A look back at the last year – but with our eyes firmly on the future

Randy

CIRM President & CEO Randy Mills doesn’t want “good”, he wants “better”

Better.

With that single word Randy Mills, our President and CEO, starts and ends his letter in our 2015 Annual Report and lays out the simple principle that guides the way we work at CIRM.

Better.

But better what?

“Better infrastructure to translate early stage ideas into groundbreaking clinical trials. Better regulatory practices to advance promising stem cell treatments more efficiently. Better treatments for patients in need.”

“Better” is also the standard everyone at CIRM holds themselves to. Getting better at what we do so we can fulfill our mission of accelerating stem cell treatments to patients with unmet medical needs.

The 2015 Annual Report highlights the achievements of the last year, detailing how we invested $135 million in 47 different projects at all levels of research. How our Board unanimously passed our new Strategic Plan, laying out an ambitious series of goals for the next five years from funding 50 new clinical trials, to creating a new regulatory process for stem cell therapies.

Snapshot of CIRM's 2015 Funding

The report offers a snapshot of where our money has gone this year, and how much we have left. It breaks down what percentage of our funding has gone to different diseases and how much we have spent on administration.

Jonathan Thomas, the Chair of our Board, takes a look back at where we started, 10 years ago, comparing what we did then (16 awards for a total of $12.5 million) to what we are doing today. His conclusion; we’re doing better.

But we still have a long way to go. And we are determined to get even better.

P.S. By the way we are changing the way we do our Annual Report. Our next one will come out on January 1, 2017. We figured it just made sense to take a look back at the last year as soon as the new year begins. It gives you a better (that word again) sense of what we did and where we  are heading. So look out for that, coming sooner than you think.

Here’s a new gene editing strategy to treat genetic blood disorders

If you’re taking a road trip across the country, you have a starting point and an ending point. How you go from point A to point B could be one of a million different routes, but the ultimate outcome is the same: reaching your final destination.

Yesterday scientists from St. Jude Children’s Research Hospital published exciting findings in the journal Nature Medicine on a new gene editing strategy that could offer a different route for treating genetic blood disorders such as sickle cell disease (SCD) and b-thalassemia.

The scientists used a gene editing tool called CRISPR. Unless you’ve been living under a rock, you’ve heard about CRISPR in the general media as the next, hot technology that could possibly help bring cures for serious diseases.

In simple terms, CRISPR acts as molecular scissors that facilitate cutting and pasting of DNA sequences at specific locations in the genome. For blood diseases like SCD and b-thalassemia, in which blood cells have abnormal hemoglobin, CRISPR gene editing offers ways to turn on and off genes that cause the clinical symptoms of these diseases.

Fetal vs. Adult hemoglobin

Before I get into the meat of this story, let’s take a moment to discuss hemoglobin. What is it? It’s a protein found in red blood cells that transports oxygen from the lungs to the rest of the body. Hemoglobin is made up of different subunits and the composition of these hemoglobin subunits change as newborns develop into adults.

0a448-sicklecellimage

Healthy red blood cell (left), sickle cell (right).

Fetal hemoglobin (HbF) is comprised of a and g subunits while adult hemoglobin (HbA) is typically comprised of a and b subunits. Patients with SCD and b-thalassemia typically have mutations in the b globin gene. In SCD, this causes blood cells to take on an unhealthy, sickle cell shape that can clog vessels and eventually cause premature death. In b-thalassemia, the b-globin gene isn’t synthesized into protein at the proper levels and patients suffer from anemia (low red blood cell count).

One way that scientists are attempting to combat the negative side effects of mutant HbF is to tip the scales towards maintaining expression of the fetal g-globin gene. The idea spawned from individuals with hereditary persistence of fetal hemoglobin (HPFH), a condition where the hemoglobin composition fails to transition from HbF to HbA, leaving high levels of HbF in adult blood. Individuals who have HPFH and are predisposed to SCD or b-thalassemia amazingly don’t have clinical symptoms, suggesting that HbF plays either a protective or therapeutic role.

The current study is taking advantage of this knowledge in their attempt to treat blood disorders. Mitchell Weiss, senior author on the study and chair of the St. Jude Department of Hematology, explained the thought process behind their study:

“It has been known for some time that individuals with genetic mutations that persistently elevate fetal hemoglobin are resistant to the symptoms of sickle cell disease and beta-thalassemia, genetic forms of severe anemia that are common in many regions of the world. We have found a way to use CRISPR gene editing to produce similar benefits.”

CRISPRing blood stem cells for therapeutic purposes

Weiss and colleagues engineered red blood cells to have elevated levels of HbF in hopes of preventing symptoms of SCD. They used CRISPR to create a small deletion in a sequence of DNA, called a promoter, that controls expression of the hemoglobin g subunit 1 (HBG1) gene. The deletion elevates the levels of HbF in blood cells and closely mimics genetic mutations found in HPFH patients.

Weiss further explained the genome editing process in a news release:

Mitchell Weiss

Mitchell Weiss

“Our work has identified a potential DNA target for genome editing-mediated therapy and offers proof-of-principle for a possible approach to treat sickle cell and beta-thalassemia. We have been able to snip that DNA target using CRISPR, remove a short segment in a “control section” of DNA that stimulates gamma-to-beta switching, and join the ends back up to produce sustained elevation of fetal hemoglobin levels in adult red blood cells.”

The scientists genetically modified hematopoietic stem cells and blood progenitor cells from healthy individuals to make sure that their CRISPR gene editing technique was successful. After modifying the stem cells, they matured them into red blood cells in the lab and observed that the levels of HbF increased from 5% to 20%.

