Time and money and advancing stem cell research

The human genome

Way back in the 1990’s scientists were hard at work decoding the human genome, trying to map and understand all the genes that make up people. At the time there was a sense of hope, a feeling that once we had decoded the genome, we’d have cures for all sorts of things by next Thursday. It didn’t quite turn out that way.

The same was true for stem cell research. In the early days there was a strong feeling that this was going to quite quickly produce new treatments and cures for diseases ranging from Parkinson’s and Alzheimer’s to heart disease and stroke. Although we have made tremendous strides we are still not where we hoped we’d be.

It’s a tough lesson to learn, but an important one: good scientific research moves at its own pace and pays little heed to our hopes or desires. It takes time, often a long time, and money, usually a lot of money, to develop new treatments for deadly diseases and disorders.

Many people, particularly those battling deadly diseases who are running out of time, are frustrated at the slow pace of stem cell research, at the years and years of work that it takes to get even the most promising therapy into a clinical trial where it can be tested in people. That’s understandable. If your life is on the line, it’s difficult to be told that you have to be patient. Time is a luxury many patients don’t have.

But that caution is necessary. The last thing we want to do is rush to test something in people that isn’t ready. And stem cells are a whole new way of treating disease, using cells that may stay in the body for years, so we really need to be sure we have done everything we can to ensure they are safe before delivering them to people.

The field of gene therapy was set back years after one young patient, Jesse Gelsinger, died as a result of an early experimental treatment. We don’t want the same to happen to stem cell research.

And yet progress is being made, albeit not as quickly as any of us would like. At the end of the first ten years of CIRM’s existence we had ten projects that we supported that were either in, or applying to be in, a clinical trial sanctioned by the US Food and Drug Administration (FDA). Five years later that number is 56.

Most of those are in Phase 1 or 2 clinical trials which means they are still trying to show they are both safe and effective enough to be made available to a wider group of people. However, some of our projects are in Phase 3, the last step before, hopefully, being given FDA approval to be made more widely available and – just as important – to be covered by insurance.

Other CIRM-funded projects have been given Regenerative Medicine Advanced Therapy (RMAT) designation by the FDA, a new program that allows projects that show they are safe and benefit patients in early stage clinical trials, to apply for priority review, meaning they could get approved faster than normal. Out of 40 RMAT designations awarded so far, six are for CIRM projects.

We are working hard to live up to our mission statement of accelerating stem cell treatments to patients with unmet medical needs. We have been fortunate in having $3 billion to spend on advancing this research in California; an amount no other US state, indeed few other countries, have been able to match. Yet even that amount is tiny compared to the impact that many of these diseases have. For example, the economic cost of treating diabetes in the US is a staggering $327 billion a year.

The simple truth is that unless we, as a nation, invest much more in scientific research, we are not going to be able to develop cures and new, more effective, treatments for a wide range of diseases.

Time and money are always going to be challenging when it comes to advancing stem cell research and bringing treatments to patients. With greater knowledge and understanding of stem cells and how best to use them we can speed up the timeline. But without money none of that can happen.

Our blog is just one of many covering the topic of “What are the hurdles impacting patient access to cell and gene therapies as part of Signal’s fourth annual blog carnival.

Blood-brain barrier chip created with stem cells expands potential for personalized medicine

An Organ-Chip used in the study to create a blood-brain barrier (BBB).

The brain is a complex part of the human body that allows for the formation of thoughts and consciousness. In many ways it is the essence of who we are as individuals. Because of its importance, our bodies have developed various layers of protection around this vital organ, one of which is called the blood-brain barrier (BBB).

The BBB is a thin border of various cell types around the brain that regulate what can enter the brain tissue through the bloodstream. Its primary purpose is to prevent toxins and other unwanted substances from entering the brain and damaging it. Unfortunately this barrier can also prevent helpful medications, designed to fix problems, from reaching the brain.

Several brain disorders, such as Amyotrophic Lateral Sclerosis (ALS – also known as Lou Gehrig’s disease), Parkinson’s Disease (PD), and Huntington’s Disease (HD) have been linked to defective BBBs that keep out critical biomolecules needed for healthy brain activity.

