Stanford scientist uses CRISPR-Cas9 and stem cells to develop potential “bubble baby” therapy

Dr. Matthew Porteus, professor of pediatrics at Stanford University.
Photo courtesy of Stanford Medicine.

Our immune system is an important and essential part of everyday life. It is crucial for fighting off colds and, with the help of vaccinations, gives us immunity to potentially lethal diseases. Unfortunately, for some infants, this innate bodily defense mechanism is not present or is severely lacking in function.

This condition is known as severe combined immunodeficiency (SCID), commonly nicknamed “bubble baby” disease because of the sterile plastic bubble these infants used to be placed in to prevent exposure to bacteria, viruses, and fungi that can cause infection. There are several forms of SCID, one of which involves a single genetic mutation on the X chromosome and is known as SCID-X1

Many infants with SCID-X1 develop chronic diarrhea, a fungal infection called thrush, and skin rashes. Additionally, these infants grow slowly in comparison to other children. Without treatment, many infants with SCID-X1 do not live beyond infancy.

SCID-X1 occurs almost predominantly in males since they only carry one X chromosome, with at least 1 in 50,000 baby boys born with this condition. Since females carry two X chromosomes, one inherited from each parent, they are unlikely to inherit two X chromosomes with the mutation present since it would require the father to have SCID-X1.

What if there was a way to address this condition by correcting the single gene mutation? Dr. Matthew Porteus at Stanford University is leading a study that has developed an approach to treat SCID-X1 that utilizes this concept.

By using CRISPR-Cas9 technology, which we have discussed in detail in a previous blog post, it is possible to delete a problematic gene and insert a corrected gene. Dr. Porteus and his team are using CRISPR-Cas9 to edit blood stem cells, which give rise to immune cells, which are the foundation of the body’s defense mechanism. In a study published in Nature, Dr. Porteus and his team have demonstrated proof of concept of this approach in an animal model.

The Stanford team was able to take blood stem cells from six infants with SCID-X1 and corrected them with CRISPR-Cas9. These corrected stem cells were then introduced into mice modeled to have SCID-X1. It was found that these mice were not only able to make immune cells, but many of the edited stem cells maintained their ability to continuously create new blood cells.

In a press release, Dr. Mara Pavel-Dinu, a member of the research team, said:

“To our knowledge, it’s the first time that human SCID-X1 cells edited with CRISPR-Cas9 have been successfully used to make human immune cells in an animal model.”

CIRM has previously awarded Dr. Porteus with a preclinical development award aimed at developing gene correction therapy for blood stem cells for SCID-X1. In addition to this, CIRM has funded two other projects conducted by Dr. Porteus related to CRISPR-Cas9. One of these projects used CRISPR-Cas 9 to develop a treatment for chronic sinusitis due to cystic fibrosis and the second project used the technology to develop an approach for treating sickle cell disease.

CIRM has also funded four clinical trials related to SCID. Two of these trials are related to SCID-X1, one being conducted at St. Jude Children’s Research Hospital and the other at Stanford University. The third trial is related to a different form of SCID known as ADA-SCID and is being conducted at UCLA in partnership with Orchard Therapeutics. Finally, the last of the four trials is related to an additional form of SCID known as ART-SCID and is being conducted at UCSF.

Gene therapy and blood stem cells cure sickle cell disease patients

Sickle-shaped blood cells. The cells become lodged in blood vessels, causing strokes or excruciating pain as blood stops flowing. Photo courtesy of Omikron/Science Source

Blood is the lifeline of the body. The continuous, unimpeded circulation of blood maintains oxygen flow throughout the body and enables us to carry out our everyday activities. Unfortunately, there are individuals whose own bodies are in a constant battle that prevents this from occurring seamlessly. They have something known as sickle cell disease (SCD), an inherited condition caused by a mutation in a single gene. Rather than producing normal, circular red blood cells, their bodies produce sickle shaped cells (hence the name) that can become lodged in blood vessels, preventing blood flow. The lack of blood flow can cause agonizing pain, known as crises, as well as strokes. Chronic crises can cause organ damage, which can eventually lead to organ failure. Additionally, since the misshapen cells don’t survive long in the body, people with SCD have a greater risk of being severely anemic and are more prone to infections. Monthly blood transfusions are often needed to help temporarily alleviate symptoms. Due to the debilitating nature of SCD, important aspects of everyday life such as employment and health insurance can be extremely challenging to find and maintain.

