Tratando malformaciones congénitas antes del nacimiento 

El bebé, Tobi recibió un tratamiento de células madre, financiado por el CIRM, mientras aún estaba en el útero. To read this blog in English, click here.

Michelle y Jeff se llenaron de felicidad cuando se enteraron de que iban a tener un bebé.  

Luego, un examen de ultrasonido a las 20 semanas del embarazo reveló que el feto tenía espina bífida, una malformación congénita que ocurre cuando la columna vertebral y la médula espinal no se forman de manera adecuada. La espina bífida puede causar parálisis y otras complicaciones serias.   

Se derivó a la pareja a un ensayo clínico en la Universidad de California, Davis, que lleva a cabo la Dra. Diana Farmer, cirujana fetal y neonatal reconocida a nivel internacional, y su colega, el Dr. Aijun Wang.  

En este ensayo clínico, que se basó en una previa investigación financiada por el CIRM, se repara el defecto espinal aplicando células madre de una placenta donada, las cuales se insertan en una estructura sintética y se aplican al defecto de la médula espinal mientras el bebé se encuentra todavía en el útero.   

El hijo de Michelle y Jeff, Tobi, fue el segundo paciente que recibió este tratamiento. Michelle dijo que la cirugía fue difícil, pero el nacimiento de su bebé valió la pena.  

“Cuando lo abrazamos por primera vez dijimos, ‘No puedo creer que hayamos hecho esto. Lo logramos. Lo hicimos sin saber si funcionaría’.”   

A los tres meses, el progreso de Tobi parece promisorio. Jeff y Michelle saben que pueden surgir problemas más adelante, pero por ahora se sienten agradecidos de haber formado parte de este ensayo.

To read this blog in English, click here.

Pioneering a new approach to HIV/AIDS

Dr. Steven Deeks. Photo courtesy UCSF

I’ve always been impressed by the willingness of individuals to step forward and volunteer for a clinical trial. Even more so when they are the first person ever to test a first-in-human therapy. They really are pioneers in helping advance a whole new approach to treating disease. 

That’s certainly the case for the first individual treated in a CIRM-funded clinical trial to develop a functional cure for HIV/AIDS. Caring Cross announced recently that they have dosed the first patient in the trial testing their anti-HIV duoCAR-T cell therapy.  

The trial is being led by UC San Francisco’s Dr. Steven Deeks and UC Davis’ Dr. Mehrdad Abedi. Their approach involves taking a patient’s own blood and extracting T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient. 

The goal of this one-time therapy is to act as a long-term control of HIV with patients no longer needing to take anti-HIV medications. If it is successful it would be, in effect, a form of functional HIV cure.   

This first phase involves giving different patients different levels of the duoCAR-T therapy to determine the best dose, and to make sure it is safe and doesn’t cause any negative side effects.  

This is obviously just the first step in a long process, but it’s an important first step and certainly one worth marking. As Dr. Deeks said in the news release, “We have reached an important milestone with the dosing of the first participant in the Phase 1/2a clinical trial evaluating a potentially groundbreaking anti-HIV duoCAR-T cell therapy. Our primary goal for this clinical trial is to establish the safety of this promising therapeutic approach.” 

Dr. Abedi, echoed that saying. “The first participant was dosed with anti-HIV duoCAR-T cells at the UC Davis medical center in mid-August. There were no adverse events observed that were related to the product and the participant is doing fine.” 

This approach carries a lot of significance not just for people with HIV in the US, but also globally. If successful it could help address the needs of people who are not able to access antiretroviral therapies or for whom those medications are no longer effective.  

Today there are an estimated 38 million people living with HIV around the world. Every year some 650,000 people die from the disease.  

The power of the patient advocate: how a quick visit led to an $11M grant to fund a clinical trial

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Members of NFOSD visiting UC Davis in 2013

At the California Institute for Regenerative Medicine (CIRM) we are fortunate in having enough money to fund the most promising research to be tested in a clinical trial. Those are expensive projects, often costing tens of millions of dollars. But sometimes the projects that come to our Board start out years before in much more humble circumstances, raising money through patient advocates, tapping into the commitment and ingenuity of those affected by a disease, to help advance the search for a treatment.