Encouraged by these results, they tested the therapeutic potential of their CRISPR strategy on hematopoietic stem cells from three SCD patients. While 25% of unmodified SCD blood stem cells developed red blood cells with a sickle cell shape under low-oxygen conditions (to induce stress), CRISPR edited SCD stem cells generated way fewer sickle cells (~4%) and had a higher level of HbF expression.

Many routes, one destination

The authors concluded that their genome editing technique is successful at switching hemoglobin expression from the adult form back to the fetal form. With further studies and safety testing, this strategy could be one day be developed into a treatment for patients with SCD and b-thalassemia

But the authors were also humble in their findings and admitted that there are many different genome editing strategies or routes for developing therapies for inherited blood diseases.

“Our results represent an additional approach to these existing innovative strategies and compare favorably in terms of the levels of fetal hemoglobin that are produced by our experimental system.”

My personal opinion is the more strategies thrown into the pipeline the better. As things go in science, many of these strategies won’t be successful in reaching the final destination of curing one of these diseases, but with more shots on goal, our chances of developing a treatment that works there are a lot higher.


Related links:

Dr. Deborah Deas joins CIRM Board

Deborah Deas has been appointed dean of the UCR School of Medicine

Deborah Deas, MD, MPH, UCR School of Medicine

Dr. Deborah Deas is clearly not someone who opts for the quiet life. If she were, she would have stayed home in Adams Run, the tiny town in rural South Carolina where she was born.

The website, NeighborhoodScout.com describes Adams Run (current population 1,492) as:

“One of the quietest neighborhoods in America. When you are here, you will find it to be very quiet. If quiet and peaceful are your cup of tea, you may have found a great place for you.”

Dr. Deas obviously wasn’t a tea drinker because she packed her bags and went off to college in Charleston. That was the first step on a journey that led the self-described “farmer’s daughter” to become an MD, then an MPH (Masters in Public Health), before assuming a leadership role at the Medical University of South Carolina (MUSC). More recently she headed to California’s Inland Empire where she was named the Dean and CEO for Clinical Affairs of the UC Riverside School of Medicine.

And now we are delighted to add to that list of achievements by announcing she is the newest member of the CIRM Board.

She was appointed to the Board by state Treasurer John Chiang who praised her for her:

“Passion to improve  health for underserved populations and to diversify the health care work force. She is committed to making the benefits of advanced medicine available to all Californians.”

 

In a news release our CIRM Board Chair, Jonathan Thomas, was equally fulsome in his praise and welcome to Dr. Deas.

 “We are delighted to have someone with Dr. Deas’ broad experience and expertise join us at CIRM. Her medical background and her commitment to diversity and inclusion are important qualities to bring to a Board that is striving to deliver stem cell treatments to patients, and to reflect the diversity of California.”

To say that she brings a broad array of skills and experience to the Board is something of an understatement. She is board certified in adult psychiatry, child and adolescent psychiatry and addiction psychiatry, and is widely regarded as a national leader in research into youth binge drinking, adolescent nicotine dependence, marijuana use and panic disorder, and pharmaceutical treatment of pediatric depressive disorder.

As if that wasn’t enough, she has also been named as one of the best doctors in the U.S. by U.S. News & World Report for the last eight years.

But the road to UC Riverside and CIRM hasn’t always been easy. In a first person perspective in Psychiatric News.

she said that at MUSC she was just one of two African Americans among the 500 residents in training:

“It was not uncommon for me to be mistaken by many for a social worker, a secretary, or a ward clerk despite wearing my white coat with Deborah Deas, M.D., written on it. This mistake was even made by some of my M.D. peers. I found that the best response was to ask, “And just why do you think I am a social worker?”

She says the lessons she learned from her parents and grandparents helped sustain her:

“They emphasized the importance of setting goals and keeping your eyes on the prize. Service was important, and the ways that one could serve were numerous. The notion that one should learn from others, as well as teach others, was as common as baked bread. My parents instilled in me that education is the key to a fruitful future and that it is something no one can take away from you.”

Her boss at UC Riverside, the Provost and Executive Vice Chancellor, Paul D’Anieri said Dr. Deas is a great addition to the CIRM Board:

“Deborah is a public servant at heart. Her own values and goals to help underserved patient populations align with the goals of CIRM to revolutionize medicine and bring new, innovative treatments to all patients who can benefit. I am confident that Dr. Deas’ service will have a lasting positive impact for CIRM and for the people of California.”

Dr. Deas ends her article in Psychiatric News saying:

“The farmer’s daughter has come a long way. I have stood on the shoulders of many, pushing forward with an abiding faith that there was nothing that I could not accomplish.”

She has indeed come a long way. We look forward to being a part of the next stage of her journey, and to her joining CIRM and bringing that “abiding faith” to our work.

 

 

Young Minds Shine Bright at the CIRM SPARK Conference

SPARK students take a group photo with CIRM SPARK director Karen Ring.

SPARK students take a group photo with CIRM SPARK director Karen Ring.

Yesterday was one of the most exciting and inspiring days I’ve had at CIRM since I joined the agency one year ago. We hosted the CIRM SPARK conference which brought together fifty-five high school students from across California to present their stem cell research from their summer internships.

The day was a celebration of their accomplishments. But it was also a chance for the students to hear from scientists, patient advocates, and clinicians about the big picture of stem cell research: to develop stem cell treatments and cures for patients with unmet medical needs.