An estimated 100,000 people in the United States are living with SCD. Around the world, about 300,000 infants are born with the condition each year, a statistic that will increase to 400,000 by 2050 according to one study. Many people with SCD do not live past the age of 50. It is most prevalent in individuals with sub-Saharan African descent followed by people of Hispanic descent. Experts have stated that advances in treatment have been limited in part because SCD is concentrated in poorer minority communities.

Despite these grim statistics and prognosis, there is hope.

The New York Times and Boston Herald recently released featured articles that tell the personal stories of patients enrolled in a clinical trial conducted by bluebird bio. The trial uses gene therapy in combination with hematopoietic (blood) stem cells (HSCs) to give rise to normal red blood cells in SCD patients.

Here are the stories of these patients. To read the full New York Times article, click here. For the Boston Herald article, click here.

Brothers, Emmanuel “Manny” 21 and Aiden Johnson 7 at their home in Brockton, Massachusetts. Both brothers were born with sickle cell disease. Photo courtesy of Matt Stone for MediaNews Group/Boston Herald

Emmanuel “Manny” Johnson was the very first patient in the SCD trial. He was motivated to participate in the trial not just for himself but for his younger brother Aiden Johnson, who was also born with SCD. Manny has a tattoo with Aiden’s name written inside a red sickle cell awareness ribbon.

In the article Manny is quoted as saying “It’s not only that we share the same blood disease, it’s like I have to do better for him.”

Since receiving the treatment, Manny’s SCD symptoms have disappeared.

Brandon Williams received the stem cell gene therapy to replace sickle cells with healthy red blood cells. The tattoo on his right forearm is in honor of his sister, Britney, who died of sickle cell disease. Photo courtesy of Alyssa Schukar for The New York Times

For Brandon Williams of Chicago, the story of SCD is a very personal one. At just 21 years old, Brandon had suffered four strokes by the time he turned 18. His older sister, Britney Williams, died of sickle cell disease at the age of 22. Brandon was devastated and felt that his own life could end at any moment. He was then told about the SCD trial and decided to enroll. Following the treatment, his symptoms have vanished along with the pain and fear inflicted by the disease.

Carmen Duncan participated in the stem cell gene therapy trial and no longer has sickle-cell symptoms. She wants to join the military, something that wasn’t an option until now. Photo courtesy of Sean Rayford for The New York Times

The NY Times piece also profiles Carmen Duncan, a 20 year old from Charleston, South Carolina. She had her spleen removed when she was just two years old as a result of complications form SCD. Duncan spent a large portion of her childhood in hospitals, coping with the pain in her arms and legs from blocked blood vessels. She enrolled in the SCD trial as well and she no longer has any signs of SCD. Duncan had aspirations to join the military but was unable to because of her condition. Now that she is symptom free, she plans to enlist.

This SCD clinical trial has multiple trial sites across the US, one which is the UCSF Alpha Stem Cell Clinic , a CIRM funded clinic specializing in the delivery of stem cell clinical trials to patients. CIRM awarded a $7,999,999 grant to help establish this site.

CIRM-supported Type I Diabetes treatment enters clinical trials in Europe

Viacyte images

ViaCyte’s President & CEO, Paul Laikind

ViaCyte, a company that CIRM has supported for many years, has announced international expansion of a clinical trial to test their therapeutic PEC-Direct product in patients with Type I Diabetes.

The first European patient in Brussels was implanted with the PEC-Direct product candidate that, in animal models, is able to form functional beta cells. Patients with Type I Diabetes are unable to control blood glucose levels because their immune system attacks insulin-producing beta cells, which are responsible for regulating blood sugar.

viacyte device

ViaCyte PEC-Direct product candidate

The hope is that PEC-Direct would eliminate the need for patients to take daily doses of insulin, the current treatment standard to prevent the side effects of high blood glucose levels, such as heart disease, kidney damage and nerve damage.