That was definitely the case with a program the CIRM Board voted to approve yesterday, investing more than $11 million dollars to fund a Phase 2 clinical trial testing a cell therapy for dysphagia. That’s a debilitating condition that affects many people treated for head and neck cancer.

Patients with head and neck cancer often undergo surgery and/or radiation to remove the tumors. As a result, they may develop problems swallowing and this can lead to serious complications such as malnutrition, dehydration, social isolation, or a dependence on using a feeding tube. Patients may also inhale food or liquids into their lungs causing infections, pneumonia and death. The only effective therapy is a total laryngectomy where the larynx or voice box is removed, leaving the person unable to speak.

Dr. Peter Belafsky and his team at the University of California at Davis are developing a therapeutic approach using Autologous Muscle Derived Progenitor Cells (AMDC), cells derived from a biopsy of the patient’s own muscle, elsewhere in the body. Those AMDCs are injected into the tongue of the patient, where they fuse with existing muscle fibers to increase tongue strength and ability to swallow.

The $11,015,936 that Dr. Belafsky is getting from CIRM will enable them to test this approach in patients. But without grass roots support the program might never have made it this far.

Ed Steger is a long-term survivor of head and neck cancer, he’s also the President of the National Foundation of Swallowing Disorders (NFOSD). In 2007, after being treated for his cancer, Ed developed a severe swallowing disorder. It helped motivate him to push for better treatment options.

In 2013, a dozen swallowing disorder patients visited UC Davis to learn how stem cells might help people with dysphagia. (You can read about that visit here). Ed says: “We were beyond thrilled with the possibilities and drawing on patients and other UCD contacts our foundation raised enough funds to support a small UCD clinical trial under the guidance of Dr. Belafsky in mouse models that demonstrated these possibilities.”

A few years later that small funding by patients and their family members grew into a well-funded Phase I/II human clinical trial. Ed says the data that trial produced is helping advance the search for treatments.

“Skipping forward to the present, this has now blossomed into an additional $11 million grant, from CIRM, to continue the work that could be a game changer for millions of Americans who suffer annually from oral phase dysphagia. My hat is off to all those that have made this possible… the donors, patient advocates, and the dedicated committed researchers and physicians who are performing this promising and innovative research.”

Our hats are off to them too. Their efforts are making what once might have seemed impossible, a real possibility.

Breaking down barriers: Expanding patient access and accelerating research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

10 years ago I was presented with an incredibly unique opportunity- to become the fifth patient with spinal cord injuries to participate in the world’s first clinical trial testing a treatment made from human embryonic stem cells. It was not only a risky and potentially life-changing decision, but also one that I had to make in less than a week. 

To make matters more complicated, I was to be poked, prodded, and extensively scanned on a daily basis for several months as part of the follow-up process. I lived nearly two hours away from the hospital and I was newly paralyzed. How would this work? I wanted my decision-making process to be solely based on the amazing science and the potential that with my participation, the field might advance. Instead, I found myself spending countless hours contemplating the extra work I was asking my family to take on in addition to nursing me back to life. 

In this instance, I was “lucky”. I had access to family and friends who were able and willing to make any kind of sacrifice to ensure my happiness. I lived quite a distance away from the hospital, but everyone around me had a car. They had the means to skip work, keep the gas tank filled, and make the tedious journey. I also had an ally, which was perhaps my biggest advantage. The California Institute for Regenerative Medicine (CIRM) was the funding agency behind the groundbreaking clinical trial and I’ll never forget the kind strangers who sat on my bedside and delighted me with stories of hope and science. 

Accelerating the research

The field of regenerative medicine has gained so much momentum since my first introduction to stem cells in a small hospital room. Throughout the decade and especially in recent years there have been benchmark FDA approvals, increased funding and regulatory support. The passage of Proposition 14 in 2020 has positioned CIRM to continue to accelerate research from discovery to clinical and to drive innovative, real-world solutions resulting in transformative treatments for patients. 