Since taking on the role of the CIRM SPARK director, I’ve been blown away by the passion, dedication, and intelligence that our SPARK interns have shown during their short time in the lab. They’ve mastered techniques and concepts that I only became familiar with during my PhD and postdoctoral research. And even more impressive, they eloquently communicated their research through poster presentations and talks at the level of professional scientists.

During their internships, SPARK students were tasked with documenting their research experiences through blogs and social media. They embraced this challenge with gusto, and we held an awards ceremony to recognize the students who went above and beyond with these challenges.

I’d like to share the winning blogs with our readers. I hope you find them as inspiring and motivating as I do. These students are our future, and I look forward to the day when one of them develops a stem cell treatment that changes the lives of patients. 

Andrew Choi

Andrew Choi

Andrew Choi, Cedars-Sinai SPARK student

Am I crying or is my face uncontrollably sweating right now? I think I am doing both as I write about my unforgettable experiences over the course of the past 6 weeks and finalize my poster.

As I think back, I am very grateful for the takeaways of the research field, acquiring them through scientific journals, lab experiments with my mentor, and both formal and informal discourses. It seems impossible to describe all the episodes and occurrences during the program in this one blog post, but all I can say is that they were all unique and phenomenal in their own respective ways.

Gaining new perspectives and insights and being acquainted with many of the techniques, such as stereology, immunocytochemistry and immunohistochemistry my peers have utilized throughout their careers, proved to me the great impact this program can make on many individuals of the younger generation.

CIRM SPARK not only taught me the goings on behind the bench-to-bedside translational research process, but also morals, work ethics, and effective collaboration with my peers and mentors. My mentor, Gen, reiterated the importance of general ethics. In the process of making my own poster for the program, her words resonate even greater in me. Research, education, and other career paths are driven by proper ethics and will never continue to progress if not made the basic standard.

I am thankful for such amazing institutions: California Institute of Regenerative Medicine (CIRM) and Cedars-Sinai Medical Center for enabling me to venture out into the research career field and network. Working alongside with my fellow seven very brilliant friends, motivated me and made this journey very enjoyable. I am especially thankful my mentor, Gen, for taking the time to provide me with the best possible resources, even with her busy ongoing projects. She encouraged me to be the best that I am.

I believe, actually, I should say, I KNOW Cedars-Sinai’s CIRM SPARK program does a SUPERB and astounding job of cultivating life-long learners and setting exceptional models for the younger generation. I am hoping that many others will partake in this remarkable educational program.

I am overall very blessed to be part of a successful summer program. The end of this program does not mark the end of my passions, but sparks them to even greater heights.

Jamey Guzman

Jamey Guzman

Jamey Guzman, UC Davis SPARK student

When I found out about this opportunity, all I knew was that I had a fiery passion for learning, for that simple rush that comes when the lightbulb sputters on after an unending moment of confusion. I did not know if this passion would translate into the work setting; I sometimes wondered if passion alone would be enough to allow me to understand the advanced concepts at play here. I started at the lab nervous, tentative – was this the place for someone so unsure exactly what she wanted to be ‘when she grew up,’ a date now all too close on the horizon? Was I going to fit in at this lab, with these people who were so smart, so busy, people fighting for their careers and who had no reason to let a 16-year-old anywhere near experiments worth thousands of dollars in cost and time spent?

I could talk for hours about the experiments that I worked to master; about the rush of success upon realizing that the tasks now completed with confidence were ones that I had once thought only to belong to the lofty position of Scientist. I could fill pages and pages with the knowledge I gained, a deep and personal connection to stem cells and cell biology that I will always remember, even if the roads of Fate pull me elsewhere on my journey to a career.

The interns called the experience #CIRMSparkLab in our social media posts, and I find this hashtag so fitting to describe these last few months. While there was, of course, the lab, where we donned our coats and sleeves and gloves and went to work with pipets and flasks…There was also the Lab. #CIRMSparkLab is so much more than an internship; #CIRMSparkLab is an invitation into the worldwide community of learned people, a community that I found to be caring and vibrant, creative and funny – one which for the first time I can fully imagine myself joining “when I grow up.”

#CIRMSparkLab is having mentors who taught me cell culture with unerring patience and kindness. It is our team’s lighthearted banter across the biosafety cabinet; it is the stories shared of career paths, of goals for the present and the future. It is having mentors in the best sense of the word, trusting me, striving to teach and not just explain, giving up hours and hours of time to draw up diagrams that ensured that the concepts made so much sense to me.

#CIRMSparkLab is the sweetest ‘good-morning’ from scientists not even on your team, but who care enough about you to say hi, to ask about your projects, to share a smile. It is the spontaneity and freedom with which knowledge is dispensed: learning random tidbits about the living patterns of beta fish from our lab manager, getting an impromptu lecture about Time and the Planck Constant from our beloved professor as he passes us at lunch. It is getting into a passionate, fully evidence-backed argument about the merits of pouring milk before cereal that pitted our Stem Cell team against our Exosome team: #CIRMSparkLab is finding a community of people with whom my “nerdy” passion for learning does not leave me an oddball, but instead causes me to connect instantly and deeply with people at all ages and walks of life. And it is a community that, following the lead of our magnificent lab director, welcomed ten interns into their lab with open arms at the beginning of this summer, fully cognizant of the fact that we will break beakers, overfill pipet guns, drop gels, bubble up protein concentration assays, and all the while never stop asking, “Why? Why? Why? Is this right? Like this? WHY?”