The PEC-Direct product is implanted under the skin. The progenitor cells inside it are designed to mature in to human pancreatic islet cells, including glucose-responsive insulin-secreting beta cells, following implant. These are the cells destroyed by Type 1 Diabetes

In this first phase of the clinical trial, patients are administered a subtherapeutic dose of the drug to ensure that that the implants are able to generate beta cells in the body. The next part of the trial will determine whether or not the formed beta cells are able to produce appropriate levels of insulin and modulate blood glucose levels. A sister trial is currently underway in North America as well. This work is a collaboration between ViaCyte and The Center for Beta Cell Therapy in Diabetes.

Separately, ViaCyte has also made important headway to make stem cells more effective in different types of diseases by programming them to evade the immune system. This progress has been cited by the Global Human Embryonic Stem Cells Market report as a key development in growing the overall global stem cell market.

CIRM is proud to be a supporter of companies such as ViaCyte that are conducting groundbreaking research to make stem cell therapy an effective and realistic treatment option for many different diseases.

 

 

CIRM-supported study shows promise in fighting acute myeloid leukemia

Chemotherapy

Chemotherapy

For years chemotherapy has been a mainstay in the war against cancer. While it can be very effective it can also come with some nasty side effects. Since chemo works by killing rapidly growing cells, it not only hits the cancer cells, but can also hit other rapidly growing cells too, including those in our hair roots, which is why many people undergoing chemo lose their hair.

So, the key to a truly effective anti-cancer therapy is one that does as much damage as possible to the cancer cells, and as little as possible to all the healthy cells in the body. A therapy being developed by Cellerant Therapeutics seems to have found that sweet spot in a new therapy targeting acute myeloid leukemia (AML).

AML starts in the bone marrow and quickly moves into the blood, where it can spread to other parts of the body. It is the second most common form of leukemia and claims around 10,000 lives in the US every year. Chemotherapy is the main weapon used against AML but it can also cause nausea, hair loss and other complications and in most cases has limited effectiveness because, over time, the leukemia cells get used to it.

Cellerant 2013In a study published in the journal Blood Advances, Cellerant researchers explain the limitations of existing treatments.

“The current standard of care for acute myeloid leukemia (AML) is largely ineffective with very high relapse rates and low survival rates, mostly due to the inability to eliminate a rare population of leukemic stem cells (LSCs) that initiate tumor growth and are resistant to standard chemotherapy.”

Cellerant has developed a therapy called CLT030 which targets CLL1, a marker found on the surface of leukemia cells but not on normal blood stem cells. Preclinical studies in mice show CLT030 is able to zero in on this surface marker and attack the leukemia but do little damage to blood or other surrounding cells.

In a news release, Ram Mandalam, President and CEO of Cellerant, said this is encouraging news:

“AML remains a significant unmet medical need, and our therapy, CLT030, that can target leukemic stem cells precisely while minimally affecting normal hematopoietic stem cells could improve outcomes while avoiding much of the toxicities associated with conventional chemotherapy and other targeted therapeutics.”

Mandalam says they are now doing the late-stage preclinical testing to be able to apply to the Food and Drug Administration for permission to start a clinical trial. CIRM is funding this stage of the research.

 

Stem Cell Roundup: Jake Javier’s amazing spirit; TV report highlights clinic offering unproven stem cell therapies

JakeJavier_A_0107_20161207142726_JakeJavier_SeesTheDay

Jake Javier: Photo Michael Clemens, Sees the Day

In the Roundup we usually focus on studies that highlight advances in stem cell research but today we’re going to do something a little different. Instead of relying on print for our stories, we’re turning to video.

We begin with a piece about Jake Javier. Regular readers of our blog will remember that Jake is the young man who broke his neck the day before he graduated high school, leaving him paralyzed from the upper chest down.

After enrolling in the CIRM-funded Asterias clinical trial, and receiving a transplant of 10 million stem cells, Jake regained enough use of his arms and hands to be able to go to Cal Poly and start his life over.

This video highlights the struggles and challenges he faced in his first year, and his extraordinary spirit in overcoming them.

