Stanford study successful in transplant of mismatched stem cells, tissue in mice

Dr. Irv Weissman at Stanford University

A transplant can be a lifesaving procedure for many people across the United States. In fact, according to the Health Resources & Services Administration, 36,528 transplants were performed in 2018. However, as of January 2019, the number of men, women, and children on the national transplant waiting list is over 113,000, with 20 people dying each day waiting for a transplant and a new person being added to the list every 10 minutes.

Before considering a transplant, there needs to be an immunological match between the donated tissue and/or blood stem cells and the recipient. To put it simply, a “match” indicates that the donor’s cells will not be marked by the recipient’s immune cells as foreign and begin to attack it, a process known as graft-versus-host disease. Unfortunately, these matches can be challenging to find, particularly for some ethnic minorities. Often times, immunosuppression drugs are also needed in order to prevent the foreign cells from being attacked by the body’s immune system. Additionally, chemotherapy and radiation are often needed as well.

Fortunately, a CIRM-funded study at Stanford has shown some promising results towards addressing the issue of matching donor cells and recipient. Dr. Irv Weissman and his colleagues at Stanford have found a way to prepare mice for a transplant of blood stem cells, even when donor and recipient are an immunological mismatch. Their method involved using a combination of six specific antibodies and does not require ongoing immunosuppression.

The combination of antibodies did this by eliminating several types of immune cells in the animals’ bone marrow, which allowed blood stem cells to engraft and begin producing blood and immune cells without the need for continued immunosuppression. The blood stem cells used were haploidentical, which, to put it simply, is what naturally occurs between parent and child, or between about half of all siblings. 

Additional experiments also showed that the mice treated with the six antibodies could also accept completely mismatched purified blood stem cells, such as those that might be obtained from an embryonic stem cell line. 

The results established in this mouse model could one day lay the foundation necessary to utilize this approach in humans after conducting clinical trials. The idea would be that a patient that needs a transplanted organ could first undergo a safe, gentle transplant with blood stem cells derived in the laboratory from embryonic stem cells. The same embryonic stem cells could also then be used to generate an organ that would be fully accepted by the recipient without requiring the need for long-term treatment with drugs to suppress the immune system. 

In a news release, Dr. Weissman is quoted as saying,

“With support by the California Institute for Regenerative Medicine, we’ve been able to make important advances in human embryonic stem cell research. In the past, these stem cell transplants have required a complete match to avoid rejection and reduce the chance of graft-versus-host disease. But in a family with four siblings the odds of having a sibling who matches the patient this closely are only one in four. Now we’ve shown in mice that a ‘half match,’ which occurs between parents and children or in two of every four siblings, works without the need for radiation, chemotherapy or ongoing immunosuppression. This may open up the possibility of transplant for nearly everyone who needs it. Additionally, the immune tolerance we’re able to induce should in the future allow the co-transplantation of [blood] stem cells and tissues, such as insulin-producing cells or even organs generated from the same embryonic stem cell line.”

The full results to this study were published in Cell Stem Cell.

Salk scientists discover new findings related to the age of organs

Dr. Rafael Arrojo e Drigo (left) and Dr. Martin Hetzer (right) at the Salk Institute in San Diego

It has been a long held belief in the scientific community that nerve cells, or possibly the heart, are the oldest cells in the body. This is due to the fact that the brain and heart are the first organs that begin to develop in the womb. Nerve cells have an average lifespan of approximately 80 years without the need of generating new cells. It has been difficult to determine the approximate age of other organs such as the liver and pancreas in the body until now.

Dr. Rafael Arrojo e Drigo and Dr. Martin Hetzer, scientists at the Salk Institute, have discovered a population of cells that reside in the mouse brain, liver, and pancreas that have extremely long lifespans. In some cases, some of these cells were the same age as the animal they were found in. The scientists used a complex labeling and imaging procedure to determine cell age in a mouse model.

Furthermore, the scientists also found that the brain, liver, and pancreas in the mice contain a mixture of “old” and “young” cells, like a mosaic painting composed of small, different colored pieces. They called this phenomenon age mosaicism, referring to the population of identical cells that could only be distinguished by lifespan.

