Tiny organs grown from snake stem cells produce real venom

Researchers grew tiny venom glands from nine different snake species, including the cape coral cobra pictured above.
Photo Credit: Michael D. Kern/Science Source

Snake venom can be deadly without proper treatment. Interestingly enough, it may also hold the key for treatments against pain, high blood pressure, and cancer according to one analysis. Despite this, scientists still do not understand much about the biology behind the wide range of different snake venoms, which can make it challenging to develop effective treatments in the event of snake bites.

Fortunately, a new study by Dr. Hans Clevers and his team at the Hubrecht Institute in the Netherlands could significantly aid the understanding of snake venom. Dr. Clevers and his team were able to grow miniature snake venom glands using snake stem cells. What’s more remarkable is that these “mini-organs” produced real venom!

Miniature, lab-grown snake venom glands
 Photo Credit: Ravian van Ineveld/Princess Maxima Center

In an article posted in Science Magazine, Dr. Clevers talks about how his study was navigating uncharted waters.

“Nobody knew anything about stem cells in snakes. We didn’t know if it was possible at all.”

To produce these “mini-organs”, the researchers removed the stem cells from the venom glands of nine different types of snake and placed them in a mixture of growth factors that contained different hormones and proteins. It turns out that the snake stem cells responded to the same factors used on human and mouse stem cells.

Eventually, the stem cells grew into little clumps of tissue and when the researchers removed the growth factors, they started to change into the same kind of cells that produce venom in the glands of snakes. Additionally, they were able to find that these “mini-organs” expressed similar genes as those observed in real venom glands.

The scientists were even able to test the nature of the “mini-organ” venom as well. A chemical and genetic analysis of the venom revealed that it matched the one made by real snakes. After testing this venom on mouse muscle cells and rat neurons, they also found that it damaged these cells similar to real venom.

The type of toxins and concentration levels can vary drastically in snake venom, even within the same species. This can make developing treatments challenging since they can only be used to combat one type of venom.

Dr. Clevers and his team now plan to study the complexities of venom and venom glands by compiling a “biobank” of frozen organoids from venomous reptiles around the world that could help researchers find broader treatments. With the aid of their newly developed “mini-organs”, all of this can be done without the handling of live, dangerous snakes, some of which are rare and difficult to keep in captivity.

The full results of this study were published in Cell.

Two studies identify a molecule that could be used to block Zika virus and kill cancer cells

Dr. Tariq Rana (left) and Dr. Jeremy Rich (right) both lead independent teams at UC San Diego that identified a molecule, αvβ5 integrin, as the Zika virus’ key to getting into brain stem cells

Zika virus is caused by a virus transmitted by Aedes mosquitoes. People usually develop mild symptoms that include fever, rash, and muscle and joint pain. However, Zika virus infection during pregnancy can lead to much more serious problems. The virus causes infants to be born with microcephaly, a condition in which the brain does not develop properly, resulting in an abnormally small head. In 2015-2016, the rapid spread of the virus was observed in Latin America and the Caribbean, increasing the urgency of understanding how the virus affected brain development.

Working independently, Dr. Tariq Rana and Dr. Jeremy Rich from UC San Diego identified the same molecule, αvβ5 integrin, as the Zika virus’ key to entering brain stem cells. The two studies, with the aid of CIRM funding, discovered how to take advantage of the molecule in order to block the Zika virus from infecting cells. In addition to this, they were able to turn it into something useful: a way to destroy brain cancer stem cells.

In the first study, Dr. Rana and his team used CRISPR gene editing on brain cancer stem cells to delete individual genes, which was done to see which genes are required for the Zika virus to enter the cells. They discovered that the gene responsible for αvβ5 integrin also enabled the Zika virus.

In a press release by UC San Diego, Dr. Rana elaborates on the importance of his findings.

“…we found Zika uses αvβ5, which is unique. When we further examined αvβ5 expression in brain, it made perfect sense because αvβ5 is the only integrin member enriched in neural stem cells, which Zika preferentially infects. Therefore, we believe that αvβ5 is the key contributor to Zika’s ability to infect brain cells.”

