to be sustained and has been confirmed to be ongoing after completing 12 months of the combination treatment. A second confirmed complete response occurred in a patient who had progressive disease after failing several different chemotherapy regimens, bone marrow transplant and CAR-T therapy. 

In a news release, Dr. Hun Lee, an investigator in the trial, states that,

“It is encouraging to see that the drug has been well tolerated as well as the early signal of efficacy of cirmtuzumab with ibrutinib in MCL, particularly the rapid and durable complete responses of the heavily pre-treated patients after three months of therapy, which is an unusually fast response in this patient population.”

Rare Disease, Type 1 Diabetes, and Heart Function: Breakthroughs for Three CIRM-Funded Studies

This past week, there has been a lot of mention of CIRM funded studies that really highlight the importance of the work we support and the different disease areas we make an impact on. This includes important research related to rare disease, Type 1 Diabetes (T1D), and heart function. Below is a summary of the promising CIRM-funded studies released this past week for each one of these areas.

Rare Disease

Comparison of normal (left) and Pelizaeus-Merzbacher disease (PMD) brains (right) at age 2. 

Pelizaeus-Merzbacher disease (PMD) is a rare genetic condition affecting boys. It can be fatal before 10 years of age and symptoms of the disease include weakness and breathing difficulties. PMD is caused by a disruption in the formation of myelin, a type of insulation around nerve fibers that allows electrical signals in the brain to travel quickly. Without proper signaling, the brain has difficulty communicating with the rest of the body. Despite knowing what causes PMD, it has been difficult to understand why there is a disruption of myelin formation in the first place.

However, in a CIRM-funded study, Dr. David Rowitch, alongside a team of researchers at UCSF, Stanford, and the University of Cambridge, has been developing potential stem cell therapies to reverse or prevent myelin loss in PMD patients.

Two new studies, of which Dr. Rowitch is the primary author, published in Cell Stem Cell, and Stem Cell Reports, respectively report promising progress in using stem cells derived from patients to identify novel PMD drugs and in efforts to treat the disease by directly transplanting neural stem cells into patients’ brains. 

In a UCSF press release, Dr. Rowitch talks about the implications of his findings, stating that,

“Together these studies advance the field of stem cell medicine by showing how a drug therapy could benefit myelination and also that neural stem cell transplantation directly into the brains of boys with PMD is safe.”

Type 1 Diabetes

Viacyte, a company that is developing a treatment for Type 1 Diabetes (T1D), announced in a press release that the company presented preliminary data from a CIRM-funded clinical trial that shows promising results. T1D is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin, a hormone that enables our bodies to break down sugar in the blood. CIRM has been funding ViaCyte from it’s very earliest days, investing more than $72 million into the company.

The study uses pancreatic precursor cells, which are derived from stem cells, and implants them into patients in an encapsulation device. The preliminary data showed that the implanted cells, when effectively engrafted, are capable of producing circulating C-peptide, a biomarker for insulin, in patients with T1D. Optimization of the procedure needs to be explored further.

“This is encouraging news,” said Dr. Maria Millan, President and CEO of CIRM. “We are very aware of the major biologic and technical challenges of an implantable cell therapy for Type 1 Diabetes, so this early biologic signal in patients is an important step for the Viacyte program.”

Heart Function

Although various genome studies have uncovered over 500 genetic variants linked to heart function, such as irregular heart rhythms and heart rate, it has been unclear exactly how they influence heart function.

In a CIRM-funded study, Dr. Kelly Frazer and her team at UCSD studied this link further by deriving heart cells from induced pluripotent stem cells. These stem cells were in turn derived from skin samples of seven family members. After conducting extensive genome-wide analysis, the team discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

In a press release by UCSD, Dr. Frazer elaborated on the important role this protein plays by stating that,

“NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function. As a result, we are finding that multiple heart-related traits can share a common mechanism — in this case, differential binding of NKX2-5 due to DNA variants.”

The full results of this study were published in Nature Genetics.

CIRM-funded Stanford study finds potential diagnostic tool, treatment for Parkinson’s

Dr. Xinnan Wang, a neurosurgeon and author of a study that has identified a molecular pathway apparently responsible for the death of dopaminergic neurons that causes the symptoms of Parkinson’s.