Their method could be applied to other types of tissue in the body, which could provide valuable information, such as the lifelong function of non-dividing cells and how cells lose control over the quality and integrity of important cell structures during aging. The answers to these questions play a key role in understanding ways to prevent the age-related degeneration of organs, such as the brain in Alzheimer’s Disease or the pancreas in Type II Diabetes.

In a press release, Dr. Hetzer is quoted as saying that,

“Determining the age of cells and subcellular structures in adult organisms will provide new insights into cell maintenance and repair mechanisms and the impact of cumulative changes during adulthood on health and development of disease. The ultimate goal is to utilize these mechanisms to prevent or delay age-related decline of organs with limited cell renewal such as the brain, pancreas and heart.”

The full results of the study were published in Cell Metabolism.

You can also see a youtube video below of Dr. Rafael Arrojo e Drigo and Dr. Martin Hetzer discussing their findings.

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

An Organ-Chip used in the study to create a blood-brain barrier (BBB).

The brain is a complex part of the human body that allows for the formation of thoughts and consciousness. In many ways it is the essence of who we are as individuals. Because of its importance, our bodies have developed various layers of protection around this vital organ, one of which is called the blood-brain barrier (BBB).

The BBB is a thin border of various cell types around the brain that regulate what can enter the brain tissue through the bloodstream. Its primary purpose is to prevent toxins and other unwanted substances from entering the brain and damaging it. Unfortunately this barrier can also prevent helpful medications, designed to fix problems, from reaching the brain.

Several brain disorders, such as Amyotrophic Lateral Sclerosis (ALS – also known as Lou Gehrig’s disease), Parkinson’s Disease (PD), and Huntington’s Disease (HD) have been linked to defective BBBs that keep out critical biomolecules needed for healthy brain activity.

In a CIRM-funded study, a team at Cedars-Sinai Medical Center created a BBB through the use of stem cells and an Organ-Chip made from induced pluripotent stem cells (iPSCs). These are a specific type of stem cells that can turn into any type of cell in the body and can be generated from a person’s own cells. In this study, iPSCs were created from adult blood samples and used to make the neurons and other supporting cells that make up the BBB. These cells were then placed inside an Organ-Chip which recreates the environment that cells normally experience within the human body.

Inside the 3-D Organ-Chip, the cells were able to form a BBB that functions as it does in the body, with the ability to block entry of certain drugs. Most notably, when the BBB was generated from cell samples of patients with HD, the BBB malfunctioned in the same way that it does in patients with the disease.

These findings expand the potential for personalized medicine for various brain disorders linked to problems in the BBB. In a press release, Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and senior author of the study, was quoted as saying,

“The study’s findings open a promising pathway for precision medicine. The possibility of using a patient-specific, multicellular model of a blood barrier on a chip represents a new standard for developing predictive, personalized medicine.”

The full results of the study were published in the scientific journal Cell Stem Cell.

CIRM-funded clinical trial shows encouraging results for patients with chronic lymphocytic leukemia & mantle cell lymphoma

Illustration courtesy of Oncternal Therapeutics

I often joke that my job here at CIRM is to be the official translator for the stem cell agency. I have to translate complex science into everyday English that people without a science background – that includes me – can understand.

Think I’m joking? Try making sense of this.

See what I mean. If you are a scientist this is not only perfectly clear, it’s also quite exciting. But for the rest of us……..

Actually, it is really quite exciting news. It’s about a CIRM-funded clinical trial being run by Oncternal Therapeutics to treat people with chronic lymphocytic leukemia (CLL), a kind of cancer where our body makes too many white blood cells. The study is using a combination therapy of Cirmtuzumab (a monoclonal antibody named after us because we helped fund its development) and ibrutinib, a conventional therapy used to treat cancers like CLL.

Cirmtuzumab recognizes and then attaches itself to a protein on the surface of cancer stem cells that the cancer needs to survive and spread. This attachment disables the protein (called ROR1) which slows the growth of the leukemia and makes it more vulnerable to anti-cancer drugs like ibrutinib.