In a CIRM-funded study, a team at Cedars-Sinai Medical Center created a BBB through the use of stem cells and an Organ-Chip made from induced pluripotent stem cells (iPSCs). These are a specific type of stem cells that can turn into any type of cell in the body and can be generated from a person’s own cells. In this study, iPSCs were created from adult blood samples and used to make the neurons and other supporting cells that make up the BBB. These cells were then placed inside an Organ-Chip which recreates the environment that cells normally experience within the human body.

Inside the 3-D Organ-Chip, the cells were able to form a BBB that functions as it does in the body, with the ability to block entry of certain drugs. Most notably, when the BBB was generated from cell samples of patients with HD, the BBB malfunctioned in the same way that it does in patients with the disease.

These findings expand the potential for personalized medicine for various brain disorders linked to problems in the BBB. In a press release, Dr. Clive Svendsen, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute and senior author of the study, was quoted as saying,

“The study’s findings open a promising pathway for precision medicine. The possibility of using a patient-specific, multicellular model of a blood barrier on a chip represents a new standard for developing predictive, personalized medicine.”

The full results of the study were published in the scientific journal Cell Stem Cell.

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

200 years later, the search for a cure for Parkinson’s continues

On the surface, actor Michael J. Fox, singer Neil Diamond, civil rights activist Jesse Jackson and Scottish comedian Billy Connolly would appear to have little in common. Except for one thing. They all have Parkinson’s Disease (PD).

Their celebrity status has helped raise public awareness about the condition, but studies show that awareness doesn’t amount to an understanding of PD or the extent to which it impacts someone’s life. In fact a study in the UK found that many people still don’t think PD is a serious condition.

To try and help change that people around the world will be holding events today, April 11th, World Parkinson’s Day.

The disease was first described by James Parkinson in 1817 in “An Essay on the Shaking Palsy”. In the essay Parkinson described a pattern of trembling in the hands and fingers, slower movement and loss of balance. Our knowledge about the disease has advanced in the last 200 years and now there are treatments that can help slow down the progression of the disease. But those treatments only last for a while, and so there is a real need for new treatments.  

That’s what Jun Takahashi’s team at Kyoto University in Japan hope to provide. In a first-of-its-kind procedure they took skin cells from a healthy donor and reprogrammed them to become induced pluripotent stem cells (iPSCs), or stem cells that become any type of cell. These iPSCs were then turned into the precursors of dopamine-producing neurons, the cells destroyed by PD, and implanted into 12 brain regions known to be hotspots for dopamine production.

The procedure was carried out in October and the patient, a male in his 50s, is still healthy. If his symptoms continue to improve and he doesn’t experience any bad side effects, he will receive a second dose of dopamine-producing stem cells. Six other patients are scheduled to receive this same treatment.

Earlier tests in monkeys showed that the implanted stem cells improved Parkinson’s symptoms without causing any serious side effects.

Dompaminergic neurons derived from stem cells

Scientists at UC San Francisco are trying a different approach, using gene therapy to tackle one of the most widely recognized symptoms of PD, muscle movement.

In the study, published in the journal Annals of Neurology, the team used an inactive virus to deliver a gene to boost production of dopamine in the brain. In a Phase 1 clinical trial 15 patients, whose medication was no longer able to fully control their movement disorder, were treated with this approach. Not only were they able to reduce their medication – up to 42 percent in some cases – the medication they did take lasted longer before causing dyskinesia, an involuntary muscle movement that is a common side effect of the PD medication.

In a news article Dr. Chad Christine, the first author of the study, says this approach may also help reduce other symptoms.

“Since many patients were able to substantially reduce the amount of Parkinson’s medications, this gene therapy treatment may also help patients by reducing dose-dependent side effects, such as sleepiness and nausea.” 

At CIRM we have a long history of funding research into PD. Over the years we have invested more than $55 million to try and develop new treatments for the disease.

