A Bridge to the future for stem cell students

cirmbridges2016-2042_600px_0

Students present their research finding at the 2016 CIRM Bridges conference

One of the programs people here at CIRM love is our Bridges to Stem Cell Research Awards. These are given to undergraduate and master’s level college students, to train the next generation of stem cell scientists. How good a program is it? It’s terrific. You don’t have to take my word for it. Just read this piece by a great stem cell champion, Don Reed. Don is the author of two books about CIRM, Stem Cell Battles and California Cures! so he clearly knows what he’s talking about.

ADVENTURES ON “BRIDGES”: Humboldt State Stem Cell Research

By Don C. Reed

Imagine yourself as a California college student, hoping to become a stem cell researcher. Like almost all students you are in need of financial help, and so (let’s say) you asked your college counselor if there were any scholarships available.

To your delight, she said, well, there is this wonderful internship program called Bridges, funded by the California Institution for Regenerative Medicine (CIRM) which funds training in stem cell biology and regenerative medicine — and so, naturally, you applied…

If you were accepted, how might your life change?

https://www.cirm.ca.gov/our-funding/research-rfas/bridges

After doing some basic training at the college, you would receive a grant (roughly $40,000) for a one-year internship at a world-renowned stem cell research facility. What an incredible leap forward in your career, hands-on experience (essentially a first job, great “experience” for the resume) as well an expert education.

Where are the 14 California colleges participating in this program? Click below:

https://www.cirm.ca.gov/our-funding/funded-institutions

Let’s take a look at one of these college programs in action: find out what happened to a few of the students who received a Bridges award, crossing the gap between studying stem cell research and actually applying it.

HSU information is courtesy of Dr. Amy Sprowles, Associate Professor of Biological Sciences and Co-Director of the Bridges program at Humboldt State University (HSU), 279 miles north of San Francisco.

Dr. Amy Sprowles

“The HSU Bridges program”, says Dr. Sprowles, “was largely developed by four people: Rollin Richmond, then HSU President, who worked closely with Susan Baxter, Executive Director of the CSU Program for Education and Research in Biotechnology, to secure the CIRM Bridges initiative; HSU Professor of Biological Sciences Jacob Varkey, who pioneered HSU’s undergraduate biomedical education program”, and Sprowles herself, at the time a lecturer with a PhD in Biochemistry.

The program has two parts: a beginning course in stem cell research, and a twelve-month internship in a premiere stem cell research laboratory. For HSU, these are at Stanford University, UC Davis, UCSF, or the Scripps Research Institute.

Like all CIRM Bridges programs, the HSU stem cell program is individually designed to suit the needs of its community.

Each of the 15 CIRM Bridges Programs fund up to ten paid internships, but the curriculum and specific activities of each are designed by their campus directors. The HSU program prepares Bridges candidates by requiring participation in a semester-long lecture and stem cell biology laboratory course before selection for the program: a course designed and taught by Sprowles since its inception.

She states, “The HSU pre-internship course ensures our students are trained in fundamental scientific concepts, laboratory skills and professional behaviors before entering their host laboratory. We find this necessary since, unlike the other Bridges campuses, we are 300+ miles away from the internship sites and are unable to fully support this kind of training during the experience. It also provides additional insights about the work ethic and mentoring needs of the individuals we select that are helpful in placing and supporting our program participants”.

How is it working?

Ten years after it began, 76 HSU students have completed the CIRM Bridges program at HSU. Of those, the overwhelming majority (over 85%) are committed to careers in regenerative medicine: either working in the field already, or continuing their education toward that goal.

But what happened to their lives? Take a brief look at the ongoing careers of a “Magnificent Seven” HSU Bridges scientists:

CARSTEN CHARLESWORTH: “Spurred by the opportunity to complete a paid internship at a world class research institution in Stem Cell Biology, I applied to the Humboldt CIRM Bridges program, and was lucky enough to be accepted. With a keen interest in the developing field of genome editing and the recent advent of the CRISPR-Cas9 system I chose to intern in the lab of a pioneer in the genome editing field, Dr. Matthew Porteus at Stanford, who focuses in genome editing hematopoietic stem cells to treat diseases such as sickle cell disease. In August of 2018 I began a PhD in Stanford’s Stem Cell and Regenerative Medicine program, where I am currently a second-year graduate student in the lab of Dr. Hiro Nakauchi, working on the development of human organs in interspecies human animal chimeras. The success that I’ve had and my acceptance into Stanford’s world class PhD program are a direct result of the opportunity that the CIRM Bridges internship provided me and the excellent training and instruction that I received from the Humboldt State Biology Program.”

