Throughout history, matchmakers have played an important role in bringing together couples for arranged marriages. Fast forward to today and CIRM is now playing a similar role. We’re not looking to get anyone hitched, what we are trying to do is create partnerships between people we are funding and companies looking for the next hot thing.
So far, I’d say we are doing a pretty decent job. Over the years we have leveraged our funding to bring in some $13 billion in additional investments in stem cell research. But there’s still a lot of untapped potential out there. That’s why tomorrow, March 9th, we’re joining with BIOCOM to host a Partner Day.
The idea is to highlight some of the most promising programs we are funding and see if we can find partners for them, partners who want to help advance the research and ultimately – we hope – bring those therapies to patients.
The webinar and panel discussion will feature a presentation from the CIRM Business Development team about our portfolio. That’s a pretty extensive list because it covers all stages of research from Discovery or basic, through Translational and all the way to Clinical. We’ll show how our early investment in these programs has helped de-risk them and given them the chance to get the data needed to demonstrate their promise and potential.
So, who are we interested in having join us? Pretty nearly everyone involved in the field:
Academic institutions
Research organizations
Entrepreneurs
Venture capital firms
Companies
And the areas of interest are equally broad:
Stem or progenitor cell-based therapy
Cell Therapy
Gene therapy
Biologic
Small molecule
Medical Device
Diagnostic
Tools/Tech
Other
And for those who are really interested and don’t want to waste any time, there’s an opportunity to set up one-on-one meetings right away. After all, if you have found the perfect match, why wait!
But here’s the catch. Space is limited so you need to register ahead. Here’s where you go to find out all the details and sign up for the event.
When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.
It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.
There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.
The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.
Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.
Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community
David Lo, MD, PhD, UC Riverside: Bringing a public health perspective to clinical interventions
Key questions for panelists:
What were important lessons learned from the COVID programs?
How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research?
How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?
Bryon Jenkin’s is one of the people we profiled in our recent 18 Month Report. The theme of the report is “Perseverance” and Byron certainly epitomizes that. This is his story.
Photo of Byron Jenkins – hand on the plane – in his Navy fighter pilot days
A former Navy flight officer and accomplished athlete Byron Jenkins learned in June 2013 that he had multiple myeloma, an incurable blood cancer, and that it was eating through his bones. After five years of, chemotherapy, radiation, immunotherapy, and experimental procedures, he found himself bed ridden, exhausted, barely able to move. Byron says: “I was alive, but I wasn’t living.”
Byron in the hospital
As the treatments lost their ability to hold the cancer at bay, Byron’s wife, family and close friends had made preparations for his seemingly inevitable demise.
Then Byron took part in a CIRM-funded CAR-T clinical trial for a treatment developed by Poseida Therapeutics. The team used Byron’s own immune system cells, re-engineered in the lab, to recognize the cancer and to fight back. Within two weeks Byron was feeling so much better he was able to stop taking all of his medications. “I haven’t taken so much as an aspirin since then.”
Two years later he is once again able to enjoy a full, active life with his family; biking, hiking and skiing with his wife and kids. He is back working full-time and only checks in with his oncologist once in a while.
Byron taking a selfie with his family
Byron says despite his ordeal he never lost faith, that the love of his family helped give him the strength to continue to fight. “Hope kept me going through this long arduous process. This is the first treatment to give me a continued normal life. CAR-T was the answer to my prayers.”
Byron: Photo courtesy Miranda Drummond of Catherine Rae Photography
Medeor Therapeutics, which is running a CIRM-funded clinical trial to help people getting kidney transplants, just got some really good news. The US Food and Drug Administration (FDA) has just granted their product Regenerative Medicine Advanced Therapy (RMAT) designation. That’s a big deal because it means they may be able to apply for faster review and approval and get their therapy to more patients faster.
Here’s why that RMAT designation matters.
Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes. Despite these drugs, many patients still lose transplanted organs due to rejection.