In June 2018, the CIRM Board awarded $5.8 million to UC San Francisco’s Krystof Bankiewicz and Cedars-Sinai’s Clive Svendsen. They are using neural progenitor cells, which have the ability to multiply and turn into other kinds of brain cells, and engineering them to express the growth factor GDNF which is known to protect the cells damaged in PD. The hope is that when transplanted into the brain of someone with PD, it will help slow down, or even halt the progression of the disease. 

The CIRM funding will hopefully help the team do the pre-clinical research needed to get the FDA’s go-ahead to test this approach in a clinical trial. 

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s Disease

At the time of the award David Higgins, PhD, the CIRM Board Patient Advocate for Parkinson’s Disease, said: “One of the big frustrations for people with Parkinson’s, and their families and loved ones, is that existing therapies only address the symptoms and do little to slow down or even reverse the progress of the disease. That’s why it’s important to support any project that has the potential to address Parkinson’s at a much deeper, longer-lasting level.”

But we don’t just fund the research, we try to bring the scientific community together to help identify obstacles and overcome them. In March of 2013, in collaboration with the Center for Regenerative Medicine (CRM) of the National Institutes of Health (NIH), we held a two-day workshop on cell therapies for Parkinson’s Disease. The experts outlined the steps needed to help bring the most promising research to patients.

Around one million Americans are currently living with Parkinson’s Disease. Worldwide the number is more than ten million. Those numbers are only expected to increase as the population ages. There is clearly a huge need to develop new treatments and, hopefully one day, a cure.

Till then days like April 11th will be an opportunity to remind ourselves why this work is so important.

Facebook Live – Ask the Stem Cell Team about Patient Advocacy

How often do you get to ask an expert a question about something that matters deeply to you and get an answer right away? Not very often I’m guessing. That’s why CIRM’s Facebook Live “Ask the Stem Cell Team About Patient Advocacy” gives you a chance to do just that this Thursday, March 14th from noon till 1pm PST.

We have three amazing individuals who will share their experiences, their expertise and advice as Patient Advocates, and answer your questions about how to be an effective advocate for your cause.

The three are:

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and worked to raise greater awareness about the needs of people with Parkinson’s.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

And, of course, feel free to share this information with anyone you think might be interested.

Tips on how to be a great Patient Advocate from three of the best Advocates around

No one sets out to be a Patient Advocate. It’s something that you become because of something that happens to you. Usually it’s because you, or  a loved one or a friend, becomes ill and you want to help find a treatment. Whatever the reason, it is the start of a journey that often throws you into a world that you know nothing about: a world of research studies and scientific terminology, of talking to and trying to understand medical professionals, and of watching someone you love struggle.

It’s a tough, demanding, sometimes heart-breaking role. But it’s also one of the most important roles you can ever take on. Patient Advocates not only care for people afflicted with a particular disease or disorder, they help them navigate a new and scary world, they help raise money for research, and push researchers to work harder to find new treatments, maybe even cures. And they remind all of us that in the midst of pain and suffering the human touch, a simple kindness is the most important gift of all.

But what makes a great Patient Advocate, what skills do you need and how can you get them? At CIRM we are blessed to have some of the most amazing Patient Advocates you will ever meet. So we asked three of them to join us for a special Facebook Live “Ask the Stem Cell Team” event to share their knowledge, experience and expertise with you.

The Facebook Live “Ask the Stem Cell Team About Patient Advocacy” event will be on Thursday, March 14th from noon till 1pm PST.

The three experts are:

Gigi McMillan

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That has led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and strived to raise greater awareness about the needs of people with Parkinson’s.

Please join us for our Facebook Live event on Patient Advocates on Thursday, March 14 from noon till 1pm and feel free to share information about the event with anyone you think would be interested.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

The power of one voice: David Higgins’ role in advancing stem cell research

CIRM-2018_28-

David Higgins: Photo courtesy Nancy Ramos @ Silver Eye Photography

As we start a new year, we are fine tuning our soon-to-be-published 2018 Annual Report, summarizing our work over the past 12 months. The report is far more than just a collection of statistics about how many clinical trials we are funding (50 – not too shabby eh!) or that our support has generated an additional $3.2 billion in leveraged funding. It’s also a look at the people who have made this year so memorable – from patients and researchers to patient advocates. We start with our Board member David Higgins, Ph.D.  David is the patient advocate on our Board for Parkinson’s disease. He has a family history of Parkinson’s and has also been diagnosed with the disease himself.