ELISEBETH TORRETTI: “While looking for opportunities at HSU, I stumbled upon the CIRM Bridges program. It was perfect- a paid internship at high profile labs where I could expand my research skills for an entire year… the best fit (was) Jeanne Loring’s Lab at the Scripps Research Institute in La Jolla, CA. Dr. Loring is one of the premiere stem cell researchers in the world… (The lab’s) main focus is to develop a cure for Parkinson’s disease. (They) take skin cells known as fibroblasts and revert them into stem cells. These cells, called induced pluripotent stem cells (iPSCs) can then be differentiated into dopaminergic neurons and transplanted into the patient…. My project focused on a different disease: adenylate-cyclase 5 (ADCY5) — related dyskinesia. During my time at Dr. Loring’s lab I learned incredibly valuable research skills. I am now working in a mid-sized biotch company focusing on cancer research. I don’t think that would be possible in a competitive area like San Diego without my experience gained through the CIRM Bridges program.”

BRENDAN KELLY: “After completing my CIRM internship in Dr. Marius Wernig’s lab (in Stanford), I began working at a startup company called I Peace. I helped launch this company with Dr. Koji Tanabe, whom I met while working in my host lab. I am now at Cardiff University in Wales working on my PhD. My research involves using patient iPSC derived neurons to model Huntington’s disease. All this derived from my opportunity to partake in the CIRM-Bridges program, which opened doors for me.”

SAMANTHA SHELTON: “CIRM Bridges provided invaluable hands-on training in cell culture and stem cell techniques that have shaped my future in science. My CIRM internship in John Rubenstein’s Lab of Neural Development taught me amazing laboratory techniques such as stem cell transplantation as well as what goes into creating a harmonious and productive laboratory environment. My internship projects led to my first co-first author publication.

After my Bridges internship, I joined the Graduate Program for Neuroscience at Boston University. My PhD work aims to discover types of stem cells in the brain and how the structure of the brain develops early in life. During this time, I have focused on changes in brain development after Zika virus infection to better understand how microcephaly (small skulls and brains, often a symptom of Zika-DR) is caused. There is no doubt that CIRM not only made me a more competitive candidate for a doctoral degree but also provided me with tools to progress towards my ultimate goal of understanding and treating neurological diseases with stem cell technologies.”

DU CHENG: “Both my academic and business tracks started in the CIRM-funded…fellowship (at Stanford) where I invented the technology (the LabCam Microscope adapter) that I formed my company on (iDU Optics LLC). The instructor of the class, Dr. Amy Sprowles, encouraged me to carry on the idea. Later, I was able to get in the MD-PhD program at Weill Cornell Medical College because of the invaluable research experiences CIRM’s research program provided me. CIRM initiated the momentum to get me where I am today. Looking back, the CIRM Bridges Program is an instrumental jump-starter on my early career… I would not remotely be where I am without it.…”

CODY KIME: “Securing a CIRM grant helped me to take a position in the Nobel Prize winning Shinya Yamanaka Lab at the Gladstone Institutes, one of the most competitive labs in the new field of cell reprogramming. I then explored my own reprogramming interests, moving to the Kyoto University of Medicine, Doctor of Medical Sciences Program in Japan, and building a reprogramming team in the Masayo Takahashi Lab at RIKEN. My studies explore inducing cells to their highest total potential using less intrusive means and hacking the cell program. My systems are designed to inform my hypotheses toward a true お好みの細胞 (okonomi no cybo) technology, meaning ‘cells as you wish’ in Japanese, that could rapidly change any cell into another desired cell type or tissue.”