In the second study, Dr. Rich and his team use an antibody to block αvβ5 integrin and found that it prevented the virus from infecting brain cancer stem cells and normal brain stem cells. The team then went on to block αvβ5 integrin in a mouse model for glioblastoma, an aggressive type of brain tumor, by using an antibody or deactivating the gene responsible for the molecule. Both approaches blocked Zika virus infection and allowed the treated mice to live longer than untreated mice. 

Dr. Rich then partnered with Dr. Alysson Muotri at UC San Diego to transplant glioblastoma tumors into laboratory “mini-brains” that can be used for drug discovery. The researchers discovered that Zika virus selectively eliminates glioblastoma stem cells from the mini-brains. Additionally, blocking αvβ5 integrin reversed that anti-cancer activity, further demonstrating the molecule’s crucial role in Zika virus’ ability to destroy cells.

In the same UC San Diego press release, Dr. Rich talks about how understanding Zika virus could help in treating glioblastoma.

“While we would likely need to modify the normal Zika virus to make it safer to treat brain tumors, we may also be able to take advantage of the mechanisms the virus uses to destroy cells to improve the way we treat glioblastoma.”

Dr. Rana’s full study was published in Cell Reports and Dr. Rich’s full study was published in Cell Stem Cell.

Researchers create "xenobot" – world’s first living, self-healing robots created from frog stem cells

Artificial Intelligence methods automatically design diverse candidate lifeforms in simulation (top row) to perform some desired function, and transferable designs are then created using a cell-based construction toolkit to realize living systems (bottom row) with the predicted behaviors. Image credit: https://cdorgs.github.io/

The thought of microscopic robots brings the image of Hollywood blockbusters such as “Terminator” and other science-fiction movies to mind that are set years into the distant future. But a group of scientists have gotten one step closer to bringing these elements only seen on the big screen to reality.

Researchers at the University of Vermont and Tufts University were able to create what they call “xenobots” – the world’s first living, self healing robots created from frog stem cells. Named after the African clawed frog, Xenopus laevis, they are tiny blobs of moving cells made from stem cells obtained from frog embryos. They are less than a millimeter wide, making them small enough to travel inside the human body. Additionally, they have the ability to walk and swim, survive for weeks without food, and work together in groups.

Here is a brief video showing what these cells look like under the microscope:

The researchers were able take the stem cells from the embryo and increased their numbers by incubating them. After this, the cells were cut and rejoined using tiny forceps under a microscope into specific forms designed by artificial intelligence. These newly created forms are ones not found in nature and what is more remarkable is that they started working together. The skin cells bonded to form a structure while the heart cells worked together to create motion. These cells also displayed the ability to heal themselves after being cut.

In a news release from the University of Vermont, Dr. Josh Bongard, who co-led this research, described the xenobots in more detail.

“These are novel living machines. They’re neither a traditional robot nor a known species of animal. It’s a new class of artifact: a living, programmable organism.”

In the same news release, Dr. Michael Levin, who also co-led this research, talks about the possibilities these xenobots have for real world applications for a wide range of issues.

“We can imagine many useful applications of these living robots that other machines can’t do, like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans, traveling in arteries to scrape out plaque.”

The full results to this study was published in the Proceedings of the National Academy of Sciences (PNAS).

You can learn more about this work in the video below:

Human immune cells made using pluripotent stem cells in world first

Dr. Andrew Elfanty (left) and Dr. Ed Stanley (right), Murdoch Children’s Research Institute in Melbourne, Australia

Our immune system is the first line of defense our bodies use to fight off infections and disease. One crucial component of this defense mechanism are lymphocytes, which are specialized cells that give rise to various kinds of immune cells, such as a T cell, designed to attack and destroy harmful foreign bodies. Problems in how certain immune cells are formed can lead to diseases such as leukemia and other immune system related disorders.

But how exactly do immune cells form early on in the body?