To tackle this problem Medeor is developing a stem cell-based therapy called MDR-101. This is being tested in a Phase 3 clinical trial and it’s hoped it will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.
The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.
So how does getting RMAT designation help that? Well, the FDA created the RMAT program to help speed up the development and review of regenerative medicine therapies that can treat, modify, reverse, or cure a serious condition. If MDR-101shows it is both safe and effective RMAT could help it get faster approval for wider use.
In a news release Giovanni Ferrara, President and CEO of Medeor, welcomed the news.
“This important designation underscores the tremendous unmet medical need for alternatives to today’s immunosuppressive therapies for transplantation. We have the potential to help people live longer, healthier lives without the need for high dose and chronic immunosuppression and we thank the FDA for this designation that will assist us progressing as efficiently as possible toward a commercially available product.”
It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.
This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.
Dr. Catriona Jamieson, UC San Diego physician and researcher
It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.
Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma
There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.
Jordan Janz and Dr. Stephanie Cherqui
These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.
Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk
There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.
On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.
What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state.Paul Hartman. San Leandro, California
Dr. Kelly Shepard
Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1) our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism. Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer. There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.
************************************
STROKE
What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold
Dr. Lila Collins
Dr. Lila Collins: Hi Elvis, this is an evolving story. I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized. As you note, some of the treated subjects had promising motor recoveries.
SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release. While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI). In this trial, SanBio saw positive results on motor recovery with their product. In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well. SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds.
Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke. The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.
*****************************
I am a stroke survivor will stem cell treatment able to restore my motor skills?Ruperto
Dr. Lila Collins:
Hi Ruperto. Restoring motor loss after stroke is a very active area of research. I’ll touch upon a few ongoing stem cell trials. I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.
Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier. UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic). Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.
There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours. After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery. Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.
Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke). The trial has an accelerated FDA designation, called RMAT and a special protocol assessment. This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing. Results from this trial should be available in about two years.
********************************
Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?
Dr. Lila Collins:
Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.
That said, hemorrhagic strokes are not rare and tend to be more deadly. These strokes are caused by bleeding into or around the brain which damages neurons. They can even increase pressure in the skull causing further damage. Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.
While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.
I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell
Dr. Lila Collins:
Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision). The results could be:
Visual loss from damage to the retina
You could have a normal eye with damage to the area of the brain that controls the eye’s movement
You could have damage to the part of the brain that interprets vision.
You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged.
Replacing lost neurons is an active effort that at the moment is still in the research stages. As you can imagine, this is complex because the neurons have to make just the right connections to be useful.
*****************************
VISION
Is there any stem cell therapy for optical nerve damage? Deanna Rice
Dr. Ingrid Caras
Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments. However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma
****************************
I read an article about ReNeuron’s retinitis pigmentosa clinical trial update. In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors?Leonard
Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.
****************************
My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen
Dr. Ingrid Caras: The results will be available sometime in 2020.
*****************************
I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors. My questions are:Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving?Leonard Furber, an RP Patient
Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.
Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye. The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.
**********************************
DIABETES
What advances have been made using stem cells for the treatment of Type 2 Diabetes?Mary Rizzo
Dr. Ross Okamura
Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells. The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations.
Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases. Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients. Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns. However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.
To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin. While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.
It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.
***********************************
SPINAL CORD INJURY
Is there any news on clinical trials for spinal cord injury? Le Ly
Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.
“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”
Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.
In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.
*********************************
ALS
Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson
Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed. So we will not expect to see the results probably for another year or two.
***********************************
AUTISM
Are there treatments for autism or fragile x using stem cells? Magda Sedarous
Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail. CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.
**********************************
PARKINSON’S DISEASE
What is happening with Parkinson’s research? Hanifa Gaphoor
Dr. Kent Fitzgerald
Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research.
The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.
This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc. Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix.
Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease.
Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients. As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced. The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient.
One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s. This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).
Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should.
The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.