Sara Mills

SARA MILLS: “The CIRM Bridges program was the key early influencer which aided in my hiring of my first industry position at ViaCyte, Inc. Also a strongly CIRM funded institution, I was ultimately responsible for the process development of the VC-01™ fill, finish processes and cGMP documentation development. Most recently, with over two years at the boutique consulting firm of Dark Horse Consulting, Inc., I have been focusing on aseptic and cGMP manufacturing process development, risk analysis, CMC and regulatory filings, facility design and project management to advise growing cell and gene therapy companies, worldwide.”

Like warriors fighting to save lives, these young scientists are engaged in an effort to study and defeat chronic disease. It is to be hoped the California stem cell program will have its funding renewed, so the “Bridges” program can continue.

For more information on the Bridges program, which might help a young scientist (perhaps yourself) cut and paste the following URL:

https://www.cirm.ca.gov/our-impact/internship-programs

One closing paragraph perhaps best sums up the Bridges experience:

“During my CIRM Bridges training in Stanford University, I was fortunate to work with Dr. Jill Helms, who so patiently mentored me on research design and execution. I ended up publishing 7 papers with her during the two-year CIRM internship and helped making significant progress of turning a Stem Cell factor into applicable therapeutic form, that is currently in preparation for clinical trial by a biotech company in Silicon Valley. I also learned from her how to write grants and publications, but more importantly, (to) never limit your potential by what you already know.” — Du Cheng

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

Using 3D printer to develop treatment for spinal cord injury

3d-printed-device

3D printed device

Spinal cord injuries (SCIs) affect approximately 300,000 Americans, with about 18,000 new cases occurring per year. One of these patients, Jake Javier, who we have written about many times over the past several years, received ten million stem cells as part of a CIRM-funded clinical trial and a video about his first year at Cal Poly depicts how these injuries can impact someone’s life.

Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.

Scientists at UC San Diego’s School of Medicine and Institute of Engineering in Medicine have made critical progress in providing SCI patients with hope towards a more comprehensive and longer lasting treatment option.

shaochen chen

Prof. Shaochen Chen and his 3D printer

In a study partially funded by CIRM and published in Nature Medicine, Dr. Mark Tuszynski’s and Dr. Shaochen Chen’s groups used a novel 3D printing method to grow a spinal cord in the lab.

Previous studies have seen some success in lab grown neurons or nerve cells, improving SCI in animal models. This new study, however, is innovative both for the speed at which the neurons are printed, and the extent of the neuronal network that is produced.

To achieve this goal, the scientists used a biological scaffold that directs the growth of the neurons so they grow to the correct length and generate a complete neuronal network. Excitingly, their 3D printing technology was so efficient that they were able to grow implants for an animal model in 1.6 seconds, and a human-sized implant in just ten minutes, showing that their technology is scalable for injuries of different sizes.

When they tested the spinal cord implants in rats, they found that not only did the implant repair the damaged spinal cord tissue, but it also provided sustained improvement in motor function up to six months after implantation.

Just as importantly, they also observed that blood vessels had infiltrated the implanted tissue. The absence of vascularized tissue is one of the main reasons engineered implants do not last long in the host, because blood vessels are necessary to provide nutrients and support tissue growth. In this case, the animal’s body solved the problem on its own.

In a press release, one of the co-first authors of the paper, Dr. Kobi Koffler, states the importance and novelty of this work:

“This marks another key step toward conducting clinical trials to repair spinal cord injuries in people. The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

In order to make this technology viable for human clinical trials, the scientists are testing their technology in larger animal models before moving into humans, as well as investigating how to improve the longevity of the neuronal network by introducing proteins into the scaffolds.

 

 

Frustration, failure and finally hope in the search for treatments for spina bifida

diana farmer_2015

Dr. Diana Farmer and her team at UC. Davis

By any standards Dr. Diana Farmer is a determined woman who doesn’t let setbacks and failure deter her. As a fetal and neonatal surgeon, and the chair of the Department of Surgery at UC Davis Health, Dr. Farmer has spent years trying to develop a cure for spina bifida. She’s getting closer.

Dr. Farmer and her partner in this research, Dr. Aijun Wang, have already shown they can repair the damage spina bifida causes to the spinal cord, in the womb, in sheep and bulldogs. Last year the CIRM Board voted to fund her research to get the data needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people.

That work is so promising that we decided to profile Dr. Farmer in our 2018 Annual Report.