Dr. Andrew Elfanty and Dr. Ed Stanley at Murdoch Children’s Research Institute in Australia have reproduced and visualized a method in the laboratory used to create human immune cells from pluripotent stem cells, a kind of stem cell that can make virtually any kind of cell in the body. Not only can this unlock a better understanding of leukemia and other immune related diseases, it could potentially lead to a patient’s own skin cells being used to produce new cells for cancer immunotherapy or to test autoimmune disease therapies.

Dr. Elefanty and Dr. Stanley used genetic engineering and a unique way of growing stem cells to make this discovery.

As observed in this video, the team was able to engineer pluripotent stem cells to glow green when they expressed a specific protein found in early immune cells. These cells can be seen migrating along blood vessels outlined in red. These cells go on to populate the thymus, which as we discussed in an earlier blog, is an organ that is crucial in developing functional T cells.

In a press release from Murdoch Children’s Research Institute, Dr. Stanley talks about the important role these early immune cells might play.

“We think these early cells might be important for the correct maturation of the thymus, the organ that acts as a nursery for T-cells”

In addition to this, the team also isolated the green, glowing pluripotent stem cells and showed that they could be used for multiple immune cell types, including those necessary for shaping the development of the immune system as a whole.

In the same press release, Dr. Elefanty discusses the future direction that their research could lead to.

“Although a clinical application is likely still years away, we can use this new knowledge to test ideas about how diseases like childhood leukemia and type 1 diabetes develop. Understanding more about the steps these cells go through, and how we can more efficiently nudge them down a desired pathway, is going to be crucial to that process.”

The full results to this study were published in Nature Cell Biology.

CIRM supported study of gene silencer blocks ALS degeneration, saves motor function

Dr. Martin Marsala, UC San Diego

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that destroys the nerve cells in the brain and spinal cord. As a result of ALS, the motor neurons that enable bodily movement and muscle control are harmed, which can make it difficult to move, speak, eat, and breathe. This condition usually affects people from age 40 to 70, but individuals in their 20s and 30s have also been known to develop ALS. Unfortunately there is no cure for this condition.

However, a study supported by CIRM and conducted by Dr. Martin Marsala at UC San Diego is using a mouse model to look at an approach that uses a gene silencer to protect motor neurons before or shortly after ALS symptoms start to develop.

The gene silencer works by turning off a targeted gene and is delivered via injection. In the case of ALS, previous research suggests that mutations in a gene called SOD1 may cause motor neuronal cell death, resulting in ALS. For this study, Dr. Marsala and his team injected the gene silencer at two sites in the spinal cord in adult mice expressing an ALS-causing mutation of the SOD1 gene. The mice injected did not yet display symptoms of ALS or had only begun showing symptoms.

In mice not yet showing ALS symptoms, they displayed normal neurological function with no onset ALS symptoms after treatment. Additionally, near complete protection of motor neurons and other cells was observed. In mice that had just began showing ALS symptoms, the injection blocked further disease progression as well as further harm to remaining motor neurons. Both of these groups of mice lived without negative side effects for the duration of the study.

In a news release, Dr. Marsala talks about what these results mean for the study of ALS.

“At present, this therapeutic approach provides the most potent therapy ever demonstrated in mouse models of mutated SOD1 gene-linked ALS.”

The next steps for this research would be to conduct additional safety studies with a larger animal model in order to determine an optimal, safe dose for the treatment.

The full results of this study were published in Nature Medicine.

In addition to supporting this research for ALS, CIRM has funded two clinical trials in the field as well. One of these trials is being conducted by BrainStorm Cell Therapeutics and the other trial is being by Cedars-Sinai Medical Center.

CIRM funded study may help explain why some people with cystic fibrosis are less prone to infection

Dr. Kelly A. Frazer, UC San Diego School of Medicine

Cystic fibrosis is a disorder that mostly affects the lungs. It is caused by a mutation in a gene called cystic fibrosis transmembrane conductance regulator (CFTR). As a result of this mutation, cells that produce mucus (a slimy substance like the one in your nose) secrete a thicker-than-normal mucus that can create blockages in the lungs and digestive system. In the lungs, this thicker mucus is a perfect breeding ground for bacteria, leading to more chronic lung infections in those with cystic fibrosis.