********************************
HUNTINGTON’S DISEASE
Any plans for Huntington’s?Nikhat Kuchiki
Dr. Lisa Kadyk
Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded. One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells. When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons. Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease. Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.
There are other, non-cell-based therapies also being tested in clinical trials now, using anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein. Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure,Voyager)
******************************
TRAUMATIC BRAIN INJURY (TBI)
My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:
Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?
Dr. Kelly Shepard: TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.
********************************
We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?
Dr. Stephen Lin
Dr. Stephen Lin: Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors. Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes. At present no regulatory approved clinical therapy has been developed using this approach.
************************************
PREDATORY STEM CELL CLINICS
What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?Kathy Jean Schultz
Dr. Geoff Lomax
Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”
In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.
First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.
*****************************************
I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?Cheri Hicks
Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.
I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:
1) I wonder on where the typical injection cells are coming from?
2) I wonder what is the actual cost of the cells?
3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?
*********************************
Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:
There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
Most of the evidence presented is case reports that individuals have benefited
The challenge we face is not know the exact type of injury and cell treatments used.
Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
You are correct that there have not been reports of serious injury for knee injections
However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.
*************************************
Do stem cells have benefits for patients going through chemotherapy and radiation therapy?Ruperto
Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.
Dr. Ingrid Caras: That’s an interesting and valid question. There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries. In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.
There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”). It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain. In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.
*****************************************
Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia? Don Reed.
Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease. In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves. This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system. For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”. To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes. Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.
A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells. The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells.
*****************************************
Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason
Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.
********************************
What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas
Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment. Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach. CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations. Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed. It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.
CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.
While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.
**********************************
Explain the differences between gene therapy and stem cell therapy?Renee Konkol
Dr. Stephen Lin: Gene therapy is the direct modification of cells in a patient to treat a disease. Most gene therapies use modified, harmless viruses to deliver the gene into the patient. Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis.
Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease. Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy. Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells. The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).
Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients. Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.
***********************************
Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC
Dr. Stephen Lin: Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting. Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial. CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials. The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect. Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.
*****************************************
Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs.Sajid
Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture. These are quite different than MSCs and offer a new path to be explored for repairing and generating bone.
Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine
It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.
In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.
In the “sensational” news
release lead author, Kim Jensen, says this
finding could help in the development of new therapies.
“We used to believe that a cell’s
potential for becoming a stem cell was predetermined, but our new results show
that all immature cells have the same probability for becoming stem cells in
the fully developed organ. In principle, it is simply a matter of being in the
right place at the right time. Here signals from the cells’ surroundings
determine their fate. If we are able to identify the signals that are necessary
for the immature cell to develop into a stem cell, it will be easier for us to
manipulate cells in the wanted direction’.
African clawed frog tadpole: Photo courtesy Gary Nafis
It’s long been known that some lizards and other mammals can
regrow severed limbs, but it hasn’t been clear how. Now scientists at the
University of Cambridge in the UK have figured out what’s going on.
Using single-cell
genomics the scientists were able to track which genes are turned on and
off at particular times, allowing them to watch what happens inside the tail of
the African clawed frog tadpole as it regenerates the damaged limb.
They found that the response was orchestrated by a group of
skin cells they called Regeneration-Organizing
Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the
journal Science, says seeing how ROCs work could lead
to new ideas on how to stimulate similar regeneration in other mammals.
“It’s an astonishing process to
watch unfold. After tail amputation, ROCs migrate from the body to the wound
and secrete a cocktail of growth factors that coordinate the response of tissue
precursor cells. These cells then work together to regenerate a tail of the
right size, pattern and cell composition.”
Orphan Drug Designation for CIRM-funded
therapy
Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.
Orphan
drug designation is given to therapies targeting rare diseases or disorders
that affect fewer than 200,000 people in the U.S. It means the company may be
eligible for grant funding toward clinical trial costs, tax
advantages, FDA user-fee benefits and seven years of market
exclusivity in the United States following marketing approval by
the FDA.