Here’s excerpts from an interview we conducted with her as part of the Annual Report.

I have been working on this since 2008. We have been thinking about how to help kids with spina bifida walk. It’s not fatal disease but it is a miserable disease.

It’s horrible for parents who think they are about to have a healthy child suddenly be faced with a baby who faces a life long struggle with their health, everything from difficulty or inability to walk to bowel and bladder problems and life-threatening infections.

As a fetal surgeon we used to only focus on fatal diseases because otherwise kids would die. But as we made progress in the field, we had the opportunity to help others who didn’t have a fatal condition, in ways we couldn’t have done in the past.

I’ve always been fascinated by the placenta, it has lots of protective properties. So, we asked the question if we were able to sample fetal cells from the placenta, could we augment those cells, and use them to tissue engineer spinal injuries, in the womb, to improve the outcome for kids with spina bifida?

Dr. Aijun Wang and I have been working on this project for the last decade.  Ten years of work has taken us to this point where we are now ready to move this to the next level.

It’s amazing to me how long this process takes and that’s why we are so grateful to CIRM because this is a rare disease and finding funding for those is hard. A lot of people are scared about funding fetal surgery and CIRM has been a perfect partner in helping bring this approach, blending stem cell therapy and tissue engineering, together.

If this therapy is successful it will have a huge economic impact on California, and on the rest of the world. Because spina bifida is a lifelong condition involving many operations, many stays in the hospital, in some cases lifelong use of a wheelchair. This has a huge financial burden on the family. And because this doesn’t just affect the child but the whole family, it has a huge psychological burden on families. It affects them in so many ways; parents having to miss work or take time off work to care for their child, other children in the family feeling neglected because their brother or sister needs so much attention.

In the MOMS Trial (a study that looked at prenatal – before birth – and postnatal – after birth – surgery to repair a defect in the spinal cord and showed that prenatal surgery had strong, long-term benefits and some risks) we showed that we could operate on the fetus before birth and help them. The fact that there was any improvement – doubling the number of kids who could walk from 20 to 40% showed this spinal cord injury is not a permanent situation and also showed there was some plasticity in the spinal cord, some potential for improvement. And so, the next question was can we do more. And that’s why we are trying this.

It’s pretty amazing. We are pretty excited.

The thing that makes surgeon-scientists feel so passionate is that we don’t just ask the fundamental questions, we ask questions in order to cure a problem in patients. I grew up in an environment where people were always asking “how can we do it better, how can we improve?”

There were many times of frustration, many times when cell types we explored and worked with didn’t work. But it’s the patients, seeing them, that keeps me motivated to do the science, to keep persevering. That’s the beauty of being a clinician-scientist. We can ask questions in a different way and look at data in a different way because we are driven by patient outcomes. So, whenever we get stuck in the rabbit hole of theoretical problems, we look to the patients for inspiration to keep going.

I am very cognizant of stirring up false hope, knowing that what occurs in animal models doesn’t always translate into humans. But we are optimistic, and I am anxious to get going.

 

Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.

 

 

 

 

 

 

Performance, Passion and Progress: and that’s just page one of our 2018 Annual Report

2018_ar_webimage

It’s hard to sum up the activities and achievements of a year in a single document, let alone one that’s just 24 pages. But that’s what we have done in putting together our 2018 Annual Report.

It’s a look back at the year just gone, the highlights, the low lights (spoiler alert – there weren’t any) and the impact we had on the field of stem cell research. But it’s far more than that. It’s also a look ahead. A look at the challenges we face, and profiles of the people who are going to help us overcome those challenges and maintain our progress.

And people are truly at the heart of this report, from UC San Francisco’s Dr. Tippi MacKenzie who is on the front cover for her work in developing an in-utero treatment for the almost always fatal disorder alpha thalassemia major (and the photo of the baby and mom whose lives were changed by that therapy) to Rich Lajara on the back cover, the first person ever treated in a CIRM-funded clinical trial.