(thanks to Matt Yoon and his Creative Services team at Cal Poly for this video)

Going Undercover

The second video is from the NBC7 TV station in San Diego and highlights one of the big problems in regenerative medicine today, clinics offering unproven therapies. The investigative team at NBC7 went undercover at a stem cell clinic seminar where presenters talked about “the most significant breakthrough in natural medicine” for improving mobility and reducing pain. As the reporter discovered, the reality didn’t live up to the promise.

NBC7 Investigative Report

 

The Story of a South African Bubble Boy and a Gene Therapy That Gave Him His Life Back

Ayaan Isaacs, health24

Ayaan Isaacs was born in South Africa on March 4th, 2016 as a seemingly healthy baby. But only a few days in to life, he contracted a life-threatening liver infection. He thankfully survived, only to have the doctors discover a few weeks later that he had something much more troubling – a rare disease that left him without a functioning immune system.

Ayaan was diagnosed with X-linked severe combined immunodeficiency (SCID), which is often referred to as ‘bubble baby’ disease because patients are extremely susceptible to infection and must live in sterile environments. SCID patients can be cured with a blood stem cell transplant if they have a genetically matched donor. Unfortunately for Ayaan, only a partially matched donor was available, which doesn’t guarantee a positive outcome.

Ayaan’s parents were desperate for an alternative treatment to save Ayaan’s life. It was at this point that they learned about a clinical trial at St. Jude Children’s Research hospital in Memphis, Tennessee. The trial is treating SCID patients with a stem cell gene therapy that aims to give them a new functioning immune system. The therapy involves extracting the patient’s blood-forming stem cells and genetically correcting the mutation that causes SCID. The corrected blood stem cells are then transplanted back into the patient where they rebuild a healthy immune system.

Ayaan was able to enroll in the trial, and he was the first child in Africa to receive this life-saving gene therapy treatment. Ayaan’s journey with bubble boy disease was featured by South Africa’s health24 earlier this year. In the article, his mom Shamma Sheik talked about the hope that this gene therapy treatment brought to their family.

“No child should have to die just because they are unable to find a donor. Gene therapy offered Ayaan a chance at life that he ordinarily would not have had. I was fortunate to have found an alternative therapy that is working and already showing remarkable results. We are mindful that this is still an experimental treatment and there are complications that can arise; however, I am very optimistic that he will return to South Africa with a functioning immune system.”

Carte Blanche, an investigative journalism program in South Africa, did a feature video of Ayaan in February. Although the video is no longer available on their website, it did reveal that four months after Ayaan’s treatment, his condition started to improve suggesting that the treatment was potentially working.

We’ve written previously about another young boy named Ronnie who was diagnosed with X-linked SCID days after he was born. Ronnie also received the St. Jude stem cell gene therapy in a CIRM-funded clinical trial at the UCSF Benioff Children’s Hospital. Ronnie was treated when he was six months old and just celebrated his first birthday as a healthy, vibrant kid thanks to this trial. You can hear more about Ronnie’s moving story from his dad, Pawash Priyank, in the video below.

Our hope is that powerful stories like Ayaan’s and Ronnie’s will raise awareness about SCID and the promising potential of stem cell gene therapies to cure patients of this life-threatening immune disease.

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)


Related Links:

Stem Cell Roundup: Crafty Cancer, Fighting Viruses, and Brainstorm ALS Trial Expands to Canada

TGIF! Here is your weekly dose of stem cell news…

Shapeshifting cancer cells

This week’s awesome stem cell photo comes with a bizarre story and bonus video footage.

New research from Duke has found that some lung cancer cells with errors in transcription factors begin to resemble their nearest relatives – the cells of the stomach and gut. (Credit – Tata Lab, Duke University)

Researchers at Duke University were studying lung tumor samples and discovered something that didn’t quite belong. Inside the lung tumors were miniature parts of the digestive system including the stomach, duodenum and small intestine. It turns out that the lung cancer cells (and cancer cells in general) are super crafty and had turned off the expression of a gene called NKX2-1. This gene is a master switch that tells developing cells to turn into lung cells. Without this command, cells switch their identity and mature into gut tissue instead. By manipulating these master switches, cancer cells are able to develop resistance to chemotherapy and other cancer treatments.