However, some people with cystic fibrosis don’t develop lung infections as early or as often as others with the disorder. Thanks to a CIRM funded study, Dr. Kelly Frazer and her team at the UC San Diego School of Medicine have discovered why this might happen.

In healthy people, the CFTR protein is embedded in the membrane of most cells, where it forms a channel for chlorine ions. In people with cystic fibrosis, an inherited mutation in the CFTR gene means their channels don’t work as well and cells produce more mucus. The RNF5 protein inhibits CFTR, so people with cystic fibrosis who have genetic variations that decrease RNF5 expression have CFTR channels that function a little better, and thus aren’t as prone to infections as people with high RNF5 expression.

Before we get into that, we need to dive a bit deeper into cystic fibrosis and what causes this thicker-than normal mucus. In healthy people, CFTR is embedded in the membrane of most cells, where it forms a channel that allows chloride – a component of salt – to travel through. This flow ensures that cells have the right balance of salt and water. In people with cystic fibrosis, the CFTR mutation means that the channel doesn’t work as well, the flow of water is blocked resulting in more thick and sticky mucus. There are medications that can help boost CFTR, but they are very expensive and don’t work for everyone.

Dr. Frazer and her team discovered that a gene, called RNF5, also prevents CFTR from functioning well. People with cystic fibrosis who have lower levels of RNF5 have channels that function better, with less mucus build up, compared to people with higher levels of RNF5. This could potentially explain why some with cystic fibrosis get more chronic lung infections compared to others with the condition.

In a press release by UC San Diego School of Medicine, Dr. Frazer talks about how RNF5 could play a role in treating patients.

“The cystic fibrosis field is trying to figure out what are the modifiers across the genome that increase or decrease the probability that an individual patient will respond to these expensive drugs. RNF5 may be one of these modifier genes.”

In the same press release, Dr. Matteo D’Antonio, a project scientist in Dr. Frazer’s lab, talks about how these findings could result in more personalized treatments for people with cystic fibrosis.

“This study uncovered a new aspect of cystic fibrosis — one that could lead to new drug design and development, and allow clinicians to better tailor treatments.”

The full study was published in eLife.

Four CIRM Funded Trials Release Results at 2019 ASH Meeting

With more than 17,000 members from nearly 100 countries, the American Society of Hematology (ASH) is an organization composed of clinicians and scientists around the world working to conquer various blood diseases. Currently, they are having their 61st Annual ASH Meeting to highlight some of the exciting work going on in the field. Four of our CIRM funded trials have released promising results at this conference and we wanted to take the opportunity to highlight them below.

Sangamo Therapeutics

Sangamo Therapeutics is conducting a CIRM-funded clinical trial for beta-thalassemia, a severe form of anemia caused by mutations in the hemoglobin gene. The therapy Sangamo is testing takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), provides a functional copy of the hemoglobin gene. These modified cells are then given back to the patient. The company announced preliminary results from their first three patients treated. in the clinical trials at the ASH 2019 Conference as well.

Some of the highlights are the following:

  • The first three patients experienced prompt hematopoietic reconstitution, meaning that their supply of blood stem cells was restored.
  • The first three patients experienced no clonal hematopoiesis, meaning that the blood stem cells did not create cells with mutations in the DNA
  • Additional study results are expected in late 2020 once enrollment is complete and all six patients have longer follow-up

You can read more detailed results regarding the first three patients in the press release.

Forty Seven, Inc.

In another CIRM funded trial, Forty Seven, Inc. is testing a treatment for myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The treatment involves an antibody called magrolimab in combination with the chemotherapy drug azacitidine. Cancer cells express a signal that send a “don’t eat me” message to white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect these evasive cancer cells. The goal is to use both magrolimab and azacitidine to make the cancer stem cells vulnerable to being attacked and destroyed by the immune system.

Of the 46 patients evaluated, 24 patients had untreated higher-risk MDS and 22 patients had untreated AML. None of the patients were eligible for treatment with chemotherapy.