I cannot make some sweeping statement that I now know at age 16 exactly what I want to do when I grow up. Conversely, to say I learned so much – or I am so grateful – or you have changed my life is simply not enough; words cannot do justice to those sentiments which I hope that all of you know already. But I can say this: I will never forget how I felt when I was at the lab, in the community of scientists. I will take everything I learned here with me as I explore the world of knowledge yet to be obtained, and I will hold in my heart everyone who has helped me this summer. I am truly a better person for having known all of you.

Thank you, #CIRMSparkLab. 

Adriana Millan

Adriana Millan

Adriana Millan, CalTech SPARK student

As children, we all grew up with the companionship of our favorite television shows. We enjoyed sitcoms and other animations throughout our childhood and even as adults, there’s no shame. The goofy and spontaneous skits we enjoyed a laugh over, yet we did not pay much attention to the lessons they attempted to teach us. As a child, these shows play crucial roles in our educational endeavors. We are immediately hooked and tune in for every episode. They spark curiosity, as they allow our imaginations to run wild. For me, that is exactly where my curiosity stemmed and grew for science over the years. A delusional young girl, who had no idea what the reality of science was like.

You expect to enter a lab and run a full day of experimentations. Accidentally mix the wrong chemicals and discover the cure for cancer. Okay, maybe not mix the incorrect chemicals together, I learned that in my safety training class. The reality is that working in a lab was far from what I expected — eye opening. Working alongside my mentor Sarah Frail was one of the best ways I have spent a summer. It was not my ideal summer of sleeping in until noon, but it was worthwhile.

My experience is something that is a part of me now. I talk about it every chance I get, “Mom, can you believe I passaged cells today!” It changed the way I viewed the principles of science. Science is one of the most valuable concepts on this planet, it’s responsible for everything and that’s what I have taken and construed from my mentor. She shared her passion for science with me and that completed my experience. Before when I looked at cells, I did not know exactly what I was supposed to observe. What am I looking at? What is that pink stuff you are adding to the plate?

However, now I feel accomplished. It was a bit of a roller coaster ride, with complications along the way, but I can say that I’m leaving this experience with a new passion. I am not just saying this to please the audience, but to express my gratitude. I would have never even looked into Huntington’s Disease. When I first arrived I was discombobulated. Huntington’s Disease? Now I can proudly say I have a grasp on the complexity of the disease and not embarrass my mentor my calling human cells bacteria – quite embarrassing in fact.  I’m a professional pipette handler, I work well in the hood, I can operate a microscope – not so impressive, I have made possibly hundreds of gels, I have run PCRs, and my cells love me, what else can I ask for.

If you are questioning what career path you are to take and even if it is the slightest chance it may be a course in science, I suggest volunteering in a lab. You will leave with your questioned answered. Is science for me? This is what I am leaving my experience with. Science is for me.

Other SPARK 2016 Awards

Student Speakers: Jingyi (Shelly) Deng (CHORI), Thomas Thach (Stanford)

Poster Presentations: Jerusalem Nerayo (Stanford), Jared Pollard (City of Hope), Alina Shahin (City of Hope), Shuling Zhang (UCSF)

Instagram Photos: Roxanne Ohayon (Stanford), Anna Victoria Serbin (CHORI), Diana Ly (UC Davis)

If you want to see more photos from the CIRM SPARK conference, check out our Instagram page @CIRM_Stemcells or follow the hashtag #CIRMSPARKLab on Instagram and Twitter.

Fujifilm is Expanding Its Focus to Regenerative Medicine

Fujifilm began as a photography company, but today is a well-known multinational imaging and information technology corporation. More recently, it’s expanded its focus (pun intended) on developing innovative technologies in the healthcare and regenerative medicine space.

The news that Fujifilm was expanding into regenerative medicine was surprising to some given the company’s expertise in areas unrelated to stem cell research, but with the acquisition of Cellular Dynamics International, a company from Madison, Wisconsin that specializes in large-scale manufacturing of human cells, and the revamping of Fujifilm’s Japan Tissue Engineering subsidiary, which is developing regenerative treatments for damaged skin and cartilage, Fujifilm has solidified its position as a competitive company that’s accelerating the pace of regenerative medicine to develop treatments for patients with unmet medical needs.

Mr. Ban

Mr. Toshikazu Ban

So what progress has Fujifilm made in regenerative medicine and what advancements are they making towards the clinic? You’ll find the answers to these burning questions in my interview with Mr. Toshikazu Ban, Corporate Vice President, General Manager of Regenerative Medicine Business Division at Fujifilm Corporation. Enjoy!

Q: Why did Fujifilm decide to enter the regenerative medicine space?

TB: At first glance, Fujifilm may seem an unlikely candidate to become a leader in regenerative medicine, yet its engagement in the healthcare industry goes back many decades. Founded in 1934, Fujifilm started offering X-ray film just two years later. By 1983, Fujifilm became the first in the world to offer a digital X-ray diagnostic imaging system.

Today, Fujifilm has been able to expand the use of its core fundamental technologies in cosmetics and supplements and pharmaceuticals. Combined, these have allowed Fujifilm to transform into a major healthcare company committed to prevention, diagnosis and treatment.

Unfortunately, there are still many diseases for which there are no effective treatments, and millions wait in hope of their discovery. Regenerative medicine treatment has the potential to cure diseases that cannot be cured by drugs. Fujifilm feels a sense of responsibility to apply its technology in a way that helps make promising treatments a reality.

Q: What advantages do you think Fujifilm has over other healthcare companies in regenerative medicine?

TB: Fujifilm’s advanced engineering technology provides tremendous possibilities in the regenerative medicine space.