In this Phase 1/2 clinical trial 12 patients were given the combination therapy for 24 weeks or more, making them eligible to determine how effective, or ineffective, the therapy is:

  • 11 of the 12 patients had either a partial response – meaning a reduction in the amount of detectable cancer – or a complete response to the treatment – meaning no detectable cancer.
  • None of the patients saw their cancer spread or grow
  • Three of the patients completed a year of treatment and they all showed signs of a complete response including no enlarged lymph nodes and white blood cell counts in the normal range.  

The combination therapy is also being used to treat people with Mantle Cell Lymphoma (MCL), a rare but fast-growing form of blood cancer. The results from this group, while preliminary, are also encouraging. One patient, who had experienced a relapse following a bone marrow transplant, experienced a complete response after three months of cirmtuzumab and ibrutinib.  

The data on the clinical trial was presented at a poster session (that’s the poster at the top of this blog) at the annual meeting of the American Society of Clinical Oncology.

In a news release Dr. James Breitmeyer, the President & CEO of Oncternal, said the results are very encouraging:  

“These data presented today, taken together with an earlier Phase 1 study of cirmtuzumab as a monotherapy in relapsed/refractory CLL, give us increased confidence in the potential for cirmtuzumab as a treatment for patients with ROR1-expressing lymphoid malignancies, particularly in combination with ibrutinib as a potential treatment for patients with CLL and MCL. We believe that the data also help to validate the importance of ROR1 as a therapeutic target,”

CIRM funded clinical trial shows promising results for patients with blood cancers

An illustration of a macrophage, a vital part of the immune system, engulfing and destroying a cancer cell. Antibody 5F9 blocks a “don’t eat me” signal emitted from cancer cells.
Courtesy of Forty Seven, Inc.

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are both types of blood cancers that can be difficult to treat. CIRM is funding Forty Seven, Inc. to conduct a clinical trial to treat patients with these blood cancers with an antibody called 5F9. CIRM has also given multiple awards prior to the clinical trial to help in developing the antibody.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, which are white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. The antibody works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

In a press release, Forty Seven, Inc. announced early clinical results from their CIRM funded trial using the antibody to treat patients with AML and MDS. Some patients received just the antibody while others received the antibody in combination with azacitidine, a chemotherapy drug used to treat these cancers.

Here is a synopsis of the trial:

  • 35 patients treated in a Phase 1 clinical trial have been evaluated for a response assessment to-date.
  • 10 of these have MDS or AML and only received the 5F9 antibody.
  • 11 of these have higher-risk MDS and received the 5F9 antibody along with the chemotherapy drug azacitidine.
  • 14 of these have untreated AML and received the 5F9 antibody along with the chemotherapy drug azacitidine.

For the 11 patients with higher-risk MDS treated with the antibody and chemotherapy, they found that:

  • All 11 patients achieved an objective response rate (ORR), meaning that there was a reduction in tumor burden of a predefined amount.
  • Six of these patients achieved a complete response (CR), indicating a disappearance of all signs of cancer in response to treatment.

For the 14 patients with untreated AML treated with the antibody and chemotherapy, they found that:

  • Nine of these patients achieved an ORR.
  • Five of these nine patients achieved a CR.
  • Two of these nine patients achieved a morphologic leukemia-free state (MLFS), indicating the disappearance of all cells with formal and structural characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment. 
  • The remaining five patients achieved stable disease (SD), meaning that the tumor is neither growing nor shrinking.

The results also showed that:

  • There was no evidence of increased toxicities when the antibody was used alongside the chemotherapy drugs, demonstrating tolerance and safety of the treatment.
  • No responding MDS or AML patient has relapsed or progressed on the antibody in combination with chemotherapy, with a median follow-up of 3.8 months.
  • The median time to response was rapid at 1.9 months.
  • Several patients have experienced deepening responses over time resulting in complete remissions. 

Based on the favorable results observed in this clinical trial to-date, expansion cohorts have been initiated, meaning that additional patients will be enrolled in a phase I trial. This will include patients with both higher-risk MDS and untreated AML as well as using the antibody in combination with chemotherapy.