So, what does this bizarre finding mean for cancer research? Purushothama Rao Tata, first author on the Developmental Cell study, provided an answer in a news release:

“Cancer biologists have long suspected that cancer cells could shape shift in order to evade chemotherapy and acquire resistance, but they didn’t know the mechanisms behind such plasticity. Now that we know what we are dealing with in these tumors – we can think ahead to the possible paths these cells might take and design therapies to block them.”

For more cool photos and insights into this study, watch the Duke Univeristy video below.


Secrets to the viral-fighting ability of stem cells uncovered (Todd Dubnicoff)

I’ve been writing about stem cells for many years and thought I knew most of the basic info about these amazing cells. But up until this week, I had no idea that stem cells are known to fight off viral infections much better than other cells. It does makes sense though. Stem cells give rise to and help maintain all the organs and tissues of the body. So, it would be bad news if, let’s say, a muscle stem cell multiplied to repair damaged tissue while carrying a dangerous virus.

How exactly stem cells fend off attacking viruses is a question that has eluded researchers for decades. But this week, results published in Cell by Rockefeller University scientists may provide an answer.

Stem cells lacking their protective genes are susceptible to infection by the dengue virus, in red. (Rockefeller University)

The researchers found that liver cells and stem cells defend themselves against viruses differently. In the presence of a virus, liver cells and most other cells react by releasing large amounts of interferon, a protein that acts as a distress signal to other cells in the vicinity. That signal activates hundreds of genes responsible for attracting protective immune cells to the site of infection.

Stem cells, however, are always in this state of emergency. Even in the absence of interferon, the antiviral genes were activated in stem cells. And when the stem cells were genetically engineering to lack some of the antiviral genes, the cells no longer could stop viral infection.

In a press release, senior author Charles Rice explained the importance of this work:

“By understanding more about this biology in stem cells, we may learn more about antiviral mechanisms in general.”


CIRM-funded clinical trial for ALS now available next door – in Canada (Kevin McCormack)

In kindergarten we are taught that it’s good to share. So, we are delighted that a Phase 3 clinical trial for ALS – also known as Lou Gehrig’s disease – that CIRM is helping fund is now expanding its reach across the border from the U.S. into Canada.

Brainstorm Cell Therapeutics, the company behind the therapy, says it is going to open a clinical trial site in Canada because so many Canadians have asked for it.

The therapy, as we described in a recent blog post, takes mesenchymal stem cells from the patient’s own bone marrow. Those cells are then modified in the lab to be able to churn out specific proteins that can help protect the brain cells attacked by ALS. The cells are then transplanted back into the patient and the hope is they will slow down, maybe even stop the progression of the disease.

Earlier studies showed the therapy was safe and seemed to benefit some patients. Now people with ALS across our northern border will get a chance to see if it really works.

Chaim Lebovits, the president and chief executive officer of BrainStorm, said in a press release:

“Although there are thousands of patients worldwide with ALS, we initially designed the Phase 3 trial to enroll U.S.-based patients only, primarily to make it easier for patient follow-up visits at the six U.S. clinical sites. However, due to an outpouring of inquiry and support from Canadian patients wanting to enroll in the trial, we filed an amendment with the FDA [the U.S. Food and Drug Administration] to allow Canada-based ALS patients to participate.”

We are happy to share.

Stem Cell Patch Restores Vision in Patients with Age-Related Macular Degeneration

Stem cell-derived retinal pigmented epithelial cells. Cell borders are green and nuclei are red. (Photo Credit: Dennis Clegg, UCSB Center for Stem Cell Biology and Engineering)

Two UK patients suffering from vision loss caused by age-related macular degeneration (AMD) have regained their sight thanks to a stem cell-based retinal patch developed by researchers from UC Santa Barbara (UCSB). The preliminary results of this promising Phase 1 clinical study were published yesterday in the journal Nature Biotechnology.

AMD is one of the leading causes of blindness and affects over six million people around the world. The disease causes the blurring or complete loss of central vision because of damage to an area of the retina called the macula. There are different stages (early, intermediate, late) and forms of AMD (wet and dry). The most common form is dry AMD which occurs in 90% of patients and is characterized by a slow progression of the disease.