Inside are an array of simple images designed to reflect how we as a state agency have performed this year. The numbers themselves tell a powerful story:

  • 50 clinical trials funded to date, 7 this year alone
  • $2.6 billion in CIRM grants has been leveraged to bring in an additional $3.2 billion in matching funds and investments from other sources.
  • 1,180 patients have been involved in CIRM clinical trials

We know people don’t have a lot of time to read Annual Reports so we have made this as visually engaging and informative as possible. We want you to get a real sense of who we are, what we have done and who has helped us do that without you having to wade through a document the size of War and Peace (great book by the way – the Russians beat Napoleon).

We think we have a great story to tell. This Annual Report is one chapter in that story. We hope you like it.

 

By the numbers – a look at how the field of Regenerative Medicine is growing

file

ARM State of the Industry briefing

The Golden State Warriors, the current US basketball champions – and your favorite Stem Cell Agency’s neighbors in Oakland – have a slogan, “Strength in Numbers”. That could well apply to the field of Regenerative Medicine because the field is growing in numbers, growing in strength, and growing in influence.

Yesterday, the Alliance for Regenerative Medicine (ARM), the organization that represents the field, held its annual State of the Industry briefing in San Francisco, detailing what happened in 2018. It was pretty impressive.

In fact, just the number of people in the room was impressive. More than 800 RSVP’d for the event, more than for any previous meeting, but even then the room was filled over capacity with many standing around the edges because there were no seats left.

ARM itself is growing, 32 percent last year, and now has more than 300 members. Other impressive numbers include:

  • 906 gene and cell therapy companies worldwide
  • 484 gene and cell therapy companies in the US alone
  • 1,028 clinical trials taking place worldwide
  • 598 of those clinical trials (58 percent of the total) are targeting cancer
  • 59,575 patients are slated to be enrolled in those trials

All those numbers are up dramatically on last year. You can see all the details on the ARM website.

Another sign the industry is growing comes in the amount of money being invested. When people are willing to pony up hard cash you know it’s a sign they believe in you. Last year the field raised $13.8 billion worldwide, that’s up a whopping 73 percent on 2017. That represented a strong year across all fronts from corporate partnerships to Initial Public Offerings (several CIRM-supported companies such as Orchard Therapeutics and Forty Seven Inc. are in that number) and venture capital investments.

Clearly there are still challenges ahead, such as figuring out ways to pay for these therapies when they are approved so that they are available to the people who need them, the patients.

One of the issues that is going to be front and center in 2019 is reimbursement and developing new payment models. But that in itself is a sign of a maturing field. In past years the emphasis was on developing new treatments. Now that those are in the pipeline, we’re working on ways to pay for them.

That’s progress.

The power of one voice: David Higgins’ role in advancing stem cell research

CIRM-2018_28-

David Higgins: Photo courtesy Nancy Ramos @ Silver Eye Photography

As we start a new year, we are fine tuning our soon-to-be-published 2018 Annual Report, summarizing our work over the past 12 months. The report is far more than just a collection of statistics about how many clinical trials we are funding (50 – not too shabby eh!) or that our support has generated an additional $3.2 billion in leveraged funding. It’s also a look at the people who have made this year so memorable – from patients and researchers to patient advocates. We start with our Board member David Higgins, Ph.D.  David is the patient advocate on our Board for Parkinson’s disease. He has a family history of Parkinson’s and has also been diagnosed with the disease himself.

How he sees his role

As a patient advocate my role is not to support any Parkinson’s program that comes in the door and get it funded. We have to judge the science at the same level for every disease and if you bring me a good Parkinson’s project, I will fight tooth and nail to support it. But if you bring me a bad one, I will not support it. I see my role as more of a consultant for the staff and Board, to help advise but not to impose my views on them.

I think what CIRM has done is to create a new way of funding the best science in the world. The involvement of the community in making these decisions is critical in making sure there is an abundance of oversight, that there is not a political decision made about funding. It’s all about the science. This is the most science-based organization that you could imagine.

The Board plays a big role in all this. We don’t do research or come up with the ideas, but we nurture the research and support the scientists, giving them the elements they need to succeed.

And, of course the taxpayers play a huge role in this, creating us in the first place and approving all the money to help support and even drive this research. Because of that we should be as conservative as possible in using this money. Being trustees of this funding is a privilege and we have to be mindful of how to best use it.

