Protein that turns normal cells into cancer stem cells offers target to fight colon cancer

colon-cancer

Colon cancer: Photo courtesy WebMD

Colon cancer is a global killer. Each year more than one million people worldwide are diagnosed with it; more than half a million die from it. If diagnosed early enough the standard treatment involves surgery, chemotherapy, radiation or targeted drug therapy to destroy the tumors. In many cases this may work. But in some cases, while this approach helps put people in remission, eventually the cancer returns, spreads throughout the body, and ultimately proves fatal.

Now researchers may have identified a protein that causes normal cells to become cancerous, and turn into cancer stem cells (CSCs). This discovery could help provide a new target for anti-cancer therapies.

Cancer stem cells are devilishly tricky. While most cancer cells are killed by chemotherapy or other therapies, cancer stem cells are able to lie dormant and hide, then emerge later to grow and spread, causing the person to relapse and the cancer to return.

In a study published in Nature Research’s Scientific Reports, researchers at SU Health New Orleans School of Medicine and Stanley S. Scott Cancer Center identified a protein, called SATB2, that appears to act as an “on/off” switch for specific genes inside a cancer cell.

In normal, healthy colorectal tissue SATB2 is not active, but in colorectal cancer it is highly active, found in around 85 percent of tumors. So, working with mice, the researchers inserted extra copies of the SATB2 gene, which produced more SATB2 protein in normal colorectal tissue. They found that this produced profound changes in the cell, leading to uncontrolled cell growth. In effect it turned a normal cell into a cancer stem cell.

As the researchers state in their paper:

“These data suggest that SATB2 can transform normal colon epithelial cells to CSCs/progenitor-like cells which play significant roles in cancer initiation, promotion and metastasis.”

When the researchers took colorectal cancer cells and inhibited SATB2 they found that this not only suppressed the growth of the cancer and it’s ability to spread, it also prevented those cancer cells from becoming cancer stem cells.

In a news release about the study Dr. Rakesh Srivastava,  the senior author on the paper, said the findings are important:

“Since the SATB2 protein is highly expressed in the colorectal cell lines and tissues, it can be an attractive target for therapy, diagnosis and prognosis.”

Because SATB2 is found in other cancers too, such as breast cancer, these findings may hold significance for more than just colorectal cancer.

The next step is to repeat the study in mice that have been genetically modified to better reflect the way colon cancer shows up in people. The team hope this will not only confirm their findings, but also give them a deeper understanding of the role that SATB2 plays in cancer formation and spread.

Advertisements

Pregnant women’s stem cells could help battle brittle bone diseases like osteoporosis

pregnant

Sometimes I wonder how a scientist ever came up with an idea for a potential treatment. Case in point is a study in the journal Scientific Reports, where researchers use stem cells from the amniotic fluid of a pregnant woman to cure osteoporosis in mice! What researcher, seeing a pregnant woman, thought to her or himself “I wonder if…..”

Regardless of how they came up with the idea, we might be glad they did because this study showed that those stem cells could reduce the number of fractures in mice with brittle bone disease by 78 percent. And that’s raising hopes they might one day be able to do the same for people.

Researchers at University College London took mesenchymal stem cells (MSCs) that had been shed by babies into the amniotic fluid of their mother, and injected them into mice with brittle bone disease. Previous studies had suggested that MSCs, taken at such an early age, might be more potent than similar cells taken from adults. That certainly seems to have been the case here where the treated mice had far fewer fractures than untreated mice.

Pascale Guillot, the lead researcher of the study, told the Guardian newspaper:

“The stem cells we’ve used are excellent at protecting bones. The bones become much stronger and the way the bone is organised internally is of much higher quality.”

 

What was also interesting was not just what they did but how they did it. You might think that the injected stem cells helped reduce fractures by forming new bones. You might think that, but you’d be wrong. Instead, the stem cells seem to have worked by releasing growth factors that stimulated the mouse’s own bone cells to kick into a higher gear, and help build stronger bones.

In the study the researchers say using MSCs from amniotic fluid has a number of distinct advantages over using MSCs from adults:

  • They are easier to expand into large numbers needed for therapies
  • They don’t create tumors
  • The body’s immune system won’t attack them
  • They are smaller and so can move around with greater ease
  • They are easier to reprogram into different kinds of cells

Next Guillot and his team want to explore if this approach could be used to treat children and adults with brittle bone disease, and to help adults with osteoporosis, a problem that affects around 44 million people in the US.

 “The discovery could have a profound effect on the lives of patients who have fragile bones and could stop a large number of their painful fractures.”