How he sees his role

As a patient advocate my role is not to support any Parkinson’s program that comes in the door and get it funded. We have to judge the science at the same level for every disease and if you bring me a good Parkinson’s project, I will fight tooth and nail to support it. But if you bring me a bad one, I will not support it. I see my role as more of a consultant for the staff and Board, to help advise but not to impose my views on them.

I think what CIRM has done is to create a new way of funding the best science in the world. The involvement of the community in making these decisions is critical in making sure there is an abundance of oversight, that there is not a political decision made about funding. It’s all about the science. This is the most science-based organization that you could imagine.

The Board plays a big role in all this. We don’t do research or come up with the ideas, but we nurture the research and support the scientists, giving them the elements they need to succeed.

And, of course the taxpayers play a huge role in this, creating us in the first place and approving all the money to help support and even drive this research. Because of that we should be as conservative as possible in using this money. Being trustees of this funding is a privilege and we have to be mindful of how to best use it.

On the science

I love, love, love having access to the latest, most interesting, cutting edge research in the world, talking to scientists about what they are doing, how we can support them and help them to do it better, how it will change the world. You don’t have access to anything else like this anywhere else.

It’s like ice cream, you just enjoy every morsel of it and there’s no way you can find that level of satisfaction anywhere else. I really feel, as do other Board members, that we are helping people, that we are changing people’s lives.

I also love the learning curve. The amount I have learned about the field that I didn’t know before is amazing. Every meeting is a chance to learn something new and meeting the scientists who have spent years working on a project is so fascinating and rewarding.

 Unexpected pleasure

The other joy, and I hadn’t anticipated this, is the personal interaction I have with other Board members and staff members. They have become friends, people I really like and admire because of what they do and how committed they are.

When I talk about CIRM I tell people if you live in California you should be proud of how your money is being spent and how it’s making a difference in people’s lives. When I give a talk or presentation, I always end with a slide of the California flag and tell people you should be proud to be here.

 

 

Japanese scientists implant first Parkinson’s patient with replacement neurons derived from stem cells

Parkinsons

Neurons derived from stem cells.Credit: Silvia Riccardi/SPL

Currently, more than 10 million people worldwide live with Parkinson’s disease (PD). By 2020, in the US alone, people living with Parkinson’s are expected to outnumber the cases of multiple sclerosis, muscular dystrophy and Lou Gehrig’s disease combined.

There is no cure for Parkinson’s and treatment options consist of medications that patients ultimately develop tolerance to, or surgical therapies that are expensive. Therefore, therapeutic options that offer long-lasting treatment, or even a cure, are essential for treating PD.

Luckily for patients, Jun Takahashi’s team at Kyoto University has pioneered a stem cell based therapy for PD patients.

To understand their treatment strategy, however, we first have to understand what causes this disease. Parkinson’s results from decreased numbers of neurons that produce dopamine, a molecule that helps control muscle movements. Without proper dopamine production, patients experience a wide range of movement abnormalities, including the classic tremors that are associated with PD.

The current treatment options only target the symptoms, as opposed to the root cause of the disease. Takashi’s group decided to go directly to the source and improve dopamine production in these patients by correcting the dopaminergic neuron shortage.

The scientists harvested skin cells from a healthy donor and reprogrammed them to become induced pluripotent stem cells (iPSCs), or stem cells that become any type of cell. These iPSCs were then turned into the precursors of dopamine-producing neurons and implanted into 12 brain regions known to be hotspots for dopamine production.

The procedure was carried out in October and the patient, a male in his 50s, is still healthy. If his symptoms continue to improve and he doesn’t experience any bad side effects,  he will receive a second dose of dopamine-producing stem cells. Six other patients are scheduled to receive this same treatment and Takashi hopes that, if all goes well, this type of treatment can be ready for the general public by 2023.

This treatment was first tested in monkeys, where the researchers saw that not only did the implanted stem cells improve Parkinson’s symptoms and survive in the brain for at least two years, but they also did not cause any negative side effects.

This is only the third time iPSCs have been used as a treatment option in humans. The first was for macular degeneration in 2014.

CIRM is funding a similar, albeit earlier-stage program, with Jeanne Loring at Scripps.

 

Celebrating Exciting CIRM-Funded Discovery Research on World Parkinson’s Day

April 11th is World Parkinson’s Disease Awareness Day. To mark the occasion, we’re featuring the work of CIRM-funded researchers who are pursuing new, promising ideas to treat patients with this debilitating neurodegenerative disease.


Birgitt Schuele, Parkinson’s Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Birgitt and her team at the Parkinson’s Institute in Sunnyvale, California, are using CRISPR gene editing technology to reduce the levels of a toxic protein called alpha synuclein, which builds up in the dopaminergic brain cells affected by Parkinson’s disease.

Birgitt Schuele

“My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.”

Parkinson’s disease in a dish. Dopaminergic neurons made from Parkinson’s patient induced pluripotent stem cells. (Image credit: Birgitt Schuele)


Jeanne Loring, Scripps Research Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Jeanne Loring and her team at the Scripps Research Institute in La Jolla, California, are deriving dopaminergic neurons from the iPSCs of Parkinson’s patients. Their goal is to develop a personalized, stem cell-based therapy for PD.

Jeanne Loring

“We are working toward a patient-specific neuron replacement therapy for Parkinson’s disease.  By the time PD is diagnosed, people have lost more than half of their dopamine neurons in a specific part of the brain, and loss continues over time.  No drug can stop the loss or restore the neurons’ function, so the best possible option for long term relief of symptoms is to replace the dopamine neurons that have died.  We do this by making induced pluripotent stem cells from individual PD patients and turning them into the exact type of dopamine neuron that has been lost.  By transplanting a patient’s own cells, we will not need to use potentially dangerous immunosuppressive drugs.  We plan to begin treating patients in a year to two years, after we are granted FDA approval for the clinical therapy.”

Skin cells from a Parkinson’s patient (left) were reprogrammed into induced pluripotent stem cells (center) that were matured into dopaminergic neurons (right) to model Parkinson’s disease. (Image credit: Jeanne Loring)


Justin Cooper-White, Scaled BioLabs Inc.

CIRM Grant: Quest Award – Discovery Stage Research

Research: Justin Cooper-White and his team at Scaled Biolabs in San Francisco are developing a tool that will make clinical-grade dopaminergic neurons from the iPSCs of PD patients in a rapid and cost-effective manner.

Justin Cooper-White

“Treating Parkinson’s disease with iPSC-derived dopaminergic neuron transplantation has a strong scientific and clinical rationale. Even the best protocols are long and complex and generally have highly variable quality and yield of dopaminergic neurons. Scaled Biolabs has developed a technology platform based on high throughput microfluidics, automation, and deep data which can optimize and simplify the road from iPSC to dopaminergic neuron, making it more efficient and allowing a rapid transition to GMP-grade derivation of these cells.  In our first 6 months of CIRM-funded work, we believe we have already accelerated and simplified the production of a key intermediate progenitor population, increasing the purity from the currently reported 40-60% to more than 90%. The ultimate goal of this work is to get dopaminergic neurons to the clinic in a robust and economical manner and accelerate treatment for Parkinson’s patients.”

High throughput differentiation of dopaminergic neuron progenitors in  microbioreactor chambers in Scaled Biolabs’ cell optimization platform. Different chambers receive different differentiation factors, so that optimal treatments for conversion to dual-positive cells can be determined (blue: nuclei, red: FOXA2, green: LMX1A).


Xinnan Wang, Stanford University

CIRM Grant: Basic Biology V

Research: Xinnan Wang and her team at Stanford University are studying the role of mitochondrial dysfunction in the brain cells affected in Parkinson’s disease.