In the press release, Dr. David Sallman, an investigator in the clinical trial, is quoted as saying,

“These new data for 5F9 show encouraging clinical activity in a broad population of patients with MDS and AML, who may be unfit for existing therapeutic options or at higher-risk for developing rapidly-advancing disease. Despite an evolving treatment landscape, physicians continue to seek new therapies for MDS and AML that can be used safely in combination with standard-of-care to help patients more rapidly achieve durable responses. To that end, I am excited to see meaningful clinical activity in a majority of patients treated with 5F9 in combination with azacitidine, with a median time to response of under two months and no relapses or progressions among responding patients.”

Stanford and University of Tokyo researchers crack the code for blood stem cells

Blood stem cells grown in lab

Blood stem cells offer promise for a variety of immune and blood related disorders such as sickle cell disease and leukemia. Like other stem cells, blood stem cells have the ability to generate additional blood stem cells in a process called self-renewal. Additionally, they are able to generate blood cells in a process called differentiation. These newly generated blood cells have the potential to be utilized for transplantations and gene therapies.

However, two limitations have hindered the progress made in this field. One problem relates to the amount of blood stem cells needed to make a potential transplantation or gene therapy viable. Unfortunately, it has been challenging to isolate and grow blood stem cells in large quantity needed for these approaches. A part of this reason relates to getting the blood stem cells to self-renew rather than differentiate.

The second problem involves the existing blood stem cells in the patient’s body prior to transplantation. In order for the procedure to work, the patient’s own blood stem cells must be eliminated to make space for the transplanted blood stem cells. This is done through a process known as conditioning, which typically involves chemotherapy and/or radiation. Unfortunately, chemotherapy and radiation can cause life-threatening side effects due to its toxicity, particularly in pediatric patients, such as growth retardation, infertility and secondary cancer in later life. Very sick or elderly patients are unable to tolerate this conditioning process, making them ineligible for transplants.

A CIRM funded study by a team at Stanford and the University of Tokyo has unlocked the code related to the generation of blood stem cells.

The collaborative team was able to modify the components used to grow blood stem cells. By making these modifications, which effects the growth and physical conditions of blood stem cells, the researchers have shown for the first time that it’s possible to get blood stem cells from mice to renew themselves hundreds or even thousands of times within a period of just 28 days. 

Furthermore, the team showed that when they transplanted the newly grown cells into mice that had not undergone conditioning, the donor cells had engrafted and remained functional.

The team also found that gene editing technology such as CRISPR could be used while growing an adequate supply of blood stem cells for transplantation. This opens the possibility of obtaining a patient’s own blood stem cells, correcting the problematic gene, and reintroducing these back to the patient.

The complete study was published in Nature.

In a news release, Dr. Hiromitsu Nakauchi, a senior author of the study, is quoted as saying,

“For 50 years, researchers from laboratories around the world have been seeking ways to grow these cells to large numbers. Now we’ve identified a set of conditions that allows these cells to expand in number as much as 900-fold in just one month. We believe this approach could transform how [blood] stem cell transplants and gene therapy are performed in humans.” 

Stem Cell Agency Board Approves New Clinical Trial for Type 1 Diabetes

Dr. Peter Stock at the capitol in Sacramento in May 2016.
Photo courtesy of Steve German.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $11.08 Million to Dr. Peter Stock at the University of California San Francisco (UCSF) to conduct a clinical trial for treatment of Type 1 Diabetes (T1D).

The award brings the total number of CIRM funded clinical trials to 54. 

T1D is a chronic autoimmune disease that affects approximately 1.25 million Americans, with 40,000 new diagnoses each year.  T1D occurs as a result of the body’s immune system destroying its own pancreatic beta cells.  These cells are necessary to produce the vital hormone insulin, which regulates blood sugar levels in the body.  As a result of a lack of insulin, there is no blood sugar control in T1D patients, gradually causing disabling and life-threatening complications such as heart disease, nerve damage, and vision problems.

There is no cure for T1D.  Current treatments consist of blood sugar monitoring and multiple daily injections of insulin.  Transplantation of beta cells, contained in donor pancreatic islets, can reverse the symptoms of diabetes.  However, due to a poor islet survival rate, transplants require islets from multiple donors.  Furthermore, since islet cells are transplanted directly into the vessels that enter the liver, it is extremely difficult to monitor and retrieve these cells should the need arise. 