Now, thanks to Prop 14 we have some new goals, including working to try and ensure that the treatments our funding helps develop are affordable and accessible to a diverse community of patients in an equitable manner, including those often overlooked or underrepresented in the past. Unsurprisingly, one of the big goals outlined in our new 5-year Strategic Plan is to deliver real world solutions through the expansion of the CIRM Alpha Stem Cell Clinics network and the creation of a network of Community Care Centers of Excellence.

The Alpha Stem Cell Clinics and Community Care Centers of Excellence will work in collaboration to achieve a wide set of goals. These goals include enabling innovative clinical research in regenerative medicine, increasing diverse patient access to transformative therapies, and improving patient navigation of clinical trials. 

Breaking down the barriers 

The dilemma surrounding the four-hour long round-trip journey for an MRI or a vial of blood isn’t just unique to me and my experience participating in a clinical trial. It is well recognized and documented that geographic disparities in clinical trial sites as well as limited focus on community outreach and education about clinical trials impede patient participation and contribute to the well-documented low participation of under-represented patients in clinical studies.

As outlined in our Strategic Plan, the Alpha Stem Cell Clinic Network and Community Care Centers will collaboratively extend geographic access to CIRM-supported clinical trials across the state. Community Care Centers will have direct access and knowledge about the needs of their patient populations including, culturally and linguistically effective community-based education and outreach. In parallel, Alpha Stem Cell Clinics will be designed to support the anticipated outreach and education efforts of future Community Care Centers.

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year Strategic Plan

Stem cell therapy may help mend a broken heart

Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014

Dilated cardiomyopathy (DCM), a condition where the muscles of the heart are weak and can lead to heart failure, is considered rare in children. However, because the symptoms are not always easy to recognize the condition can go unnoticed for many years, and in severe cases can damage the heart irreparably. In that case the child’s only option is a heart transplant, and a lack of organ donors means that is not always available.

Now, new research out of Japan – published in the journal Science Translation Medicine – could lead the way to new treatments to help children avoid the need for a transplant.

In the study, researchers at Okayama University used heart stem cells called cardiosphere-derived cells (CDCs) to try and repair the damage caused by DCM.  

In a news release, lead researcher Professor Hidemasa Oh, says previous work has shown that because CDCs have the ability to turn into heart tissue they have the potential of reversing damage, but it’s not clear if this would work in children.

“I have been working on cardiac regeneration therapy since 2001. In this study, my team and I assessed the safety and efficacy of using CDCs to treat DCM in children.”

Tests in animal models with DCM showed that the CDCs resulted in a thickening of the heart muscle leading to increased blood flow around the body. This increased blood supply helped repair damaged tissue. Based on this trial the researcher determined what might be a suitable dose of CDCs for children with DCM and were granted permission to carry out a Phase 1 clinical trial.

Five young patients were treated and the results were cautiously encouraging. After a year none of the patients had experienced any severe side effects, but all had indications of improved heart function.

The study also gave the researchers some strong clues as to how the therapy seem to work. They found that when the CDCs were transplanted into the patient they secreted exosomes, which play an important role in cells communicating with one another. These exosomes then helped create a series of actions within the body; they blocked further damage to the heart tissue and they also helped kickstart the repair process.

The Okayama team are now hoping to carry out a Phase 2 clinical trial with more patients. Ultimately, they hope to be able to see if this approach could help prevent the need for a heart transplant in children, and even adults.

Paving the way for a treatment for dementia

What happens in a stroke

When someone has a stroke, the blood flow to the brain is blocked. This kills some nerve cells and injures others. The damaged nerve cells are unable to communicate with other cells, which often results in people having impaired speech or movement.

While ischemic and hemorrhagic strokes affect large blood vessels and usually produce recognizable symptoms there’s another kind of stroke that is virtually silent. A ‘white’ stroke occurs in blood vessels so tiny that the impact may not be noticed. But over time that damage can accumulate and lead to a form of dementia and even speed up the progression of Alzheimer’s disease.