Patching Up Vision Loss

In the current study, UCSB researchers engineered a retinal patch from human embryonic stem cells. These stem cells were matured into a layer of cells at the back of the eye, called the retinal pigment epithelium (RPE), that are damaged in AMD patients. The RPE layer was placed on a synthetic patch that is implanted under the patient’s retina to replace the damaged cells and hopefully improve the patient’s vision.

The stem cell-based eyepatches are being implanted in patients with severe vision loss caused by the wet form of AMD in a Phase 1 clinical trial at the Moorfields Eye Hospital NHS Foundation Trust in London, England. The trial was initiated by the London Project to Cure Blindness, which was born from a collaboration between UCSB Professor Peter Coffey and Moorsfields retinal surgeon Lyndon da Cruz. Coffey is a CIRM grantee and credited a CIRM Research Leadership award as one of the grants that supported this current study.

The trial treated a total of 10 patients with the engineered patches and reported 12-month data for two of these patients (a woman in her 60s and a man in his 80s) in the Nature Biotech study. All patients were given local immunosuppression to prevent the rejection of the implanted retinal patches. The study reported “three serious adverse events” that required patients to be readmitted to the hospital, but all were successfully treated. 12-months after treatment, the two patients experienced a significant improvement in their vision and went from not being able to read at all to reading 60-80 words per minute using normal reading glasses.

Successfully Restoring Sight

Douglas Waters, the male patient reported on, was diagnosed with wet AMD in July 2015 and received the treatment in his right eye a few months later. He spoke about the remarkable improvement in his vision following the trial in a news release:

“In the months before the operation my sight was really poor, and I couldn’t see anything out of my right eye. I was struggling to see things clearly, even when up-close. After the surgery my eyesight improved to the point where I can now read the newspaper and help my wife out with the gardening. It’s brilliant what the team have done, and I feel so lucky to have been given my sight back.”

This treatment is “the first description of a complete engineered tissue that has been successfully used in this way.” It’s exciting not only that both patients had a dramatic improvement in their vision, but also that the engineered patches were successful at treating an advanced stage of AMD.

The team will continue to monitor the patients in this trial for the next five years to make sure that the treatment is safe and doesn’t cause tumors or other adverse effects. Peter Coffey highlighted the significance of this study and what it means for patients suffering from AMD in a UCSB news release:

Peter Coffey

“This study represents real progress in regenerative medicine and opens the door to new treatment options for people with age-related macular degeneration. We hope this will lead to an affordable ‘off-the-shelf’ therapy that could be made available to NHS patients within the next five years.”

Inspiring Video: UC Irvine Stem Cell Trial Gives Orange County Woman Hope in Her Fight Against ALS

Stephen Hawking

Last week, we lost one of our greatest, most influential scientific minds. Stephen Hawking, a famous British theoretical physicist and author of “A Brief History of Time: From the Big Bang to Black Holes”, passed away at the age of 76.

Hawking lived most of his adult life in a wheelchair because he suffered from amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, ALS causes the degeneration of the nerve cells that control muscle movement.

When Hawking was diagnosed with ALS at the age of 21, he was told he only had three years to live. But Hawking defied the odds and went on to live a life that not only revolutionized our understanding of the cosmos, but also gave hope to other patients suffering from this devastating degenerative disease.

A Story of Hope

Speaking of hope, I’d like to share another story of an Orange County woman name Lisa Wittenberg who was recently diagnosed with ALS. Her story was featured this week on KTLA5 news and is also available on the UC Irvine Health website.

VIDEO: UCI Health stem cell trial helps Orange County woman fight neurodegenerative disease ALS. Click on image to view video in new window.

In this video, Lisa describes how quickly ALS changed her life. She was with her family sledding in the snow last winter, and only a year later, she is in a wheelchair unable to walk. Lisa got emotional when she talked about how painful it is for her to see her 13-year-old son watch her battle with this disease.

But there is hope for Lisa in the form of a stem cell clinical trial at the UC Irvine CIRM Alpha Stem Cell Clinic. Lisa enrolled in the Brainstorm study, a CIRM-funded phase 3 trial that’s testing a mesenchymal stem cell therapy called NurOwn. BrainStorm Cell Therapeutics, the company sponsoring this trial, is isolating mesenchymal stem cells from the patient’s own bone marrow. The stem cells are then cultured in the lab under conditions that convert them into biological factories secreting a variety of neurotrophic factors that help protect the nerve cells damaged by ALS. The modified stem cells are then transplanted back into the patient where they will hopefully slow the progression of the disease.