Dr. Stock’s clinical trial at UCSF aims to address these limitations.  The trial will be using parathyroid glands to aid in the success and viability of the transplant procedure.  Co-transplantation of islets and parathyroid glands, from the same donor, substantially increases beta cell survival, potentially enabling adequate long-term insulin production and removing the need for multiple donors.  Additionally, the co-transplantation will occur in the patient’s forearm, which allows for easier monitoring and improves the effectiveness and accessibility of islet transplants for patients.

“This team’s innovative approach to develop a definitive cell-based treatment for Type 1 Diabetes has the potential to address an unmet medical need that exists despite advancements in diabetes therapy.” says Maria T. Millan, M.D., the President and CEO of CIRM.  “The success of this clinical trial could enable the successful application of islet cell transplants but also of future stem-cell based approaches for diabetes.”

CIRM has funded three other clinical trials for T1D.  One of these was conducted by Caladrius Biosciences and two by ViaCyte, Inc.

Stem cell model reveals deeper understanding into “ALS resilient” neurons

A descriptive illustration of Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease. Courtesy of ALS Foundation website.

Understanding the basic biology of how a cell functions can be crucial to being able to better understand a disease and unlock a potential approach for a treatment. Stem cells are unique in that they give scientists the opportunity to create a controlled environment of cells that might be otherwise difficult to study. Dr. Eva Hedlund and a team of researchers at the Karolinska Institute in Sweden utilize a stem cell model approach to uncover findings related to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease.

ALS is a progressive neurodegenerative disease that destroys motor neurons, a type of nerve cell, that are important for voluntary muscle movement. When motor neurons can no longer send signals to the muscles, the muscles begin to deteriorate, a process formally known as atrophy. The progressive atrophy leads to muscle paralysis, including those in the legs and feet, arms and hands, and those that control swallowing and breathing. It affects about 30,000 people in the United States alone, with 5,000 new cases diagnosed each year. There is currently no cure.

In a previous study, researchers at the Karolinska Institute were able to successfully create oculomotor neurons from embryonic stem cells. For reasons not yet fully understood, oculomotor neurons are “ALS resilient” and can survive all stages of the disease.

In the current study, published in Stem Cell Reports, Dr. Hedlund and her team found that the oculomotor neurons they generated appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons, something commonly observed in humans. Furthermore, they discovered that their “ALS resilient” neurons generated from stem cells activate a survival-enhancing signal known as Akt, which is common in oculomotor neurons in humans and could explain their resilience. These results could potentially aid in identifying genetic targets for treatments protecting sensitive neurons from the disease.

In a press release, Dr. Hedlund is quoted as saying,

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons.”

CIRM is currently funding two clinical trials for ALS, one of which is being conducted by Cedars-Sinai Medical Center and the other by Brainstorm Cell Therapeutics. The latter of the trials is currently recruiting patients and information on how to enroll can be found here.

3D brain model shows potential for treatment of hypoxic brain injuries in infants

Image of 3D brain cultures in the Sergiu Pasca lab.
Photo courtesy of Timothy Archibald.

A baby’s time in the womb is one of the most crucial periods in terms of its development. The average length of gestation, which is defined as the amount of time in the womb from conception to birth, is approximately 40 weeks. Unfortunately, for reasons not yet fully understood, there are times that babies are born prematurely, which can lead to problems.

These infants can have underdeveloped portions of the brain, such as the cerebral cortex, which is responsible for advanced brain functions, including cognition, speech, and the processing of sensory and motor information. The brains of premature infants can be so underdeveloped that they are unable to control breathing. This, in combination with underdeveloped lungs, can lower oxygen levels in the blood, which can lead to hypoxic, or low oxygen related, brain injuries.

In a previous study, doctors Anca and Sergiu Pasca and their colleagues at Stanford developed a technique to create a 3D brain that mimics structural and functional aspects of the developing human brain.

Using this same technique, in a new study with the aid of CIRM funding, the team grew a 3D brain that contained cells and genes similar to the human brain midway through the gestational period. They then exposed this 3D brain to low oxygen levels for 48 hours, restored the oxygen level after this time period, and observed any changes.