Of the various neurodegenerative diseases, Parkinson’s is the second most common and affects 35 million people world wide. It is caused by the gradual breakdown of dopaminergic neurons in the brain, which are a type of cell that produce a chemical in your brain known as dopamine.  This decrease in dopamine can cause complications such as uncontrollable shaking of the hands, slowed movement, rigid muscles, loss of automatic movements, speech changes, bladder problems, constipation, and sleep disorders.

Although 5-10% of cases are the result of genetically inherited mutations, the vast majority of cases are sporadic, often involving complex interactions of multiple unknown genes and environmental factors. Unfortunately, it is this unknown element that make the disease very difficult to detect early on in the majority of patients.

However, in a CIRM funded study, Dr. Xinnan Wang and her team at Stanford University were able to pinpoint a molecular defect that seems almost universal in patients with Parkinson’s and those at high risk of acquiring it. This could prove to be a way to detect Parkinson’s in its early stages and before symptoms start to manifest. Furthermore, it could also be used to evaluate a potential treatment’s effectiveness at preventing or stalling the progression of Parkinson’s.

In a Stanford press release, Dr. Wang explains the implications of these findings:

“We’ve identified a molecular marker that could allow doctors to diagnose Parkinson’s accurately, early and in a clinically practical way. This marker could be used to assess drug candidates’ capacity to counter the defect and stall the disease’s progression.” 

What is more astounding is that Dr. Wang and her team were also able to identify a compound that is shown to reverse the defect in cells taken from Parkinson’s patients. In an animal model, the compound was able to prevent the death of neurons, which is the underlying problems in the disease.

In their study, Dr. Wang and her team focused on the mitochondria, which churns out energy and is the powerhouse of the cell. Dopaminergic neurons in the brain are some of the body’s hardest working cells, and it is theorized that they start to die off when the mitochondria burns out after constant, high energy production.

Mitochondria spend much of their time attached to a grid of protein “roads” that crisscross cells. Our cells have a technique for clearing “burnt out” mitochondria, but the process involves removing an adaptor molecule called Miro that attaches mitochondria, damaged or healthy, to the grid. 

Dr. Wang’s team previously identified a mitochondrial-clearance defect in Parkinson’s patients’ cells that involved the inability to remove Miro from damaged mitochondria.

In the current study, they obtained skin samples from 83 Parkinson’s patients, Five patients with asymptomatic close relatives considered to be at heightened risk, 22 patients diagnosed with other movement disorders, and 52 healthy control subjects. They extracted fibroblasts, which are cells common in skin tissue, from the samples and subjected them to a stressful process that messes up mitochondria. 

The researchers found the Miro-removal defect in 78 of the 83 Parkinson’s fibroblasts (94%) and in all five of the “high-risk” samples, but not in fibroblasts from the control group or patients with other movement-disorders.

Next, the team was able to screen over 6.8 million molecules and found 11 that would bind to Miro, initiating separation from the mitochondria, are non-toxic, orally available, and able to cross the blood-brain barrier. These 11 compounds were tested in fruit flies and and ultimately one of them, which seems to target Miro exclusively, was tested on fibroblasts from a patient with sporadic Parkinson’s disease. The compound was found to substantially improved Miro clearance in these cells after their exposure to mitochondria-damaging stress.

Dr. Wang is optimistic that clinical trials of the compound or something similar are no more than a few years off.

In the same Stanford press release, Dr. Wang stated that,

“Our hope is that if this compound or a similar one proves nontoxic and efficacious and we can give it, like a statin drug, to people who’ve tested positive for the Miro-removal defect but don’t yet have Parkinson’s symptoms, they’ll never get it.”

The full results of this study were published in the journal Cell Metabolism.

Engineered T cells made from stem cells could provide immunity against multiple cancers

Dr. Lily Yang

Within all of our bodies there is a special type of “super” immune cell that holds enormous potential. Unlike regular immune cells that can only attack one cancer at a time, these “super” immune cells have the ability to target many types of cancers at once. These specialized cells are known as invariant natural killer T cells or iNKT cells for short. Unfortunately, there are relatively few of these cells normally present in the body.

However, in a CIRM-funded study, Dr. Lily Yang and her team of researchers at UCLA have found a way to produce iNKT cells from human blood stem cells. They were then able to test these iNKT cells on mice with both human bone marrow and human cancers. These mice either had multiple melanoma, a type of blood cancer, or melanoma, a solid tumor cancer. The researchers then studied what happened to mice’s immune system, cancers, and engineered iNKT cells after they had integrated into the bone marrow.