Now Dr. Tom Carmichael and his team at the David Geffen School of Medicine at UCLA have developed a potential treatment for this, using stem cells that may help repair the damage caused by a white stroke. This was part of a CIRM-funded study (DISC2-12169 – $250,000).

Instead of trying to directly repair the damaged neurons, the brain nerve cells affected by a stroke, they are creating support cells called astrocytes, to help stimulate the body’s own repair mechanisms.

In a news release, Dr. Irene Llorente, the study’s first author, says these astrocytes play an important role in the brain.

“These cells accomplish many tasks in repairing the brain. We wanted to replace the cells that we knew were lost, but along the way, we learned that these astrocytes also help in other ways.”

The researchers took skin tissue and, using the iPSC method (which enables researchers to turn cells into any other kind of cell in the body) turned it into astrocytes. They then boosted the ability of these astrocytes to produce chemical signals that can stimulate healing among the cells damaged by the stroke.

These astrocytes were then not only able to help repair some of the damaged neurons, enabling them to once again communicate with other neurons, but they also helped another kind of brain cell called oligodendrocyte progenitor cells or OPCs. These cells help make a protective sheath around axons, which transmit electrical signals between brain cells. The new astrocytes stimulated the OPCs into repairing the protective sheath around the axons.

Mice who had these astrocytes implanted in them showed improved memory and motor skills within four months of the treatment.  

And now the team have taken this approach one step further. They have developed a method of growing these astrocytes in large amounts, at very high quality, in a relatively short time. The importance of that is it means they can produce the number of cells needed to treat a person.

“We can produce the astrocytes in 35 days,” Llorente says. “This process allows rapid, efficient, reliable and clinically viable production of our therapeutic product.”

The next step is to chat with the Food and Drug Administration (FDA) to see what else they’ll need to do to show they are ready for a clinical trial.

The study is published in the journal Stem Cell Research.

Stem cell therapy for diabetic foot ulcers shows promise in new study

For individuals with diabetes, the body’s inability to properly control blood sugar levels can lead to a wide range of other problems as time passes. One major issue is a diabetic foot ulcer (DFU), an open sore or wound that is commonly located on the bottom of the foot and caused by poor blood circulation and nerve damage. It occurs in approximately 15% of individuals with diabetes and in severe cases can lead to foot or leg amputation. Unfortunately, there is usually no effective form of treatment for this condition.

However, results from several studies authorized by the Ministry of Health of Nicaragua showed that using a stem cell therapy to treat patients with DFUs was safe and could be beneficial to patients.

The first results in a pilot study after an 18-month period demonstrated safety of the therapy and complete wound healing by nine months. After the six-year mark, five of the initial 10 subjects still demonstrated persistence of clinical benefits. It should be noted that five had passed away due to cardiac and other non-study-related causes.

In another study, the team wanted to determine the safety and efficacy of the stem cell therapy to treat non-healing DFUs greater than 3 centimeters in diameter.

For this clinical trial, 63 people from 35 to 70 years old with Type 2 diabetes and chronic DFU, all of whom were amputation candidates, were treated with a mixture of various types of stem cells obtained from the patient’s own fat tissue. The stem cell therapy was injected directly into the DFU with the hopes of restoring damaged blood vessels and promoting blood circulation and healing.

Patients were seen six months post treatment to evaluate ulcer closure, with 51 patients achieving 100 percent DFU closure and eight having greater than 75 percent. Only three required early amputations and one patient died. At 12 months post treatment, 50 patients had 100 percent DFU healing, while four had greater than 85 percent healing.

In a news release, Dr. Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine, expressed interest in evaluating this stem cell therapy and results further.

“This work should be reviewed as it demonstrates the possibility of a novel cell injection therapy that can alleviate pain and infection, accelerate wound healing, and possibly avoid amputation.”

The full results of the recent study were published in Stem Cells Translational Medicine.

CIRM-Funded Project Targeting Sickle Cell Disease Gets Green Light for Clinical Trial

Dr. Matthew Porteus

The US Food and Drug Administration (FDA) has granted Investigational New Drug (IND) permission enabling Graphite Bio to test the investigational, potentially revolutionary gene editing therapy GPH101 developed under the supervision of Matthew Porteus, MD, PhD, in a clinical trial for people with sickle cell disease (SCD).