It was found that progenitor cells in a region known as the subventricular zone, a region that is critical in the growth of the human cortex, are affected. Progenitor cells are “stem cell like” cells that give rise to mature brain cells such as neurons. They also found that the progenitor cells transitioned from “growth” mode to “survival” mode, causing them to turn into neurons sooner than normal, which leads to fewer neurons in the brain and underdevelopment.

In a press release, Dr. Anca Pasca is quoted as saying,

“In the past 20 years, we’ve made a lot of progress in keeping extremely premature babies alive, but 70% to 80% of them have poor neurodevelopmental outcomes.”

The team then tested a small molecule to see if it could potentially reverse this response to low oxygen levels by keeping the progenitor cells in “growth” mode. The results of this are promising and Dr. Sergiu Pasca is quoted as saying,

“It’s exciting because our findings tell us that pharmacologically manipulating this pathway could interfere with hypoxic injury to the brain, and potentially help with preventing damage.”

The complete findings of this study were published in Nature.

CIRM Board Approves Funding for New Clinical Trials in Solid Tumors and Pediatric Disease

Dr. Theodore Nowicki, physician in the division of pediatric hematology/oncology at UCLA. Photo courtesy of Milo Mitchell/UCLA Jonsson Comprehensive Cancer Center

The governing Board of the California Institute for Regenerative Medicine (CIRM) awarded two grants totaling $11.15 million to carry out two new clinical trials.  These latest additions bring the total number of CIRM funded clinical trials to 53. 

$6.56 Million was awarded to Rocket Pharmaceuticals, Inc. to conduct a clinical trial for treatment of infants with Leukocyte Adhesion Deficiency-I (LAD-I)

LAD-I is a rare pediatric disease caused a mutation in a specific gene that affects the body’s ability to combat infections.  As a result, infants with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations.  Those that survive infancy experience recurrent severe infections, with mortality rates for severe LAD-I at 60-75% prior to the age of two and survival very rare beyond the age of five.

Rocket Pharmaceuticals, Inc. will test a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient that would give rise to functional immune cells, thereby enabling the body to combat infections.  

The award is in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety and effectiveness of this treatment in patients with LAD-I.

This project utilizes a gene therapy approach, similar to that of three other clinical trials funded by CIRM and conducted at UCLA by Dr. Don Kohn, for X-linked Chronic Granulomatous Disease, an inherited immune deficiency “bubble baby” disease known as ADA-SCID, and Sickle Cell Disease.

An additional $4.59 million was awarded to Dr. Theodore Nowicki at UCLA to conduct a clinical trial for treatment of patients with sarcomas and other advanced solid tumors. In 2018 alone, an estimated 13,040 people were diagnosed with soft tissue sarcoma (STS) in the United States, with approximately 5,150 deaths.  Standard of care treatment for sarcomas typically consists of surgery, radiation, and chemotherapy, but patients with late stage or recurring tumor growth have few options.

Dr. Nowicki and his team will genetically modify peripheral blood stem cells (PBSCs) and peripheral blood monocular cells (PBMCs) to target these solid tumors. The gene modified stem cells, which have the ability to self-renew, provide the potential for a durable effect.

This award is also in the form of a CLIN2 grant, with the goal of conducting a clinical trial to assess the safety of this rare solid tumor treatment.

This project will add to CIRM’s portfolio in stem cell approaches for difficult to treat cancers.  A previously funded a clinical trial at UCLA uses this same approach to treat patients with multiple myeloma.  CIRM has also previously funded two clinical trials using different approaches to target other types of solid tumors, one of which was conducted at Stanford and the other at UCLA. Lastly, two additional CIRM funded trials conducted by City of Hope and Poseida Therapeutics, Inc. used modified T cells to treat brain cancer and multiple myeloma, respectively.

“CIRM has funded 23 clinical stage programs utilizing cell and gene medicine approaches” says Maria T. Millan, M.D., the President and CEO of CIRM. “The addition of these two programs, one in immunodeficiency and the other for the treatment of malignancy, broaden the scope of unmet medical need we can impact with cell and gene therapeutic approaches.”