On the science

I love, love, love having access to the latest, most interesting, cutting edge research in the world, talking to scientists about what they are doing, how we can support them and help them to do it better, how it will change the world. You don’t have access to anything else like this anywhere else.

It’s like ice cream, you just enjoy every morsel of it and there’s no way you can find that level of satisfaction anywhere else. I really feel, as do other Board members, that we are helping people, that we are changing people’s lives.

I also love the learning curve. The amount I have learned about the field that I didn’t know before is amazing. Every meeting is a chance to learn something new and meeting the scientists who have spent years working on a project is so fascinating and rewarding.

 Unexpected pleasure

The other joy, and I hadn’t anticipated this, is the personal interaction I have with other Board members and staff members. They have become friends, people I really like and admire because of what they do and how committed they are.

When I talk about CIRM I tell people if you live in California you should be proud of how your money is being spent and how it’s making a difference in people’s lives. When I give a talk or presentation, I always end with a slide of the California flag and tell people you should be proud to be here.

 

 

The most popular Stem Cellar posts of 2018

The blog

You never know when you write something if people are going to read it. Sometimes you wonder if anyone is going to read it. So, it’s always fun, and educational, to look back at the end of the year and see which pieces got the most eyeballs.

It isn’t always the ones you think will draw the biggest audiences. Sometimes it is diseases that are considered “rare” (those affecting fewer than 200,000 people) that get the most attention.

Maybe it’s because those diseases have such a powerful online community which shares news, any news, about their condition of interest with everyone they know. Whatever the reason, we are always delighted to share encouraging news about research we are funding or encouraging research that someone else is funding.

That was certainly the case with the top two stories this year. Both were related to ALS or Lou Gehrig’s disease.  It’s a particularly nasty condition. People diagnosed with ALS have a life expectancy of just 2 to 5 years. So it’s probably not a big surprise that stories suggesting stem cells could expand that life span got a big reception.

Whatever the reason, we’re just happy to share hopeful news with everyone who comes to our blog.

And so, without further ado, here is the list of the most popular Stem Cellar Blog Posts for 2018.

All of us in the Communications team at CIRM consider it an honor and privilege to be able to work here and to meet many of the people behind these stories; the researchers and the patients and patient advocates. They are an extraordinary group of individuals who help remind us why we do this work and why it is important. We love our work and we hope you enjoy it too. We plan to be every bit as active and engaged in 2019.

It’s not goodbye to Dr. Bert Lubin, it’s au revoir

DrB Lubin-098

Dr. Bert Lubin has been a fixture at UCSF Benioff Children’s Hospital Oakland long before it was even called that. When he started there 43 years ago it was just a small community hospital and through his commitment to helping those in need he has helped build it into a remarkable institution.

Over the years he started one of the first newborn screening programs for sickle cell disease, created the world’s first non-profit sibling cord blood donor program and along the way boosted the research budget from $500,000 to $60 million without ever losing sight of the hospital’s primary goal, serving the community.

But with someone like Bert, nothing is ever enough. He became a national leader in the fight to develop better treatments and even a cure for sickle cell disease and then joined the CIRM Board to help us find better treatments and even cures for a wide variety of diseases and disorders.

“I got a sense of the opportunities that stem cell therapies would have for a variety of things, certainly including Sickle Cell Disease and I thought if there’s a chance to be on the Board as an advocate for that population I think I’d be a good spokesperson.  I just thought this was an exciting opportunity.”

He says the Stem Cell Agency has done a great job in advancing the field, and establishing California as a global leader.

“I think we are seeing advances in stem cell therapies. I’m proud of the progress we are making and I’m proud of the cures we are providing and I think it’s wonderful that the state had the vision to do something as big as this and to be a leader in the world in that regard.”

Now, after almost eight years Bert is stepping down from the CIRM Board. But he’s not stepping away from CIRM.

I feel committed to CIRM, I don’t need to be on the Board to be committed to CIRM. I don’t see myself leaving, I’m just re-purposing what is my role in my CIRM. I’m recycling and reinventing.

To mark this transition to the next phase of his career, the staff at Children’s put together this video tribute for Bert. It’s a sweet, glowing and heart warming thank you to someone who has done so much for so many people. And plans on doing even more in the years to come.