In higher-risk MDS, the overall response rate (ORR), which is the proportion of patients in a trial whose tumor is destroyed or significantly reduced by a treatment, was 92%.

Within this group of patients with an ORR, the following was observed:

  • 12 patients (50%) achieved a complete response (CR), meaning that they experienced a disappearance of all signs of cancer in response to treatment.
  • Two patients (8%) achieved hematologic (blood) improvement. 
  • Additionally, two patients (8%) achieved stable disease, meaning the cancer is neither increasing nor decreasing in extent or severity.

In untreated AML, the ORR was 64% and the following was observed within this group patients with an ORR:

  • Nine patients (41%) achieved a CR
  • Three patients (14%) achieved a CR with an incomplete blood count recovery (CRi)
  • One patient (5%) achieved a morphologic leukemia-free state (MLFS), which is defined as the disappearance of all cells with morphologic characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment.
  • Seven patients (32%) achieved stable disease (SD)

The median time to response among MDS and AML patients treated with the combination was 1.9 months.

More details regarding these results are available via the news release.

Oncternal Therapeutics

Onceternal Therapeutics, which is conducting a CIRM-funded trial for a treatment for lymphoma and leukemia, presented results at the 2019 ASH Meeting. The treatment involves an antibody called cirmtuzumab (named after yours truly) being used with a cancer fighting drug called ibrutinib. The antibody recognizes and attaches to a protein on the surface of cancer stem cells. This attachment disables the protein, which slows the growth of the leukemia and makes it more vulnerable to anti-cancer drugs.

Some of the results presented are summarized as follows:

  • Twenty-nine of the 34 patients achieved a response, for an overall best objective response rate of 85%.
  • One patient achieved a complete response (CR) and remained in remission six months after completion of the trial and discontinuation of all anti-CLL therapy. In addition, three patients met radiographic and hematologic response criteria for Clinical CR.
  • Five patients had stable disease.
  • The total clinical benefit rate was 100%.
  • None of the patients died or saw their disease progress.
  • Patients achieved responses rapidly, with 68% of patients achieving a clinical response by three months on the combination therapy.
  • The rise in leukemic cell counts that is typically seen in the first six months with ibrutinib by itself was blunted with the addition of cirmtuzumab, and leukemic cell counts returned toward baseline and normal levels rapidly.

You can read more about these results in the official press release.

Rocket Pharmaceuticals

Last, but not least, Rocket Pharmaceuticals presented results at the 2019 ASH Conference related to a CIRM-funded trial for Leukocyte Adhesion Deficiency-I (LAD-I), a rare pediatric disease caused by a mutation in a specific gene that affects the body’s ability to combat infections. As a result, there is low expression of neutrophil (CD18). The company is testing a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient. The goal is to establish functional immune cells, enabling the body to combat infections.  

Here are some of the highlights from the presentation:

  • Initial results from the first pediatric patient treated demonstrate early evidence of safety and potential effectiveness. 
  • The patient exhibited early signs of engraftment
  •  The patient also displayed visible improvement of multiple disease-related skin lesions after receiving therapy
  •  No safety issues related to administration have been identified

More detailed results on this trial are available via the news release.

Join us December 12th for our Facebook Live Event – Ask the Stem Cell Experts

Several weeks ago, we asked all of you to submit questions related to stem cell research in order to get them answered by experts in the field right here in our office.

Your responses have been remarkable and we have gotten some really great questions we are excited to answer in live time. These questions ranged from the impact stem cell research has had on various disease areas to differentiating legitimate clinical trials from sham treatments being offered by predatory stem cell clinics.

For those of you that might have missed the previous announcement, this is all happening in a special Facebook Live “Ask the Stem Cell Team” event on Thursday, December 12th from 10.30am to 11.30am PDT. Just tune in to our Facebook page at that date and time listed for a live video streaming!

We will do our best to answer all the questions that were submitted to us. Additionally, for those who did not get a chance to email us, you can also submit questions in the comments section of the Facebook live event in real time. If we do not get to your question, don’t worry! We will answer it in a blog at a later date.