CIRM’s
President and CEO, Dr. Maria Millan, says the company is using a
gene-modified cell therapy approach to help people who are not responding to
traditional approaches.
“Poseida’s technology
is seeking to destroy these cancerous myeloma cells with an immunotherapy
approach that uses the patient’s own engineered immune system T cells to seek
and destroy the myeloma cells.”
Poseida’s
CEO, Eric Ostertag, said the designation is an important milestone for the
company therapy which “has
demonstrated outstanding potency, with strikingly low rates of toxicity in our
phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing
in our Phase 2 trial starting in the second quarter of 2019.”
In 2017 Texas passed a sweeping new law, HB 810, which allowed medical clinics to provide “investigational stem cell treatments to patients with certain severe chronic diseases or terminal illnesses.” Those in favor of the law argued that patients battling life-threatening or life-changing diseases should have the right to try stem cell therapies that were involved in a clinical trial.
Now a new study, published in the journal Stem Cells and Development, looks at the impact of the law. The report says that despite some recent amendments t there are still some concerns about the law including:
It allows treatment only if the patient has a “severe, chronic” illness but doesn’t define what that means
It doesn’t have clearly defined procedures on tracking and reporting procedures so it’s hard to know how many patients might be treated and what the outcomes are
There is no Food and Drug Administration (FDA) oversight of the patients being treated
Because the treatments are unproven there are fears this will “open up the state to unsavory and predatory practices by individuals preying on vulnerable patients”
The researchers conclude:
“While HB 810 opens up access to patients, it also increases significant risks for their safety and financial cost for something that might have no positive impact on their disease. Truly understanding the impact of stem cell based interventions (SCBI) requires scientific rigor, and accurate outcome data reporting must be pursued to ensure the safety and efficacy behind such procedures. This information must be readily available so that patients can make informed decisions before electing to pursue such treatments. The creation of the SCBI registry could allow for some level of scientific rigor, provide a centralized data source, and offer the potential for better informed patient choices, and might be the best option for the state to help protect patients.”
Another CIRM-funded company gets RMAT designation
When Congress approved the 21st Century Cures Act a few years ago one of the new programs it created was the Regenerative Medicine Advanced Therapy (RMAT) designation. This was given to therapies that are designed to treat a serious or life-threatening condition, where early clinical stage trials show the approach is safe and appears to be effective.
Getting an RMAT designation is a big deal. It means the company or researchers are able to apply for an expedited review by the FDA and could get approval for wider use.
This week Poseida Therapeutics was granted RMAT designation by the Food and drug Administration (FDA) for P-BCMA-101, its CAR-T therapy for relapsed/refractory multiple myeloma. This is currently in a Phase 1 clinical trial that CIRM is funding
In this trial Poseida’s technology takes an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy cancerous myeloma cells.
In a news release Eric Ostertag, Poseida’s CEO, welcomed the news:
“Initial Phase 1 data presented at the CAR-TCR Summit earlier this year included encouraging response rates and safety data, including meaningful responses in a heavily pretreated population. We expect to have an additional data update by the end of the year and look forward to working closely with the FDA to expedite development of P-BCMA-101.”
This means that five CIRM-funded companies have now been granted RMAT designations:
A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)
In the U.S., prostate cancer is the second most common cause of cancer deaths in men. An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018. Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.
Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.
“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”
Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.
Quest Awards
The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.
Among those approved for funding are:
Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer
Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.