The chief component in photographic film is gelatin, which is derived from collagen. Fujifilm has developed a human-type recombinant peptide which can be scaffolds for growing cells and restoring tissue.  The human-type recombinant peptide is non-animal based, has high cellular adhesiveness, is flexible, safe, biocompatible, biodegradable and bioabsorbable. Cells survive better when they are combined with our recombinant peptide because it holds the cells better and allows space in between so that oxygen and other critical growth factors can reach the cells.

Fujifilm also has two subsidiaries that provide synergies and efficiencies to be more competitive in the regenerative medicine field, Cellular Dynamics International, Inc., (FCDI), and Japan Tissue Engineering Co., Ltd. (J-TEC).

In 2015, FCDI announced the launch of a stem cell bank with funding from CIRM to create induced pluripotent stem (iPS) cell lines for each of 3,000 healthy and diseased volunteer donors across 11 common diseases and disorders to be made available through the CIRM human pluripotent stem cell (hPSC) Repository.

The lines available from the CIRM stem cell bank directly complement FCDI’s ability to provide differentiated cells corresponding to each of the iPSC lines, which will allow researchers to model the diseases represented, better understand disease progression, perform more targeted drug discovery, and ultimately lead to better treatments.

A lot of pharmaceutical companies use these cells to test for the screening and toxicity of new drug candidates. If iPS cells can improve the productivity including efficacy and safety, the technology can greatly reduce time and cost as well as the drop-out rate in clinical development.

In 2014, J-TEC became a consolidated Fujifilm Group subsidiary. J-TEC launched the first two regenerative medicine products to receive approval from the Japanese government (one product is used to treat severe burns, while the other is used to replace damaged cartilage in knees).

J-TEC Lab (Image courtesy of Fujifilm)

J-TEC Lab (Image courtesy of Fujifilm)

Q: Can you describe some of the stem cell therapies you’re developing for the clinic for major diseases?

TB: FCDI plans to start iPS cell therapy clinical studies in the U.S. for age related macular degeneration in the year 2017, and clinical studies for retinitis pigmentosa, Parkinson’s and heart failure around 2019.

In March 2015, Fujifilm announced it had developed diabetes therapies in animal tests. CellSaic is a three-dimensional mosaic structure that combines cells with a recombinant peptide (RCP) scaffold made from micro-sized petaloid pieces of the protein. In a study involving type 1 diabetic mice, we created a CellSaic of human mesenchymal stem cells and cells from pancreatic islets and transplanted them in the mice. The purpose of the study was to verify whether using the recombinant peptide as a scaffold would increase the survival rate of the transplanted cells compared with just transplanting the cells alone. We also wanted to demonstrate a reduction in blood glucose levels of the diabetic mice since the recombinant peptide was able to sustain the viability of the pancreatic islet cells.

The study showed that seven days after the transplantation, CellSaic had a significantly more prominent introduction of blood vessels, which provide passageways for nutrients, oxygen and waste product to get to, and away from, the cells.  In addition, 28 days after transplantation, the test group of diabetic mice with the recombinant peptide-based CellSaic scaffold saw blood glucose levels lowered to the level equivalent to that of the healthy mice. In contrast, the diabetic mice who received pancreatic islets alone showed no change in blood glucose levels. 

Q: When you move into clinical trials, do you anticipate US trial sites in parallel with those in Japan?

TB: FCDI plans to start clinical trials of iPS cell treatments in the US. J-TEC conducts clinical trials for autologous cultured corneal epithelium and plans to start clinical trials for allogeneic cultured dermis in Japan. Currently we plan to conduct these clinical trials where these companies are located. We may expand the clinical trials of the products to other countries in the future.

Q: Can you speak to Japan’s regulatory system for stem cell therapies and how this could give Fujifilm a leg up on developing stem cell treatments more rapidly?

TB: The go-to market conditions for regenerative medicine in Japan have become more favorable since the November 2014 implementation of the Pharmaceutical and Medical Device Law, which has significantly cut the time it takes to gain marketing approval in Japan and created more interest in this sector.

Within regenerative medicine, academic institutions have shown remarkable progress. The mission of the industry is to apply findings from academia to patients and deliver high-quality treatments at a reasonable cost.

Note: Technologies that pertain to Japan Tissue Engineering Co., Ltd. (J-TEC) are not approved for use in the US.

You can learn more about Fujifilm’s latest efforts to “make regenerative medicine a reality” by visiting its Innovation website.

Unlocking the secrets of how stem cells decide what kind of cell they’re going to be

Laszlo Nagy, Ph.D., M.D.

Laszlo Nagy, Ph.D., M.D.: Sanford Burnham Prebys Medical Discovery Institute

Before joining CIRM I thought OCT4 was a date on the calendar. But a new study says it may be a lot closer to a date with destiny, because this study says OCT4 helps determine what kinds of cell a stem cell will become.

Now, before we go any further I should explain for people who have as strong a science background as I do – namely none – that OCT4 is a transcription factor, this is a protein that helps regulate gene activity by turning certain genes on at certain points, and off at others.

The new study, by researches at Sanford Burnham Prebys Medical Discovery Institute (SBP), found that OCT4 plays a critical role in priming genes that cause stem cells to differentiate or change into other kinds of cells.

Why is this important? Well, as we search for new ways of treating a wide variety of different diseases we need to find the most efficient and effective way of turning stem cells into the kind of cells we need to regenerate or replace damaged tissue. By understanding the mechanisms that determine how a stem cell differentiates, we can better understand what we need to do in the lab to generate the specific kinds of cells needed to replace those damaged by, say, heart disease or cancer.