As a preview of this event, we wanted to showcase some of the questions submitted to us that will be answered in live time. You’ll have to wait until next week to get the answers so be sure to tune in!

Question

1. What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state?

2. What’s going on with Stanford’s stem cell trials for stroke?

3. I am a stroke survivor; will stem cell treatment able to restore my motor skills?

4. Could stem cells help hemorrhagic stroke patients as well?

5. Can stem cells possibly help with my vision issues?

6. Is there any stem cell therapy for optical nerve damage?

7. When will jCyte publish their Phase IIb clinical trial results?

8. What advances have been made using stem cells for the treatment of Type 2 Diabetes?

9. Is there any news on clinical trials for spinal cord injury?

10. Now that the Brainstorm ALS trial is finished looking for new patients, do you have any idea how it’s going and when can we expect to see results?

11. Are there treatments for Autism or Fragile X Syndrome using stem cells?

12. What is happening with Parkinson’s research?

13. Any plans for Huntington’s?

14. What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?

15. I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?

16. Do stem cells have benefits for patients going through chemotherapy and radiation therapy?

17. Is it possible to use a technique developed to fight one disease to also fight another?

18. Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages?

19. What is the future of the use of CRISPR/Cas9 in clinical trials in California and globally?

20. Explain the differences between gene therapy and stem cell therapy?

21. Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?

22. Is there any research on using stem cells to increase the length of long bones in people?

Two CIRM supported studies highlighted in Nature as promising approaches for blood disorders

Blood stem cells (blue) are cleared from the bone marrow (purple) before new stem cells can be transplanted.Credit: Dennis Kunkel Microscopy/SPL

Problems with blood stem cells, a type of stem cell in your bone marrow that gives rise to various kinds of blood cells, can sometimes result in blood cancer as well as genetic and autoimmune diseases.

It is because of this that researchers have looked towards blood stem cell transplants, which involves replacing a person’s defective blood stem cells with healthy ones take from either a donor or the patient themselves.

However, before this can be done, the existing population of defective stem cells must be eradicated in order to allow the transplanted blood stem cells to properly anchor themselves into the bone marrow. Current options for this include full-body radiation or chemotherapy, but these approaches are extremely toxic.

But what if there was a way to selectively target these blood stem cells in order to make the transplants much safer?

An article published in Nature highlights the advancements made in the field of blood stem cell transplantation, some of which is work that is funded by yours truly.

One of the approaches highlighted involves the work that we funded related to Forty Seven and an antibody created that inhibits a protein called CD47.

The article discusses how Forty Seven tested two antibodies in monkeys. One antibody blocks the activity of a molecule called c-Kit, which is found on blood stem cells. The other is the antibody that blocks CD47, which is found on some immune cells. Inhibiting CD47 allows those immune cells to sweep up the stem cells that were targeted by the c-Kit antibody, thereby boosting its effectiveness. In early tests, the two antibodies used together reduced the number of blood stem cells in bone marrow. The next step for this team is to demonstrate that the treatment clears out the old supply of stem cells well enough to allow transplanted cells to flourish.

You can read more about the CD47 antibody in a previous blog post.

Another notable segment of this article is the CIRM funded trial that is being conducted by Dr. Judith Shizuru at Stanford University. This clinical trial also uses an antibody that targets c-Kit found on blood stem cells.

The purpose of this trial is to wipe out the problematic blood stem cells in infants with X-linked Severe combined immunodeficiency (SCID), a rare fatal genetic disorder that leaves infants without a functional immune system, in order to introduce properly functioning blood stem cells. Dr. Shizuru and her team found that transplanted blood stem cells, in this case from donors who did not have the disease, successfully took hold in the bone marrow of four out of six of the babies.

You can read more about Dr. Shizuru’s work in a previous blog post as well.

What to be thankful for this Thanksgiving: scientists hard at work

Biomedical technician Louis Pinedo feeds stem cells their special diet. Photo by Cedars-Sinai.

