UCSD researchers use stem cell model to better understand pregnancy complication

A team of UC San Diego researchers recently published novel preeclampsia models to aid in understanding this pregnancy complication that occurs in one of 25 U.S. pregnancies. Researchers include (left to right): Ojeni Touma, Mariko Horii, Robert Morey and Tony Bui. Credit: UC San Diego

Pregnant women often tread uncertain waters in regards to their health and well-being as well as that of their babies. Many conditions can arise and one of these is preeclampsia, a type of pregnancy complication that occurs in approximately one in 25 pregnancies in the United States according to the Center for Disease Control (CDC). It occurs when expecting mothers develop high blood pressure, typically after 20 weeks of pregnancy, and that in turn reduces the blood supply to the baby. This can lead to serious, even fatal, complications for both the mother and baby.

A CIRM supported study using induced pluripotent stem cells (iPSCs), a kind of stem cell that can turn into virtually any cell type, was able to create a “disease in a dish” model in order to better understand preeclampsia.

Credit: UC San Diego

For this study, Mariko Horii, M.D., and her team of researchers at the UC San Diego School of Medicine obtained cells from the placenta of babies born under preeclampsia conditions. These cells were then “reprogrammed” into a stem cell-like state, otherwise known as iPSCs. The iPSCs were then turned into cells resembling placental cells in early pregnancy. This enabled the team to create the preeclampsia “disease in the dish” model. Using this model, they were then able to study the processes that cause, result from, or are otherwise associated with preeclampsia.

The findings revealed that cellular defects observed are related to an abnormal response in the environment in the womb. Specifically, they found that preeclampsia was associated with a low-oxygen environment in the uterus. The researchers used a computer modeling system at UC San Diego known as Comet to detail the differences between normal and preeclampsia placental tissue.

Horii and her team hope that these findings not only shed more light on the environment in the womb observed in preeclampsia, but also provided insight for future development of diagnostic tools and identification of potential medications. Furthermore, they hope that their iPSC disease model can be used to study other placenta-associated pregnancy disorders such as fetal growth restriction, miscarriage, and preterm birth.

The team’s next steps are to develop a 3D model to better study the relationship between environment and development of placental disease.

In a news release from UC San Diego, Horri elaborates more on these future goals.

“Currently, model systems are in two-dimensional cultures with single-cell types, which are hard to study as the placenta consists of maternal and fetal cells with multiple cell types, such as placental cells (fetal origin), maternal immune cells and maternal endometrial cells. Combining these cell types together into a three-dimensional structure will lead to a better understanding of the more complex interactions and cell-to-cell signaling, which can then be applied to the disease setting to further understand pathophysiology.”

The full study was published in Scientific Reports.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.