Dr. Namita Goyal, a neurologist at UC Irvine Health involved in the trial, explained in the KTLA5 video that they are hopeful this treatment will give patients more time, and optimistic that in some cases, it could improve some of their symptoms.

Don’t Give Up the Fight

The most powerful part of Lisa’s story to me was the end when she says,

“I think it’s amazing that I get to fight, but I want everybody to get to fight. Everybody with ALS should get to fight and should have hope.”

Not only is Lisa fighting by being in this ground-breaking trial, she is also participated in the Los Angeles marathon this past weekend, raising money for ALS research.

More patients like Lisa will get the chance to fight as more potential stem cell treatments and drugs enter clinical trials. Videos like the one in this blog are important for raising awareness about available clinical trials like the Brainstorm study, which, by the way, is still looking for more patients to enroll (contact information for this trial can be found on the clinicaltrials.gov website here). CIRM is also funding another stem cell trial for ALS at the Cedars-Sinai Medical Center. You can read more about this trial on our website.

Lisa’s powerful message of fighting ALS and having hope reminds me of one of Stephen Hawking’s most famous quotes, which I’ll leave you with:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the Universe exist. Be curious. And however difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”


Related Links:

CIRM-funded clinical trial takes a combination approach to treating deadly blood cancers

Stained blood smear shows enlarged chronic lymphocytic leukemia cells among normal red blood cells. (UCSD Health)

A diagnosis of cancer often means a tough road ahead, with surgery, chemotherapy and radiation used to try and kill the tumor. Even then, sometimes cancer cells manage to survive and return later, spreading throughout the body. Now researchers at UC San Diego and Oncternal Therapeutics are teaming up with a combination approach they hope will destroy hard-to-kill blood cancers like leukemia.

The combination uses a monoclonal antibody called cirmtuzumab (so called because CIRM funding helped develop it) and a more traditional anti-cancer therapy called ibrutinib. Here’s how it is hoped this approach will work.

Ibrutinib is already approved by the US Food and Drug Administration (FDA) to treat blood cancers such as leukemia and lymphoma. But while it can help, it doesn’t always completely eradicate all the cancer cells. Some cancer stem cells are able to lie dormant during treatment and then start proliferating and spreading the cancer later. That’s why the team are pairing ibrutinib with cirmtuzumab.

In a news release announcing the start of the trial, UCSD’s Dr. Thomas Kipps,  said they hope this one-two punch combination will be more effective.

Thomas Kipps, UCSD

“As a result {of the failure to kill all the cancer cells}, patients typically need to take ibrutinib indefinitely, or until they develop intolerance or resistance to this drug. Cirmtuzumab targets leukemia and cancer stem cells, which are like the seeds of cancer. They are hard to find and difficult to destroy. By blocking signaling pathways that promote neoplastic-cell growth and survival, cirmtuzumab may have complementary activity with ibrutinib in killing leukemia cells, allowing patients potentially to achieve complete remissions that permit patients to stop therapy altogether.”

Because this is an early stage clinical trial, the goal is to first make sure the approach is safe, and second to identify the best dose and treatment schedule for patients.

The researchers hope to recruit 117 patients around the US. Some will get the cirmtuzumab and ibrutinib combination, some will get ibrutinib alone to see if one approach is more effective than the other.

CIRM has a triple investment in this research. Not only did our funding help develop cirmtuzumab, but CIRM is also funding this clinical trial and one of the trial sites is at UCSD, one of the CIRM Alpha Stem Cell Clinics.

CIRM’s Dr. Ingrid Caras says this highlights our commitment to our mission of accelerating stem cell therapies to patients with unmet medical needs.

“Our partnership with UC San Diego and the Alpha Stem Cell Clinics has enabled this trial to more quickly engage potential patient-participants. Being among the first to try new therapies requires courage and CIRM is grateful to the patients who are volunteering to be part of this clinical trial.”


Related Links: