Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

Early CIRM support helps stem cell pioneer develop promising new therapy for cancer

Irv Weissman

Irv Weissman, Ph.D., Photo: courtesy Stanford University

When you get praise from someone who has been elected to the National Academy of Sciences and has been named California Scientist of the Year you know you must be doing something right.

That’s how we felt the other day when Irv Weissman, Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine, issued a statement about how important the support of CIRM was in advancing his research.

The context was the recent initial public offering (IPO) of Forty Seven Inc.. a company co-founded by Dr. Weissman. That IPO followed news that two Phase 2 clinical trials being run by Forty Seven Inc. were demonstrating promising results against hard-to-treat cancers.

Dr. Weissman says the therapies used a combination of two monoclonal antibodies, 5F9 from Forty Seven Inc. and Rituximab (an already FDA-approved treatment for cancer and rheumatoid arthritis) which:

“Led to about a 50% overall remission rate when used on patients who had relapsed, multi-site disease refractory to rituximab-plus-chemotherapy. Most of those patients have shown a complete remission, although it’s too early to tell if this is complete for life.”

5F9 attacks a molecule called CD47 that appears on the surface of cancer cells. Dr. Weissman calls CD47 a “don’t eat me signal” that protects the cancer against the body’s own immune system. By blocking the action of CD47, 5F9 strips away that “don’t eat me signal” leaving the cancer vulnerable to the patient’s immune system. We have blogged about this work here and here.

The news from these trials is encouraging. But what was gratifying about Dr. Weissman’s statement is his generosity in sharing credit for the work with CIRM.

Here is what he wrote:

“What is unusual about Forty Seven is that not only the discovery, but its entire preclinical development and testing of toxicity, etc. as well as filing two Investigational New Drug [IND] applications to the Food and Drug Administration (FDA) in the US and to the MHRA in the UK, as well as much of the Phase 1 trials were carried out by a Stanford team led by two of the discoverers, Ravi Majeti and Irving Weissman at Stanford, and not at a company.

The major support came from the California Institute of Regenerative Medicine [CIRM], funded by Proposition 71, as well as the Ludwig Cancer Research Foundation at the Ludwig Center for Cancer Stem Cell Research at Stanford. CIRM will share in downstream royalties coming to Stanford as part of the agreement for funding this development.

This part of the state initiative, Proposition 71, is highly innovative and allows the discoverers of a field to guide its early phases rather than licensing it to a biotech or a pharmaceutical company before the value and safety of the discovery are sufficiently mature to be known. Most therapies at early-stage biotechs are lost in what is called the ‘valley of death’, wherein funding is very difficult to raise; many times the failure can be attributed to losing the expertise of the discoverers of the field.”

Dr. Weissman also had praise for CIRM’s funding model which requires companies that produce successful, profitable therapies – thanks to CIRM support – to return a portion of those profits to California. Most other funding agencies don’t have those requirements.

“US federal funds, from agencies such as the National Institutes of Health (NIH) similarly support discovery but cannot fund more than a few projects to, and through, early phase clinical trials. And, under the Bayh-Dole Act, the universities keep all of the equity and royalties derived from licensing discoveries. In that model no money flows back to the agency (or the public), and nearly a decade of level or less than level funding (at the national level) has severely reduced academic research. So this experiment of funding (the NIH or the CIRM model) is now entering into the phase that the public will find out which model is best for bringing new discoveries and new companies to the US and its research and clinical trials community.”

We have been funding Dr. Weissman’s work since 2006. In fact, he was one of the first recipients of CIRM funding.  It’s starting to look like a very good investment indeed.

 

Overcoming one of the biggest challenges in stem cell research

Imagine you have just designed and built a new car. Everyone loves it. It’s sleek, fast, elegant, has plenty of cup holders. People want to buy it. The only problem is you haven’t built an assembly line to make enough of them to meet demand. Frustrating eh.

Overcoming problems in manufacturing is not an issue that just affects the auto industry (which won’t make Elon Musk and Tesla feel any better) it’s something that affects many other areas too – including the field of regenerative medicine. After all, what good is it developing a treatment for a deadly disease if you can’t make enough of the therapy to help the people who need it the most, the patients.

As the number of stem cell therapies entering clinical trials increases, so too does the demand for large numbers of high quality, rigorously tested stem cells. And because each of those therapies is unique, that places a lot of pressure on existing manufacturing facilities to meet the demand.

IABS panel

Representatives from the US FDA, Health Canada, EMA, FDA China, World Health Organization discuss creating a manufacturing roadmap for stem cell therapies: Photo Geoff Lomax

So, with that in mind CIRM teamed up with the International Alliance for Biological Standardization (IABS) to hold the 4th Cell Therapy Conference: Manufacturing and Testing of Pluripotent Stem Cells to try and identify the key problems and chart out solutions.

The conference brought together everyone who had a stake in this issue, including leading experts in cell manufacturing, commercial sponsors developing stem cell treatments, academic researchers, the World Health Organization, the US Food and Drug Administration (FDA), international regulatory bodies as well as patient and patient advocates too (after all, who has a greater stake in this).

Commercial sponsors and academic researchers presented case studies of how they worked through the development of manufacturing process for their stem cell treatments.

Some key points quickly emerged:

  • Scale up and quality control of stem cell manufacturing is vital to the development of stem cell treatments.
  • California is a world leader in stem cell manufacturing.
  • There have been numerous innovations in cell manufacturing that serve to support quality, quantity, performance and cost control.
  • The collective experience of the field is leading to standardization of definitions (so we all use the same language), standardization of processes to release quality cells, manufacturing and standardization of testing (so we all meet the same safety requirements).
  • Building consensus among stakeholders is important for accelerating stem cell treatments to patients.

Regulatory experts emphasized the importance of thinking about manufacturing early on in the research and product development phase, so that you can avoid problems in later stages.

There were no easy answers to many of the questions posed, but there was agreement on the importance of developing a stem cell glossary, a common set of terms and definitions that we can all use. There was also agreement on the key topics that need to continue to be highlighted such as safety testing, compatibility, early locking-in of quality processes when feasible, and scaling up.

In the past our big concern was developing the therapies. Now we have to worry about being able to manufacture enough of the cells to meet demand. That’s progress.

A technical summary is being developed and we will announce when it is available.

 

 

Using laughter to help find a treatment for Alzheimer’s

Alzheimer's

In 1983, when President Ronald Reagan designated an annual National Alzheimer’s Disease Awareness Month fewer than two million Americans had Alzheimer’s. Today, that number is close to 5.5 million and estimates suggest it will rise to 16 million by 2050. There are no treatments. No cure. But around the globe people are working hard to change that.

At CIRM we have invested more than $60 million in 21 projects aimed at developing a deeper understanding of the disease and, we hope, one day developing effective treatments.

d03a2-lauren-miller-premiere-50-50-01

Lauren Miller Rogen

One of those helping lead that fight is our Board member Lauren Miller Rogen. Lauren has a family history of the disease and uses that to fuel her activism not just on our Board but through Hilarity for Charity, the organization she co-founded with her husband, Seth Rogen.

Lauren was recently profiled by the stem cell advocacy group Americans for Cures, talking about the impact the disease has had on her family, her advocacy on behalf of families struggling to cope with the disease and why she feels humor is such a powerful tool to raise awareness and hope in the fight against Alzheimer’s.

It’s a great interview and you can read it here.

Newest member of CIRM Board is a guitar-playing, German Shepherd dog loving, molecular geneticist

Sandmeyer, Suzanne01

Suzanne Sandmeyer, Ph.D.

The newest member of the CIRM Board is a researcher who wasn’t always sure she would have a career as a scientist. Suzanne Sandmeyer, PhD, says at the start of her career she had a lot of doubts.

“During my postdoc, I was developing the impression I would struggle to survive in my career as a scientist. I had a female mentor at the time and I shared this idea with her.  She told me that was ridiculous: I was not going to starve, and I believed her. Turns out, she was right. Today, I enjoy the independence that comes with academia.”

We’re delighted she changed her mind. Dr. Sandmeyer, is now the Vice Dean for Research at the University of California at Irvine (UCI) School of Medicine, and has been appointed to CIRM’s Board.

She was recommended for the position by UCI Chancellor Howard Gillman who called her “an outstanding researcher who has contributed significantly to the field of molecular genetics.”

Dr. Sandmeyer said she was honored to be chosen.

“It is a privilege to be involved in this new era of stem cell research and clinical trials. We have only just begun to understand the potential of our discoveries and the impact we can have on human health by advancing stem cell therapies.”

Jonathan Thomas, Ph.D., J.D., the Chair of the CIRM Board, welcomed the appointment saying:

“Dr. Sandmeyer will be a great addition to the Board.  She has a distinguished career, not just as a highly regarded scientist but also as a leader in helping UC Irvine become the great research institution it is today.”

Dr. Sandmeyer’s career as a scientist had an early beginning.

“My Dad was an engineer, so science always seemed like a very natural thing to pursue. Growing up I liked to be outdoors and loved the diversity of living things, so I eventually gravitated toward biology.”

That sense of curiosity and love of biology has helped her build a bustling and productive research lab at UC Irvine. Her research focuses on molecular genetics and biochemistry of retrovirus-like elements called retrotransposons (which make up almost half the human genome but are not well understood) and metabolic engineering in yeast.  Although she has had amazing success in academia, she was not always sure that this would be her path.

As a member of the CIRM Board, Dr. Sandmeyer will provide important insight and perspective into advancing stem cell therapies.

“Our country has one of the most expensive systems of medical care and yet we don’t have the longest-lived population. I want to work toward reducing the burden of medical expenses for people. I am very excited about the potential of stem cells to treat many disorders and the potential for new technologies like CRISPR to further empower that approach.”

When not making important scientific discoveries in the lab, you can find Dr. Sandmeyer pursuing one of her many and varied hobbies.

“I go through phases like everyone. There is never enough time. My favorites are astronomy, bird photography, guitar, biking, kayaking, reading and of course German shepherd dogs.”

 

Stem cell roundup: summer scientists, fat-blocking cells & recent human evolution

Stem cell photo of the week: high schooler becoming a stem cell pro this summer

InstagramAnnaJSPARK

High school student Anna Guzman learning important lab skills at UC Davis

This summer’s CIRM SPARK Programs, stem cell research internships for high school students, are in full swing. Along with research assignments in top-notch stem cell labs, we’ve asked the students to chronicle their internship experiences through Instagram. And today’s stem cell photo of the week is one of those student-submitted posts. The smiling intern in this photo set is Anna Guzman, a rising junior from Sheldon High School who is in the UC Davis SPARK Program. In her post, she describes the lab procedure she is doing:

“The last step in our process to harvest stem cells from a sample of umbilical cord blood! We used a magnet to isolate the CD34 marked stem cells [blood stem cells] from the rest of the solution.”

Only a few days in and Anna already looks like a pro! It’s important lab skills like this one that could land Anna a future job in the stem cell field. Check out #cirmsparklab on Instagram to view the ever-growing number of posts.

Swiss team identifies a cell type that block formation of fat cells

Jun21_2018_EPFL_TwoDifferentAspectsOfFat1871459512

(Left) Mature human fat cells grown in a Petri dish (green, lipid droplets). (Right) A section of mouse fat tissue showing, in the middle, a blood vessel (red circle) surrounded by fat cell blocking cells called Aregs (arrows). [Bart Deplancke/EPFL]

Liposuction surgery helps slim and reshape areas of a person’s body through the removal of excess fat tissue. While the patient is certainly happy to get rid of those extra pounds, that waste product is sought after by researchers because it’s a rich source of regenerative cells including fat stem cells.

The exact populations of cells in this liposuction tissue has been unclear, so a collaboration of Swiss researchers – at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) – used a cutting-edge technique allowing them to examine the gene activity within single cells.

The analysis was successful in identifying several newly defined subpopulations of cells in the fat tissue. To their surprise, one of those cell types did not specialize into fat cells but instead did the opposite: they inhibited other fat stem cells from giving rise to fat cells. The initial experiments were carried out in mice, but the team went on to show similar fat-blocking cells in human tissue. Further experiments will explore the tantalizing prospect of applying these cells to control obesity and the many diseases, like diabetes, that result from it.

The study was published June 20st in Nature.

Connection identified between recent human evolution & risk for premature birth
Evidence of recent evolution in a human gene that’s critical for maintaining pregnancy may help explain why some populations have a higher risk for giving birth prematurely than others. That’s according to a recent report by researchers at the University of Stanford School of Medicine.

The study, funded in part by CIRM’s Genomics Initiative, compared DNA from people with East Asian, European and African ancestry. They specifically examined the gene encoding the progesterone hormone receptor which helps keep a pregnant woman from going into labor too soon. The gene is also associated with preterm births, the leading cause of infant death in the U.S.

The team was very surprise to find that people with East Asian ancestry had an evolutionarily new version of the gene while the European and African populations had mixtures of new and ancient versions. These differences may explain why the risk for premature birth among East Asian populations is lower than among pregnant women of European and African descent, though environment clearly plays a role as well.

Pediatrics professor Gary Shaw, PhD, one of the team leaders, put the results in perspective:

“Preterm birth has probably been with us since the origin of the human species,” said Shaw in a press release, “and being able to track its evolutionary history in a way that sheds new light on current discoveries about prematurity is really exciting.”

The study was published June 21st in The American Journal of Human Genetics.

“Junk” DNA is development gold for the dividing embryo

Single-two-cell-mouse-embryos-with-nuclear-LINE1-RNA-labeled-magenta-Credit-Ramalho-Santos-lab_1

Single two-cell mouse embryos with nuclear LINE1 RNA labeled magenta – Credit Ramalho-Santos lab

The DNA in our cells provide the instructions to make proteins, the workhorses of our body. Yet less than 2% of the 3 billion base pairs (the structural units of DNA) in each of our cells are actually involved in protein production. The rest, termed non-coding DNA for not being involved in protein production, has roles in regulating genetic activity, but, largely, these genetic regions have remained a mystery causing some to mis-characterize it as “junk” DNA.

One of the largest components of these “junk” DNA regions are transposons, which make up 50% of the genome. Transposons are variable length DNA segments that are able to duplicate and re-insert themselves into different locations of the genome which is why they’re often called “jumping genes”.

Transposons have been implicated in diseases like cancer because of their ability to disrupt normal gene function depending on where the transposon inserts itself. Now, a CIRM-funded study in Miguel Ramalho-Santos’ laboratory at UCSF has found a developmental function for transposons in the dividing embryo. The report was published today in the Journal Cell.

Of the transposons identified in humans, LINE1 is the most common, composing 24% of the entire human genome. Many investigators in the field had observed that LINE1 is highly expressed in embryonic stem cells, which seemed paradoxical given that these pieces of DNA were previously thought to be either inert or harmful. Because this DNA was present at such high levels, the investigators decided to eliminate it from fertilized mouse embryos at the two-cell stage and observe how this affected development.

To their surprise, they found that the embryo was not able to progress beyond this stage. Further investigation revealed that LINE1, along with other proteins, is responsible for turning off the genetic program that maintains the two-cell state, thus allowing the embryo to further divide and develop.

Dr. Ramalho-Santos believes that this is a fine-tuned mechanism to ensure that the early stages of develop progress successfully. Because there are so many copies of LINE1 in the genome, even if one is not functional, it is likely that there will be functional back up, an important factor in ensuring early mistakes in embryo development do not occur.

In a press release, Dr. Ramalho-Santos states:

“We now think these early embryos are playing with fire but in a very calculated way. This could be a very robust mechanism for regulating development…I’m personally excited to continue exploring novel functions of these elements in development and disease.”

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

SCID kid scores big on TV

Evie at book signing

One of the stories I never tire of telling is about Evie Vaccaro. She’s the little girl who was born with a fatal immune condition called severe combined immunodeficiency or SCID. Children with this condition have no immune system, no protection against infections, and often die in the first two years of life. But thanks to a stem cell therapy Evie was cured.

Evie is now five years old. A happy, healthy and, as we discovered last week, a very energetic kid. That’s because Evie and her family came to CIRM to celebrate the launch of Don Reed’s new book, “California Cures! How the California Stem Cell Program is Fighting Your Incurable Disease”.

Don Reed and Evie and Alysia

Don Reed with Alysia and Evie Vaccaro – Photo courtesy Yimy Villa

Don’s book is terrific – well, it’s about CIRM so I might be biased – but Evie stole the show, and the hearts of everyone there.

KTVU, the local Fox News TV station, did a couple of stories about Evie. Here’s one of them.

We will have more on Don Reed’s book later this week.

CIRM-funded medical research and development company does $150M deal to improve care for dialysis patients

Fresenius & Humacyte

Nearly half a million Americans with kidney disease are on dialysis, so it’s not surprising the CIRM Board had no hesitation, back in July 2016, in funding a program to make it easier and safer to get that life-saving therapy.

That’s why it’s gratifying to now hear that Humacyte, the company behind this new dialysis device, has just signed a $150 million deal with Fresenius Medical Care, to make their product more widely available.

The CIRM Board gave Humacyte $10 million for a Phase 3 clinical trial to test a bioengineered vein needed by people undergoing hemodialysis, the most common form of dialysis.

Humacyte HAV

The vein – called a human acellular vessel or HAV – is implanted in the arm and used to carry the patient’s blood to and from an artificial kidney that removes waste from the blood. Current synthetic versions of this device have many problems, including clotting, infections and rejection. In tests, Humacyte’s HAV has fewer complications. In addition, over time the patient’s own stem cells start to populate the bioengineered vein, in effect making it part of the patient’s own body.

Fresenius Medical Care is investing $150 million in Humacyte, with a plan to use the device in its dialysis clinics worldwide. As an indication of how highly they value the device, the deal grants Fresenius a 19% ownership stake in the company.

In an interview with FierceBiotech, Jeff Lawson, Humacyte’s Chief Medical Officer, said if all goes well the company plans to file for Food and Drug Administration (FDA) approval in 2019 and hopes it will be widely available in 2020.

In addition to being used for kidney disease the device is also being tested for peripheral artery disease, vascular trauma and other cardiovascular indications. Lawson says testing the device first in kidney disease will provide a solid proving ground for it.

“It’s a very safe place to develop new vascular technologies under clinical study. From a regulatory safety standpoint, this is the first area we could enter safely and work with the FDA to get approval for a complete new technology.”

This is another example of what we call CIRM’s “value proposition”; the fact that we don’t just provide funding, we also provide support on many other levels and that has a whole range of benefits. When our Grants Working Group – the independent panel of experts who review our scientific applications – and the CIRM Board approves a project it’s like giving it the CIRM Good Housekeeping Seal of Approval. That doesn’t just help that particular project, it can help attract further investment in the company behind it, enabling it to expand operations and create jobs and ultimately, we hope, help advance the field as a whole.

Those benefits are substantial. To date we have been able to use our funding to leverage around $2 billion in additional dollars in terms of outside companies investing in companies like Humacyte, or researchers using data from research we funded to get additional funding from agencies like the National Institutes of Health.

So, when a company like Humacyte is the object of such a lucrative agreement it’s not just a compliment to the quality of the work they do, it’s also a reflection of our ability to pick great projects.