The results were remarkable. The team found that the blood stem cells now differentiated normally into iNKT cells, producing iNKT cells for the rest of the animal’s life, which was generally about a year. Mice without the engineered stem cell transplants had undetectable levels of iNKT cells while those that received the engineered cells had iNKT cells make up as much as 60% of the total immune system cells. The team also found that the engineered iNKT cells were able to suppress tumor growth in both multiple myeloma and melanoma.

Dr. Yang, in a press release by UCLA health, discussed the significance of the results in this animal model and the enormous potential this could have for cancer patients.

“What’s really exciting is that we can give this treatment just once and it increases the number of iNKT cells to levels that can fight cancer for the lifetime of the animals.” said Yang.

In the same press release, Dr. Yang continued to highlight the study’s importance by saying that,

“One advantage of this approach is that it’s a one-time cell therapy that can provide patients with a lifelong supply of iNKT cells.”

Researchers mentioned that they could control total iNKT cell make up in the immune system depending on how they engineered the blood stem cells. However, more research is needed to determine how these engineered iNKT cells might be useful for treating cancer in humans and evaluating any long-term side effects associated with an increased number of these cells.

The full results of this study were published in the journal Cell Stem Cell.

California Stem Cell and Regenerative Therapy Task Force holds meeting to consider options for patient protection

Dr. Maria Millan, President and CEO of CIRM, attended the meeting to discuss the importance of having systems in place for patient protection.

What procedures are in place to ensure the quality and safety of stem cell treatments? How can patients guard against deceptive promotional practices for treatments that have no basis in science? What new procedures are needed to support patients and the development of new treatments?

These questions and others were discussed this past Wednesday by the Medical Board of California’s Stem Cell and Regenerative Therapy Task Force. The task force  held an interested parties meeting to receive information and input on options to promote consumer protection.

CIRM, the Alpha Stem Cell Clinic Network, and the Department of Public Health gave formal presentations to the task force.

Dr. Maria Millan started by providing the task force with an overview of the field in general and the 56 CIRM funded Clinical Trials to illustrate the enormous promise of the field. She then contrasted this promise against numerous reports of patients being harmed by unproven and unregulated stem cell treatments provided by practitioners operating outside their field of training. Dr. Millan emphasized the critical importance of having systems in place to provide assurance to patients that treatments are appropriate for their particular disease.  She elaborated on CIRM’s core mantra that stem cell treatments be regulated, reputable and reliable. We discussed the three Rs in this posting. The fundamental aim is to put the patient interests at the center of a system that meets all regulatory and professional standards of care.

Dr. Mehrdad Abedi, Director of the UC Davis Alpha Stem Cell Clinic provided concrete examples of how they are implementing the 3Rs in their operations. Dr. Abedi emphasized the importance of best practices for manufacturing and processing stem cell products and for clinical care. He cited the operations at the UC Davis Institute for Regenerative Cures and the various oversight committees tasked with protecting the rights and interests of patients.  Collectively, this approach, embraced by all the CIRM Alpha Stem Cell Clinics, serves to ensure all clinical trials regulated, reputable and reliable.

State of the art materials processing at the UC Davis Center for Regenerative Cures

Dr. Charity Dean of the Department of Public Health described the role of the Food and Drug Branch in licensing facilities involved in the preparation, processing and labeling of drugs. This authority extends to facilities outside of California that ship products into the state. Dr. Dean illustrated how the Department of Public Health’s Food and Drug Branch licenses manufactures, and this licensing system is designed to protect patients using such products.

After discussion and public comment, the task force co-chair, Dr. Krauss suggested the Medical Board would consider options for patient protection, include:

  • Guidance and education materials for medical practitioners
  • Sample informed consent documents designed to inform patients about the potential risks and benefits of stem cell treatments
  • Public education materials
  • An adverse event reporting system

Scientists at USC untangle the mysteries of cellular reprogramming- a method that could be used to treat diseases

Dr. Justin Ichida, Assistant Professor at USC and lead author of the study

Scientists have long tried to repurpose cells in order to potentially treat various types of conditions. This process, called reprogramming, involves changing one type of cell into another, such as a blood cell into a muscle cell or nerve cell. Although the technique has been around for decades, it has only been effective 1% of the time.

Fortunately, thanks in part to a CIRM grant, Dr. Justin Ichida and other researchers at USC have been able to untangle this complicated process to ensure reprogramming happens more efficiently. The researchers were able to figure out a process that reprograms cells much more reliably than previous methods.

USC scientists have found a solution to untangle twisty DNA, removing kinks so the molecules can be used to reprogram cells to advance regenerative medicine to treat disease.
Photo courtesy of Illustration/iStock

The technique the scientists developed uses an enzyme to untangle reprogramming DNA, similar to how a hairdresser conditions untangled hair. Since DNA molecules are twisty by nature, due to the double helix configuration, they do not respond well when manipulated to change itself. Therefore, reprogramming DNA requires uncoiling, yet when scientists begin to unravel the molecules, they knot up tighter.

“Think of it as a phone cord, which is coily to begin with, then gets more coils and knots when something is trying to harm it,” Dr. Ichida said in a press release by USC.

To smooth the kinks, the researchers treated cells with a chemical and genetic cocktail that activates enzymes that open up the DNA molecules. This process releases the coiled tension and lays out the DNA smoothly, leading to more efficient cellular reprogramming.

This new technique works almost 100% of the time and has been proven in human and mouse cells. The increased efficiency of this techniques opens the possibilities for studying disease development and drug treatments. New cells could be created to replace lost cells or acquire cells that can’t be extracted from people, a problem observed in Parkinson’s, ALS, and other neurological diseases.

Moreover, since these reprogrammed cells are the same age as the parent cell, they could be used to better understand age-related diseases. It is possible that the reprogrammed cells may be better at creating age-accurate models of human disease, which are useful to study a wide array of degenerative diseases and accelerated aging syndromes.

To summarize his work, Dr. Ichida states in the USC press release that,

“A modern approach for disease studies and regenerative medicine is to induce cells to switch their identity. This is called reprogramming, and it enables the attainment of inaccessible tissue types from diseased patients for examination, as well as the potential restoration of lost tissue. However, reprogramming is extremely inefficient, limiting its utility. In this study, we’ve identified the roadblock that prevents cells from switching their identity. It turns out to be tangles on the DNA within cells that form during the reprogramming process. By activating enzymes that untangle the DNA, we enable near 100% reprogramming efficiency.”

The full findings of this study can be found in Cell Stem Cell.

Stem cell treatment restores man’s sight in right eye after 25 years

James O’Brien, recipient of a stem cell treatment that restored the vision in his right eye

At 18 years old, there are several life-changing moments that young people look forward to. For some, it involves graduating from high school, starting college, and being able to cast a vote in an election. For others, this momentous occasion symbolizes the official start of adulthood.

For James O’ Brien, this milestone was marked by a rather unfortunate event where ammonia was thrown at his face in a random attack. As a result of this incident, the surface of his right eye was burned and he was left completely blind in his right eye.

Fast forward 25 years and thanks to an experimental stem cell treatment, James is able to see out of his right eye for the first time since the attack.

“Being able to see with both eyes – it’s a small thing that means the world. Basically I went from near-blindness in that eye to being able to see everything.” said O’Brien in a news release from Daily Heralds.

Dr. Sajjad Ahmad and a team of surgeons at the Moorfields Eye Hospital in London removed healthy stem cells from O’Brien’s left eye and grew these cells in a lab for months. After an adequate number of healthy stem cells from O’Briens left eye were grown, the surgeons then cut the scar tissue in his right eye and replaced it with the healthy stem cells.

They then waited a year after the procedure for the cells to settle down before inserting a cornea – which plays a key role in vision and focuses light – from a deceased donor.

“This is going to have a huge impact. A lot of these patients are young men so it affects their work, their lives, those around them. It’s not just the vision that drops, it’s the pain.” said Dr. Ahmad in the news release previously mentioned.

The procedure used took over 20 years to develop and Dr. Ahmad hopes to continue to develop the procedure for patients that have been blinded in both eyes by chemicals or have lost their vision through degenerative conditions.

CIRM has funded three clinical trials in vision loss to date. Two of these trials are being conducted by Dr. Henry Klassen for an eye condition known as retinitis pigmentosa and have shown promising results. The third trial is being conducted by Dr. Mark Humayun for another eye condition known as age-related macular degeneration (AMD) which has also shown promising results.

See video below for a news segment of James O’Brien on BBC News:

Rare disease meeting at California Capitol stresses importance of advocacy, funding, and new research

Dr. Martin Cadeiras (far left), who specializes in cardiovascular medicine at UC Davis, discusses the rare disease amyloidosis. Next to Dr. Cadeiras is Len Strickland, a patient advocates who shares his perspective on living with the disease.

“By changing policy, we can change lives”

A powerful opening statement by Angela Ramirez Holmes, Founder & President of the California Action Link for Rare Diseases (CAL RARE).

Tuesday of last week, patient advocates, patient advocacy organizations, and members of the public filled a room at the California Capitol for an informational hearing on research related to rare diseases. One of the organizations present was CAL RARE, a non-profit organization that is dedicated to improving the lives of California patients with rare diseases. Angela’s opening statement reflects CAL RARE’s core mission of bringing awareness of rare diseases to the general public and decision makers in order to improve access to physicians, treatments, and social services.

Dr. Martin Cadeiras

One of the first presenters was Dr. Martin Cadeiras from the Department of Cardiovascular Medicine at UC Davis. His presentation focused on a rare disease named amyloidosis, which occurs when a protein called amyloid builds up in the body’s organs and tissues. This can lead to problems in the heart, skin, kidneys, liver, and digestive tract. There are several different types of amyloidosis, one of which is hereditary and another form that can occur after chronic infection. Dr. Cadeiras spoke in detail about the scientific complexities behind amyloidosis and shared images of patients affected with the disease as well as the complications associated with their condition.

Len Strickland

To elaborate more on the patient perspective of this disease, patient advocate Len Strickland shared his journey living with amyloidosis. In addition to living with the disease, Len also has the sickle cell trait, meaning he has one copy of the sickle cell disease gene but one normal copy.

In his early life, Len was a typical young adult with no health problems. Unfortunately for him that changed in 2006, when he started having problems with shortness of breath and heart palpitations almost overnight. He visited many doctors, all of which were perplexed by his condition and were unable to diagnose him.

“My normal life was gone, and I was very concerned.” said Strickland.

One year later, after multiple tests and specialists, he was finally diagnosed with the hereditary version of amyloidosis. As a result of his condition, he was in dire need of a heart transplant. On March 4, 2008 he was placed on the transplant list. Because he was relatively lower on the priority list, he was told to keep hope to a minimum. Fortunately, on June 10, 2008 a matching donor heart was found and by the next day, Len had successfully received the heart transplant.

Len wrote a thank you letter to the mother of the deceased donor and regularly keeps in touch with her. She hopes to one day meet Len in person so that she can hug Len and hear her son’s heartbeat.

Although the amyloid deposits have spread to Len’s hand and feet, he is still able to live his life.

Len ended his speech by telling the crowd,

“Make the best of the time you have, if I can do it, so can you.”

Dr. Lauge Farnaes

The challenges Len faced with getting a proper diagnosis brought up the need for technology that can better screen rare diseases. The next presenter, Dr. Lauge Farnaes of Rady Children’s Institute for Genomic Medicine, discussed a project that focused on just that. Under a two million dollar Medi-Cal program titled Project Baby Bear, Dr. Farnaes and his team have used genome sequencing as a diagnostic test for critically ill newborns. The ultimate goal is to get this screening as a Medi-Cal covered benefit.

Comprehensive early testing enables physicians to make early decisions about and minimize the damage accumulated before diagnosis. “We have a chance to go in early on and make a difference in the life of patients.” said Farnaes.

Dr. Farnaes told stories of some of the children enrolled in the screening program. One was a young girl that had problems related to the heart. She was enrolled February 6th and diagnosed two days later with Timothy Syndrome, making her one of the youngest patients ever diagnosed. She was implanted with a defibrillator to help with her heart problems. Dr. Farnaes had stated that without the screening, she would have likely just been prescribed beta blockers, which would only have worsened her condition.

Another child enrolled in the program had difficulty breathing as a result of bone fractures. Because of the bone fractures, it was thought that the child had undergone abuse at the hands of the parents. However, thanks to the screening technology, it was found to be the result of a genetic condition. Dr. Farnaes talked about how this technology vindicated the parents, who were already going through the difficult process of having a sick child without throwing other problems into the mix.

To date, 116 children have been diagnosed with genetic conditions early on using this technology and the number is expected to eventually approach 150.