The study, published in the journal Molecular Cell, shows how OCT4 works with other transcription factors, sometimes directing a cell to go in one direction, sometimes in another. For example, it collaborates with a vitamin A (aka retinoic acid) receptor (RAR) to convert a stem cell into a neuronal precursor, a kind of early stage brain cell. However, if OCT4 interacts with another transcription factor called beta-catenin then the stem cell goes in another regulatory direction altogether.

In an interview with PhysOrg News, senior author Laszlo Nagy said this finding could help develop more effective methods for producing specific cell types to be used in therapies:

“Our findings suggest a general principle for how the same differentiation signal induces distinct transitions in various types of cells. Whereas in stem cells, OCT4 recruits the RAR to neuronal genes, in bone marrow cells, another transcription factor would recruit RAR to genes for the granulocyte program. Which factors determine the effects of differentiation signals in bone marrow cells – and other cell types – remains to be determined.”

In a way it’s like programming all the different devices that are attached to your TV at home. If you hit a certain combination of buttons you get to one set of stations, hit another combination and you get to Netflix. Same basic set up, but completely different destinations.

“In a sense, we’ve found the code for stem cells that links the input—signals like vitamin A and Wnt—to the output—cell type. Now we plan to explore whether other transcription factors behave similarly to OCT4—that is, to find the code in more mature cell types.”

 

 

Stem cells maturing into nerve produce a compound that speeds the process

Getting pluripotent stem cells—those early stage stem cells that can make any tissue—to actually make the cell type you want can be quite tricky. I have written before that it takes a village to raise a stem cell because they respond to everything around them from the physical pressure and rigidity of their environment to any number of already present or added chemical factors. Now, a CIRM-funded team at the University of California, Los Angeles, has shown they respond to a compound made in the maturation process itself.

As stem cells mature into specific tissue their metabolism speeds up and they convert sugar to energy more efficiently. In the process they produce compounds, various so-called metabolites, and it turns out those metabolites can be part of a feedback loop that speeds the maturation process. In particular, the UCLA team looked at the metabolite alpha-ketoglutarate and when they added it to it to stem cells in the process of turning into nerve cells in a dish, the process proceeded more quickly.

 

UCLA metabolite video

Lead researcher Tara TeSlaa describes the work in a video

Prior research had shown alpha-ketoglutarate gets involved in regulating gene activity. The Los Angeles researchers did some testing and determined that the metabolite was indeed turning off genes needed to keep the stem cells in a stem cell state and turning on genes needed to mature the cells into nerves.

 “Until very recently, metabolites have been overlooked as a way to help pluripotent stem cells differentiate,” said Michael Teitell, the senior author on the study in a university press release. “This work helps to change that view.”

The research published in Cell Metabolism showed a five to 40 percent improvement in the rate that cells matured into desired tissues. These results were based on lab cultures that already had the standard factors used to grow nerve cells, but also contained added alpha-ketoglutarate to see what a little extra of the metabolite would do. While they were looking only at nerve cells in this experiment, they speculated that the same metabolite would have similar effects in lab cultures using standard factors for growing other cell types.

The team now plans to try to determine exactly which genes the metabolite regulates. Every tidbit of information on how cells mature into desired tissues, makes it more likely we will be able to efficiently make those tissues to repair and replace tissues damaged by disease for patients in need.

Tunable hydrogels guide stem cell differentiation

Differentiating stem cells into mature cells of adult tissue involves many intricate steps to get them to develop into the right cell types. You could compare the process to the careful adjustments you make when tuning a guitar.

In the body, stem cells receive cues from their surrounding environment to mature into specific types of cells. These cues can be biochemical – molecules like lipids, growth factors and metabolites (products of cell metabolism) – or they can be physical – the stiffness of surrounding tissue. But these molecules and structures aren’t always present when scientists attempt to differentiate stem cells outside the body, say in a cell culture dish.

One way researchers are improving the methods for differentiating stem cells outside the body is by using biomaterials such as hydrogels that mimic properties of the structures and molecules found naturally in various stem cell niches that aid in their maturation to adult cell types.

A CIRM-funded study published last week in the journal Chem, has developed “tunable hydrogels” that direct stem cells to differentiate into brain, cartilage and bone cells based on adjustments to the hydrogel’s stiffness and metabolite profile. The work was a collaboration between scientists in New York and in Scotland and one of the co-authors, Bruno Péault, was a CIRM-funded scientist in California during the time of the study.

Hydrogels with different stiffness' direct stem cells to differentiate into different types of tissue. (Chem)

Hydrogels with different stiffness’ direct stem cells to differentiate into different types of tissue. (Chem)

Tuning gels to differentiate stem cells

The scientists started with hydrogels composed of nanofibers that varied in stiffness and observed that perivascular stem cells (from the connective tissue surrounding blood vessels) grown in more flexible gels turned into brain cells and those that were grown in stiffer gels turned into bone cells. The stiffness of these different hydrogels was comparable to that of actual brain and bone tissue, which indicated that stiffness is important for stem cell fate.

But stiffness alone isn’t responsible for directing stem cells into different cell fates – biochemical metabolites are also key to this process. The authors also analyzed the metabolite profiles of the different hydrogels to determine which metabolites were important for stem cell differentiation. They tested different concentrations of over 600 metabolites in the hydrogels during stem cell differentiation and found that certain lipids like lysophosphatidic acid and cholesterol sulfate were essential for differentiation into cartilage and bone tissue respectively. When these specific lipids were added to regular stem cell cultures (without hydrogels), the stem cells differentiated towards cartilage and bone cells. Thus they concluded that both the metabolite profile and the stiffness of hydrogels are important for directing stem cell differentiation.