With Thanksgiving and Black Friday approaching in the next couple of days, we wanted to give thanks to all the scientists hard at work during this holiday weekend. Science does not sleep–the groundbreaking research and experiments that are being conducted do not take days off. There are tasks in the laboratory that need to be done daily otherwise months, even years, of important work can be lost in an instant.

Below is a story from Cedars-Sinai Medical Center that talks about one of these scientists, Louis Pinedo, that will be working during this holiday weekend.

Stem Cells Don’t Take the Day Off on Thanksgiving

Inside a Cedars-Sinai Laboratory, Where a Scientist Will be Busy Feeding Stem Cells During the Holiday

While most of us are stuffing ourselves with turkey and pumpkin pie at home on Thanksgiving Day, the staff at one Cedars-Sinai laboratory will be on the job, feeding stem cells.

“Stem cells do not observe national holidays,” says Loren Ornelas-Menendez, the manager of a lab that converts samples of adult skin and blood cells into stem cells—the amazing “factories” our bodies use to make our cells. These special cells help medical scientists learn how diseases develop and how they might be cured.

Stem cells are living creatures that must be hand-fed a special formula each day, monitored for defects and maintained at just the right temperature. And that means the cell lab is staffed every day, 52 weeks a year.

These cells are so needy that Ornelas-Menendez jokes: “Many people have dogs. We have stem cells.”

Millions of living stem cells are stored in the David and Janet Polak Foundation Stem Cell Core Laboratory at the Cedars-Sinai Board of Governors Regenerative Medicine Institute. Derived from hundreds of healthy donors and patients, they represent a catalogue of human ills, including diabetes, breast cancer, Alzheimer’s disease, Parkinson’s disease and Crohn’s disease.

Cedars-Sinai scientists rely on stem cells for many tasks: to make important discoveries about how our brains develop; to grow tiny versions of human tissues for research; and to create experimental treatments for blindness and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) that they are testing in clinical trials.

The lab’s main collection consists of induced pluripotent stem cells, or iPSCs, which mimic the all-powerful stem cells we all had as embryos. These ingenious cells, which Cedars-Sinai scientists genetically engineer from adult cells, can make any type of cell in the body—each one matching the DNA of the donor. Other types of stem cells in the lab make only one or two kinds of cells, such as brain or intestinal cells.

Handy and versatile as they are, stem cells are high-maintenance. A few types, such as those that make connective tissue cells for wound healing, can be fed as infrequently as every few days. But iPSCs require a daily meal to stay alive, plus daily culling to weed out cells that have started to turn into cells of the gut, brain, breast or other unwanted tissues.

So each day, lab staff suit up and remove trays of stem cells from incubators that are set at a cozy 98.6 degrees. Peering through microscopes, they carefully remove the “bad” cells to ensure the purity of the iPSCs they will provide to researchers at Cedars-Sinai and around the world.

While the cells get sorted, a special feeding formula is defrosting in a dozen bottles spread around a lab bench. The formula incudes sodium, glucose, vitamins and proteins. Using pipettes, employees squeeze the liquid into food wells inside little compartments that contain the iPSCs. Afterward, they return the cells to their incubators.

The lab’s 10 employees are on a rotating schedule that ensures the lab is staffed on weekends and holidays, not just weekdays. On Thanksgiving Day this year, biomedical technician Louis Pinedo expects to make a 100-mile round trip from his home in Oxnard, California, to spend several hours at work, filling nearly 600 feeding wells. On both Christmas and New Year’s Day, two employees are expected to staff the lab.

All this ceaseless effort helps make Cedars-Sinai one of the world’s top providers of iPSCs, renowned for consistency and quality. Among the lab’s many clients are major universities and the global Answer ALS project, which is using the cells in its search for a cure for this devastating disease.

That’s why the lab’s director, Dhruv Sareen, PhD, suggests that before you sit down to your Thanksgiving feast, why not lift a glass to these hard-working lab employees?

“One day the cells they tend could lead to treatments for diseases that have plagued humankind for centuries,” he says. “And that’s something to be truly thankful for.”