Last, but not least, Assemblymember Mike Gipson shared an update on the work that the rare disease caucus has made with relation to sickle cell disease. He mentioned how the legislative black caucus had successfully advocated for allocating $15 million for sickle cell disease. This money will be used to open seven new sickle cell centers across California.

The meeting in the California Capitol highlighted the impact that patient stories have on policy, as well as the ongoing need of funding and new technologies to address the disparities in rare disease.

CIRM board member Lauren Miller Rogen appointed to California Alzheimer’s Task Force

Lauren Miller Rogen, Hilarity for Charity co-founder and CIRM Board Member

California has the largest aging population in the United States. The U.S. Census Bureau has estimated that one in five Californians will be 65 or older by the year 2030. Unfortunately with age comes a wide of health related issues that can arise such as Alzheimer’s.

Alzheimer’s is caused by changes in the brain that affect memory and thinking skills. The disease can progress to the point where carrying out the simplest tasks become quite a challenge. In the United States alone, 5.8 million people are living with Alzheimer’s, 630,000 of whom live in California. By 2050, the number of people with Alzheimer’s in the United States is expected to increase to almost 14 million.

To address this growing problem, California Governor Gavin Newsom announced the creation of a California Alzheimer’s Task Force comprised of scientists, politicians, and other individuals dedicated to addressing the needs of the Alzheimer’s community and the impact the disease has on California. The new task force has been tasked with releasing a report on the disease and ways to address the challenges it poses by 2020.

One of these task force members is our very own Lauren Miller Rogen, who is a dedicated member of our governing Board and the co-founder of Hilarity for Charity, a charity organization that raises awareness about and funds for research into Alzheimer’s. In addition to her advocacy work, Lauren is also a screenwriter and actress, staring alongside her husband Seth Rogen in movies such as 50/50 and Superbad.

“I’m so honored to join the Task Force to fight for the 670,000 Californians currently living with Alzheimer’s and for those who care for them,” Miller Rogen said. “This is a tremendous and diverse group who intend to create and propose real ideas to change the course of this disease.”

For Lauren, her journey towards becoming an advocate for Alzheimer’s is a very personal one. Her grandfather died of Alzheimer’s when she was just 12 years old and her grandmother died of the disease six years after that. Now, her mother is struggling with Alzheimer’s, having been diagnosed at the age of 55.

You can read more about Lauren’s story on a previous blog post.

CIRM have given awards totaling over $56 million throughout the years dedicated towards Alzheimer’s related research.

Drug used to treat multiple sclerosis may improve glioblastoma outcomes

Dr. Jeremy Rich, UC San Diego

Glioblastoma is an aggressive form of cancer that invades brain tissue, making it extremely difficult to treat. Current therapies involving radiation and chemotherapy are effective in destroying the bulk of brain cancer cells, but they are not able to reach the brain cancer stem cells, which have the ability to grow and multiply indefinitely. These cancer stem cells enable the glioblastoma to continuously grow even after treatment, which leads to recurring tumor formation.

Dr. Jeremy Rich and his team at UC San Diego examined glioblastomas further by obtaining glioblastoma tumor samples donated by patients that underwent surgery and implanting these into mice. Dr. Rich and his team tested a combinational treatment that included a targeted cancer therapy alongside a drug named teriflunomide, which is used to treatment patients with multiple sclerosis. The research team found that this approach successfully halted the growth of glioblastoma stem cells, shrank the tumor size, and improved survival in the mice.

In order to continue replicating, glioblastoma stem cells make pyrimidine, one of the compounds that make up DNA. Dr. Rich and his team noticed that higher rates of pyrimidine were associated with poor survival rates in glioblastoma patients. Teriflunomide works by blocking an enzyme that is necessary to make pyrmidine, therefore inhibiting glioblastoma stem cell replication.

In a press release, Dr. Rich talks about the potential these findings hold by stating that,

“We’re excited about these results, especially because we’re talking about a drug that’s already known to be safe in humans.”

However, he comments on the need to evaluate this approach further by saying that,

“This laboratory model isn’t perfect — yes it uses human patient samples, yet it still lacks the context a glioblastoma would have in the human body, such as interaction with the immune system, which we know plays an important role in determining tumor growth and survival. Before this drug could become available to patients with glioblastoma, human clinical trials would be necessary to support its safety and efficacy.”

The full results to this study were published in Science Translational Medicine.