Xinnan Wang

“Mitochondria are a cell’s power plants that provide almost all the energy a cell needs. When these cellular power plants are damaged by stressful factors present in aging neurons, they release toxins (reactive oxygen species) to the rest of the neuron that can cause neuronal cell death (neurodegeneration).  We hypothesized that in Parkinson’s mutant neurons, mitochondrial quality control is impaired thereby leading to neurodegeneration. We aimed to test this hypothesis using neurons directly derived from Parkinson’s patients (induced pluripotent stem cell-derived neurons).”

Dopaminergic neurons derived from human iPSCs shown in green, yellow and red. (Image credit: Atossa Shaltouki, Stanford)


Related Blogs:

Hey, what’s the big idea? CIRM Board is putting up more than $16.4 million to find out

Higgins

David Higgins, CIRM Board member and Patient Advocate for Parkinson’s disease; Photo courtesy San Diego Union Tribune

When you have a life-changing, life-threatening disease, medical research never moves as quickly as you want to find a new treatment. Sometimes, as in the case of Parkinson’s disease, it doesn’t seem to move at all.

At our Board meeting last week David Higgins, our Board member and Patient Advocate for Parkinson’s disease, made that point as he championed one project that is taking a new approach to finding treatments for the condition. As he said in a news release:

“I’m a fourth generation Parkinson’s patient and I’m taking the same medicines that my grandmother took. They work but not for everyone and not for long. People with Parkinson’s need new treatment options and we need them now. That’s why this project is worth supporting. It has the potential to identify some promising candidates that might one day lead to new treatments.”

The project is from Zenobia Therapeutics. They were awarded $150,000 as part of our Discovery Inception program, which targets great new ideas that could have a big impact on the field of stem cell research but need some funding to help test those ideas and see if they work.

Zenobia’s idea is to generate induced pluripotent stem cells (iPSCs) that have been turned into dopaminergic neurons – the kind of brain cell that is dysfunctional in Parkinson’s disease. These iPSCs will then be used to screen hundreds of different compounds to see if any hold potential as a therapy for Parkinson’s disease. Being able to test compounds against real human brain cells, as opposed to animal models, could increase the odds of finding something effective.

Discovering a new way

The Zenobia project was one of 14 programs approved for the Discovery Inception award. You can see the others on our news release. They cover a broad array of ideas targeting a wide range of diseases from generating human airway stem cells for new approaches to respiratory disease treatments, to developing a novel drug that targets cancer stem cells.

Dr. Maria Millan, CIRM’s President and CEO, said the Stem Cell Agency supports this kind of work because we never know where the next great idea is going to come from:

“This research is critically important in advancing our knowledge of stem cells and are the foundation for future therapeutic candidates and treatments. Exploring and testing new ideas increases the chances of finding treatments for patients with unmet medical needs. Without CIRM’s support many of these projects might never get off the ground. That’s why our ability to fund research, particularly at the earliest stage, is so important to the field as a whole.”

The CIRM Board also agreed to invest $13.4 million in three projects at the Translation stage. These are programs that have shown promise in early stage research and need funding to do the work to advance to the next level of development.

  • $5.56 million to Anthony Oro at Stanford to test a stem cell therapy to help people with a form of Epidermolysis bullosa, a painful, blistering skin disease that leaves patients with wounds that won’t heal.
  • $5.15 million to Dan Kaufman at UC San Diego to produce natural killer (NK) cells from embryonic stem cells and see if they can help people with acute myelogenous leukemia (AML) who are not responding to treatment.
  • $2.7 million to Catriona Jamieson at UC San Diego to test a novel therapeutic approach targeting cancer stem cells in AML. These cells are believed to be the cause of the high relapse rate in AML and other cancers.

At CIRM we are trying to create a pipeline of projects, ones that hold out the promise of one day being able to help patients in need. That’s why we fund research from the earliest Discovery level, through Translation and ultimately, we hope into clinical trials.

The writer Victor Hugo once said:

“There is one thing stronger than all the armies in the world, and that is an idea whose time has come.”

We are in the business of finding those ideas whose time has come, and then doing all we can to help them get there.