The successful applications are:
APPLICATION
TITLE
INSTITUTION
CIRM COMMITTED FUNDING
DISC2-11131
Genetically Modified Hematopoietic Stem Cells for the
Treatment of Danon Disease
U.C San Diego
$1,393,200
DISC2-11157
Preclinical Development of An HSC-Engineered Off-
The-Shelf iNKT Cell Therapy for Cancer
U.C. Los Angeles
$1,404,000
DISC2-11036
Non-viral reprogramming of the endogenous TCRα
locus to direct stem memory T cells against shared
neoantigens in malignant gliomas
U.C. San Francisco
$900,000
DISC2-11175
Therapeutic immune tolerant human islet-like
organoids (HILOs) for Type 1 Diabetes
Salk Institute
$1,637,209
DISC2-11107
Chimeric Antigen Receptor-Engineered Stem/Memory
T Cells for the Treatment of Recurrent Ovarian Cancer
City of Hope
$1,381,104
DISC2-11165
Develop iPSC-derived microglia to treat progranulin-
Every day at CIRM we get calls from people looking for a stem cell therapy to help them fight a life-threatening or life-altering disease or condition. One of the most common calls is about osteoarthritis, a painful condition where the cartilage that helps cushion our joints is worn away, leaving bone to rub on bone. People call asking if we have something, anything, that might be able to help them. Now we do.
At yesterday’s CIRM Board meeting the Independent Citizens’ Oversight Committee or ICOC (the formal title of the Board) awarded almost $8.5 million to the California Institute for Biomedical Research (CALIBR) to test a drug that appears to help the body regenerate cartilage. In preclinical tests the drug, KA34, stimulated mesenchymal stem cells to turn into chondrocytes, the kind of cell found in healthy cartilage. It’s hoped these new cells will replace those killed off by osteoarthritis and repair the damage.
This is a Phase 1 clinical trial where the goal is primarily to make sure this approach is safe in patients. If the treatment also shows hints it’s working – and of course we hope it will – that’s a bonus which will need to be confirmed in later stage, and larger, clinical trials.
From a purely selfish perspective, it will be nice for us to be able to tell callers that we do have a clinical trial underway and are hopeful it could lead to an effective treatment. Right now the only alternatives for many patients are powerful opioids and pain killers, surgery, or turning to clinics that offer unproven stem cell therapies.
Targeting immune system cancer
The CIRM Board also awarded Poseida Therapeutics $19.8 million to target multiple myeloma, using the patient’s own genetically re-engineered stem cells. Multiple myeloma is caused when plasma cells, which are a type of white blood cell found in the bone marrow and are a key part of our immune system, turn cancerous and grow out of control.
As Dr. Maria Millan, CIRM’s President & CEO, said in a news release:
“Multiple myeloma disproportionately affects people over the age of 65 and African Americans, and it leads to progressive bone destruction, severe anemia, infectious complications and kidney and heart damage from abnormal proteins produced by the malignant plasma cells. Less than half of patients with multiple myeloma live beyond 5 years. Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”
In a news release from Poseida, CEO Dr. Eric Ostertag, said the therapy – called P-BCMA-101 – holds a lot of promise:
“P-BCMA-101 is elegantly designed with several key characteristics, including an exceptionally high concentration of stem cell memory T cells which has the potential to significantly improve durability of response to treatment.”
Deadly infections
The third clinical trial funded by the Board yesterday also uses T cells. Researchers at Children’s Hospital of Los Angeles were awarded $4.8 million for a Phase 1 clinical trial targeting potentially deadly infections in people who have a weakened immune system.
Viruses such as cytomegalovirus, Epstein-Barr, and adenovirus are commonly found in all of us, but our bodies are usually able to easily fight them off. However, patients with weakened immune systems resulting from chemotherapy, bone marrow or cord blood transplant often lack that ability to combat these viruses and it can prove fatal.
The researchers are taking T cells from healthy donors that have been genetically matched to the patient’s immune system and engineered to fight these viruses. The cells are then transplanted into the patient and will hopefully help boost their immune system’s ability to fight the virus and provide long-term protection.
Whenever you can tell someone who calls you, desperately looking for help, that you have something that might be able to help them, you can hear the relief on the other end of the line. Of course, we explain that these are only early-stage clinical trials and that we don’t know if they’ll work. But for someone who up until that point felt they had no options and, often, no hope, it’s welcome and encouraging news that progress is being made.