Interestingly, the authors also showed how metabolites like cholesterol sulfate could influence and activate transcription factors – proteins that also direct stem cell differentiation – which controlled the activation of bone-related genes. This finding suggests a relationship between metabolite expression and transcription factor activity and offers a simpler way to activate transcription factors important for stem cell fate.

Big picture of tunable hydrogels

Looking at the big picture, this study offers a useful strategy to identify molecules that promote formation of specific tissue types from stem cells. These molecules could be potential drug candidates that could aid in regenerating bone and cartilage tissue for patients with osteoporosis or osteoarthritis.

Co-senior author on the study and professor at the University of Glasgow, Matthew Dalby, who was interviewed by Science Magazine elaborated on the importance of their study:

Matthew Dalby

Matthew Dalby

“Our ambition is to simplify drug discovery — by using the cell’s own metabolites as drug candidates. For example, cholesterol sulfate, which our rigid gel revealed as critical to bone cell differentiation, could be a safer solution (e.g., minimal off-target effects) for treating osteoporosis, spinal fusion, and other bone-related conditions. Presently, growth factors are used, but these can lead to unwanted collateral damage, and government agencies in the UK and US have published warnings against their use.”

Rein Ulijn, co-senior author with Dalby and professor at the City University of New York and University of Strathclyde, concluded by emphasizing how the metabolites they identified could be potential drug candidates and would pass regulatory approval if shown to be safe and effective:

Rein Ulijn

Rein Ulijn

“That you can use simple metabolites like cholesterol sulfate, which is readily available, to induce differentiation is in my view very powerful if you think about this as a potential drug candidate. These metabolites are inherently biocompatible, so the hurdles to approval are going to be much lower compared to those associated with completely new chemical entities.”

In the future, both teams plan to further “tune” their hydrogels to mimic more complex tissue environments that incorporate additional properties besides stiffness in hopes of creating more relevant 3D micro-environments to model the stem cell niche.

Cloning breakthrough: Dolly the sheep has sister clones and they’re healthy

On the topic of famous farm animals, a few come to mind: Babe the pig, Old Yeller, Mr. Ed, and the cast of Charlotte’s Web. Many of us grew up with these fictional characters and hold them near and dear to our heart, but what about real, living farm animals? The first that comes to my mind is Dolly the sheep.

Back in 1996, scientists made a major breakthrough when they cloned a sheep which they named after the famous singer and actress Dolly Parton. This famous sheep was born in a test tube – a product of a scientific process called somatic cell nuclear transfer (SCNT). It involves transferring the nucleus (which contains a cell’s genetic material) from an adult cell – a mammary gland cell in the case of Dolly – into an unfertilized egg cell that has had its own nucleus removed. Much like jumping a car, scientists use an electric shock to trigger the egg cell to divide and develop into an embryo that has the exact genetic makeup as the original organism it was derived from.

Are cloned animals healthy?

SCNT is a very inefficient process with a high failure rate during embryonic and fetal development. Dolly was a huge achievement for scientists as she was the first mammal to be successfully cloned using SCNT. Unfortunately, even though Dolly lived to the age of six and a half years, she wasn’t the healthiest of sheep. She suffered from a severe form of arthritis and tumors in her lungs and was eventually put down to relieve her from pain. Scientists hypothesized that the lung cancer was likely caused by a common virus that infects sheep, but they questioned whether some of Dolly’s other symptoms were caused by accelerated aging resulting from the cloning process.

Whether cloned animals are physically healthy and age normally are questions that have spurred much debate amongst scientists since Dolly’s inception. Further experiments have shown that cloned mammals that survive past their infancy are typically healthy, but some experiments in mice showed that cloned mice tended to be more obese, have diabetic symptoms, and live shorter lives. Concerns about the safety of cloning prompted many countries to ban reproductive cloning in mammals until more was known about the process.

Good news for Dolly’s sisters

Dolly’s 20th anniversary since her birth was earlier this year, and in celebration, many journals and news outlets wrote about the progress of SCNT and cloning over the past two decades. This week, a new study added an exciting new chapter to these recent stories about Dolly.

Published in Nature Communications, scientists from the University of Nottingham in Britain reported that cloned sheep are healthy and live normal lives. They studied 13 cloned sheep, four of which were Dolly’s sisters cloned from the same mammary gland cell line as Dolly. These sheep were between 7-9 years of age which is near the end of a healthy sheep’s average lifespan of 10 years.

Cloned sheep, sisters to the famous Dolly the Sheep. (University of Nottingham)

Cloned sheep, sisters to the famous Dolly the Sheep. (University of Nottingham)

The scientists wanted to know whether cloning had any negative impact on the health and lifespan of these sheep. Lead author on the study, Dr. Kevin Sinclair, explained to the Washington Post:

“When we did the study, these clones were already 2½ years older than Dolly was when she died. And they appeared to be perfectly healthy, but we wanted to see if they might be harboring subtle defects.”

They conducted studies that assessed symptoms typically caused by aging in both humans and sheep. These included tests for blood pressure, insulin sensitivity, arthritis, and heart disease. They also conducted MRI scans and X-rays to look at the integrity of their bones, joints, and muscles.

On the whole, the sheep were healthy and their tests yielded normal results. A few of the cloned sheep had early signs of arthritis, but their conditions were similar to normal non-cloned sheep of the same age. The scientists concluded that there were no obvious signs of premature aging in this group of cloned sheep and that the cloning process did not have negative effects on the health and lifespan of these animals.