The California Institute for Regenerative Medicine (CIRM) has been supporting this project with a $5.2 million grant, enabling Dr. Porteus and his team at the Institute of Stem Cell Biology and Regenerative Medicine at Stanford University to conduct the preclinical manufacturing and safety studies required by the FDA.

“We congratulate the Graphite Bio team for obtaining the IND, a critical step in bringing the GPH101 gene therapy forward for Sickle Cell Disease,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM is committed to the national Cure Sickle Cell initiative and are delighted that this technology, the product of CIRM funded research conducted by Dr. Porteus at Stanford, is progressing to the next stage of development”

Sickle cell disease is caused by a genetic mutation that turns normally smooth, round red blood cells into rigid, sickle shaped cells. Those cells clump together, clogging up blood vessels, causing intense pain, damaging organs and increasing the risk of strokes and premature death. There are treatments that help control the damage, but the only cure is a bone marrow stem cell transplant, which can only happen if the patient has a stem cell donor (usually a close relative) who has matching bone marrow.  

The investigational therapy GPH101 harnesses the power of CRISPR and natural DNA repair mechanisms to cut out the single mutation in the sickle globin gene and paste in the correct “code.” Correction of this mutation would reverse the defect and result in healthy non-sickling red blood cells.  

CEDAR, a Phase 1/2, multi-center, open-label clinical study is designed to evaluate the safety, preliminary efficacy and pharmacodynamics of GPH101 in adult and adolescent patients with severe SCD.

For patient advocate Nancy Rene, the news is personal: “It’s always exciting to hear about the progress being made in sickle cell research.  If successful it will mean that my grandson, and especially other young adults, can look forward to a life free of pain and organ damage.  They can actually begin to plan their lives, thinking about careers and families. I want to thank Dr. Porteus and all of the scientists who are working so hard for people with sickle cell disease. This is wonderful news.”

CIRM has funded four clinical trials for Sickle Cell Disease using different approaches and has a unique partnership with the National Heart, Lung and Blood Institutes under the NIH “Cure Sickle Cell” initiative.

CIRM Board Approves New Clinical Trial for Breast Cancer Related Brain Metastases

Dr. Saul Priceman

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $9.28 million to Dr. Saul Priceman at City of Hope to conduct a clinical trial for the treatment of breast cancer related brain metastases, which are tumors in the brain that have spread from the original site of the breast cancer.

This award brings the total number of CIRM-funded clinical trials to 56. 

Breast cancer is the second-most common cancer in women, both in the United States (US) and worldwide.  It is estimated that over 260,000 women in the US will be diagnosed with breast cancer in 2019 and 1 out of 8 women in the US will get breast cancer at some point during her lifetime. Some types of breast cancer have a high likelihood of metastasizing to the brain.  When that happens, there are few treatment options, leading to a poor prognosis and poor quality of life. 

Dr. Priceman’s clinical trial is testing a therapy to treat brain metastases that came from breast cancers expressing high levels of a protein called HER2.   The therapy consists of a genetically-modified version of the patient’s own T cells, which are an immune system cell that can destroy foreign or abnormal cells.  The T cells are modified with a protein called a chimeric antigen receptor (CAR) that recognizes the tumor protein HER2.  These modified T cells (CAR-T cells) are then infused into the patient’s brain where they are expected to detect and destroy the HER2-expressing tumors in the brain.

CIRM has also funded the earlier work related to this study, which was critical in preparing the therapy for Food and Drug Administration (FDA) approval for permission to start a clinical trial in people.

“When a patient is told that their cancer has metastasized to other areas of the body, it can be devastating news,” says Maria T. Millan, M.D., the President and CEO of CIRM.  “There are few options for patients with breast cancer brain metastases.  Standard of care treatments, which include brain irradiation and chemotherapy, have associated neurotoxicity and do little to improve survival, which is typically no more than a few months.  CAR-T cell therapy is an exciting and promising approach that now offers us a more targeted approach to address this condition.”