“It was quite obvious that the concerns of Dolly just didn’t relate,” Sinclair said. “So you can’t extend beyond the Dolly experience and say this premature aging applies to all clones.”

Cloning breakthrough but questions remain about safety

This study, which many scientists are considering as a “breakthrough in cloning”, has received a lot of attention in the media from major news outlets like the New York Times, Washington Post, Statnews, and NPR.

The New York Times piece does a great job of discussing how the advancements in cloning could have positive impacts on reproductive technology, the farming industry (raising cloned farm animals as a food source), therapeutic development, and saving endangered species. But the article also balances this optimism with caution over the safety and ethics behind reproductive cloning. They posed the cloning safety question to Dr. Sinclair, the lead author on the study, whose response was positive but referenced the remaining issue of cloning being an inefficient process:

“If they [cloned sheep] could speak, they would say ‘yes; it’s perfectly safe. They’re perfectly healthy, and they’re old ladies now, and for them, their whole process worked perfectly. But there are others who struggled to adapt after birth.”

The STATNews piece also made a good point that further scientific studies on the cloned sheep need to be done to test for molecular signs of aging such as shortened telomeres, before the scientists can truly claim that these sheep are living normal healthy lives. The cloned sheep probably will live for another year at which point the scientists said they will conduct further experiments to look for other signs of aging at the cellular level.

Stem cell stories that caught our eye: turning on T cells; fixing our brains; progress and trends in stem cells; and one young man’s journey to recover from a devastating injury

Healthy_Human_T_Cell

A healthy T cell

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Directing the creation of T cells. To paraphrase the GOP Presidential nominee, any sane person LOVES, LOVES LOVES their T cells, in a HUGE way, so HUGE. They scamper around the body getting rid of viruses and the tiny cancers we all have in us all the time. A CIRM-funded team at CalTech has worked out the steps our genetic machinery must take to make more of them, a first step in letting physicians turn up the action of our immune systems.

We have known for some time the identity of the genetic switch that is the last, critical step in turning blood stem cells into T cells, but nothing in our body is as simple as a single on-off event. The Caltech team isolated four genetic factors in the path leading to that main switch and, somewhat unsuspected, they found out those four steps had to be activated sequentially, not all at the same time. They discovered the path by engineering mouse cells so that the main T cell switch, Bcl11b, glows under a microscope when it is turned on.

“We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on,” said Ellen Rothenberg, the senior author in a university press release picked up by Innovations Report. “It’s interesting–the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order.”

Video primer on stem cells in the brain.  In conjunction with an article in its August issue, Scientific American posted a video from the Brain Forum in Switzerland of Elena Cattaneo of the University of Milan explaining the basics of adult versus pluripotent stem cells, and in particular how we are thinking about using them to repair diseases in the brain.

The 20-minute talk gives a brief review of pioneers who “stood alone in unmarked territory.” She asks how can stem cells be so powerful; and answers by saying they have lots of secrets and those secrets are what stem cell scientist like her are working to unravel.  She notes stem cells have never seen a brain, but if you show them a few factors they can become specialized nerves. After discussing collaborations in Europe to grow replacement dopamine neurons for Parkinson’s disease, she went on to describe her own effort to do the same thing in Huntington’s disease, but in this case create the striatal nerves lost in that disease.

The video closes with a discussion of how basic stem cell research can answer evolutionary questions, in particular how genetic changes allowed higher organisms to develop more complex nervous systems.

kelley and kent

CIRM Science Officers Kelly Shepard and Kent Fitzgerald

A stem cell review that hits close to home.  IEEE Pulse, a publication for scientists who mix engineering and medicine and biology, had one of their reporters interview two of our colleagues on CIRM’s science team. They asked senior science officers Kelly Shepard and Kent Fitzgerald to reflect on how the stem cell field has progressed based on their experience working to attract top researchers to apply for our grants and watching our panel of outside reviewers select the top 20 to 30 percent of each set of applicants.

One of the biggest changes has been a move from animal stem cell models to work with human stem cells, and because of CIRM’s dedicated and sustained funding through the voter initiative Proposition 71, California scientists have led the way in this change. Kelly described examples of how mouse and human systems are different and having data on human cells has been critical to moving toward therapies.

Kelly and Kent address several technology trends. They note how quickly stem cell scientists have wrapped their arms around the new trendy gene editing technology CRISPR and discuss ways it is being used in the field. They also discuss the important role of our recently developed ability to perform single cell analysis and other technologies like using vessels called exosomes that carry some of the same factors as stem cells without having to go through all the issues around transplanting whole cells.

“We’re really looking to move things from discovery to the clinic. CIRM has laid the foundation by establishing a good understanding of mechanistic biology and how stem cells work and is now taking the knowledge and applying it for the benefit of patients,” Kent said toward the end of the interview.

jake and family

Jake Javier and his family

Jake’s story: one young man’s journey to and through a stem cell transplant; As a former TV writer and producer I tend to be quite critical about the way TV news typically covers medical stories. But a recent story on KTVU, the Fox News affiliate here in the San Francisco Bay Area, showed how these stories can be done in a way that balances hope, and accuracy.

Reporter Julie Haener followed the story of Jake Javier – we have blogged about Jake before – a young man who broke his spine and was then given a stem cell transplant as part of the Asterias Biotherapeutics clinical trial that CIRM is funding.

It’s a touching story that highlights the difficulty treating these injuries, but also the hope that stem cell therapies holds out for people like Jake, and of course for his family too.

If you want to see how a TV story can be done well, this is a great example.