The CIRM Board also approved investing $19.7 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Dr. Mark Tuszynski at the University of California San Diego (UCSD) was awarded $6.23 million to develop a therapy for spinal cord injury (SCI). Dr. Tuszynski will use human embryonic stem cells (hESCs) to create neural stem cells (NSCs) which will then be grafted at the injury site.  In preclinical studies, the NSCs have been shown to help create a kind of relay at the injury site, restoring communication between the brain and spinal cord and re-establishing muscle control and movement.

Dr. Mark Humayun at the University of Southern California (USC) was awarded $3.73 million to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD), the leading cause of vision loss in the US.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dry AMD, supporting the survival of photoreceptors in the affected retina, the kind of cells damaged by the disease.

The TRAN1 awards went to:

Stay tuned for our next blog which will dive into each of these awards in much more detail.

CIRM funded clinical trial shows promising results for patients with blood cancers

An illustration of a macrophage, a vital part of the immune system, engulfing and destroying a cancer cell. Antibody 5F9 blocks a “don’t eat me” signal emitted from cancer cells.
Courtesy of Forty Seven, Inc.

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are both types of blood cancers that can be difficult to treat. CIRM is funding Forty Seven, Inc. to conduct a clinical trial to treat patients with these blood cancers with an antibody called 5F9. CIRM has also given multiple awards prior to the clinical trial to help in developing the antibody.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, which are white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. The antibody works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

In a press release, Forty Seven, Inc. announced early clinical results from their CIRM funded trial using the antibody to treat patients with AML and MDS. Some patients received just the antibody while others received the antibody in combination with azacitidine, a chemotherapy drug used to treat these cancers.

Here is a synopsis of the trial:

  • 35 patients treated in a Phase 1 clinical trial have been evaluated for a response assessment to-date.
  • 10 of these have MDS or AML and only received the 5F9 antibody.
  • 11 of these have higher-risk MDS and received the 5F9 antibody along with the chemotherapy drug azacitidine.
  • 14 of these have untreated AML and received the 5F9 antibody along with the chemotherapy drug azacitidine.

For the 11 patients with higher-risk MDS treated with the antibody and chemotherapy, they found that:

  • All 11 patients achieved an objective response rate (ORR), meaning that there was a reduction in tumor burden of a predefined amount.
  • Six of these patients achieved a complete response (CR), indicating a disappearance of all signs of cancer in response to treatment.

For the 14 patients with untreated AML treated with the antibody and chemotherapy, they found that:

  • Nine of these patients achieved an ORR.
  • Five of these nine patients achieved a CR.
  • Two of these nine patients achieved a morphologic leukemia-free state (MLFS), indicating the disappearance of all cells with formal and structural characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment. 
  • The remaining five patients achieved stable disease (SD), meaning that the tumor is neither growing nor shrinking.

The results also showed that:

  • There was no evidence of increased toxicities when the antibody was used alongside the chemotherapy drugs, demonstrating tolerance and safety of the treatment.
  • No responding MDS or AML patient has relapsed or progressed on the antibody in combination with chemotherapy, with a median follow-up of 3.8 months.
  • The median time to response was rapid at 1.9 months.
  • Several patients have experienced deepening responses over time resulting in complete remissions. 

Based on the favorable results observed in this clinical trial to-date, expansion cohorts have been initiated, meaning that additional patients will be enrolled in a phase I trial. This will include patients with both higher-risk MDS and untreated AML as well as using the antibody in combination with chemotherapy.

In the press release, Dr. David Sallman, an investigator in the clinical trial, is quoted as saying,

“These new data for 5F9 show encouraging clinical activity in a broad population of patients with MDS and AML, who may be unfit for existing therapeutic options or at higher-risk for developing rapidly-advancing disease. Despite an evolving treatment landscape, physicians continue to seek new therapies for MDS and AML that can be used safely in combination with standard-of-care to help patients more rapidly achieve durable responses. To that end, I am excited to see meaningful clinical activity in a majority of patients treated with 5F9 in combination with azacitidine, with a median time to response of under two months and no relapses or progressions among responding patients.”