CIRM weekly stem cell roundup: stomach bacteria & cancer; vitamin C may block leukemia; stem cells bring down a 6’2″ 246lb football player

gastric

This is what your stomach glands looks like from the inside:  Credit: MPI for Infection Biology”

Stomach bacteria crank up stem cell renewal, may be link to gastric cancer.

The Centers for Disease Control and Prevention estimate that two-thirds of the world’s population is infected with H. pylori, a type of bacteria that thrives in the harsh acidic conditions of the stomach. Data accumulated over the past few decades shows strong evidence that H. pylori infection increases the risk of stomach cancers. The underlying mechanisms of this link have remained unclear. But research published this week in Nature suggests that the bacteria cause stem cells located in the stomach lining to divide more frequently leading to an increased potential for cancerous growth.

Tumors need to make an initial foothold in a tissue in order to grow and spread. But the cells of our stomach lining are replaced every four days. So, how would H. pylori bacterial infection have time to induce a cancer? The research team – a collaboration between scientists at the Max Planck Institute in Berlin and Stanford University – asked that question and found that the bacteria are also able to penetrate down into the stomach glands and infect stem cells whose job it is to continually replenish the stomach lining.

Further analysis in mice revealed that two groups of stem cells exist in the stomach glands – one slowly dividing and one rapidly dividing population. Both stem cell populations respond similarly to an important signaling protein, called Wnt, that sustains stem cell renewal. But the team also discovered a second key stem cell signaling protein called R-spondin that is released by connective tissue underneath the stomach glands. H. pylori infection of these cells causes an increase in R-spondin which shuts down the slowly dividing stem cell population but cranks up the cell division of the rapidly dividing stem cells. First author, Dr. Michal Sigal, summed up in a press release how these results may point to stem cells as the link between bacterial infection and increased risk of stomach cancer:

“Since H. pylori causes life-long infections, the constant increase in stem cell divisions may be enough to explain the increased risk of carcinogenesis observed.”

vitamin-c-1200x630

Vitamin C may have anti-blood cancer properties

Vitamin C is known to have a number of health benefits, from preventing scurvy to limiting the buildup of fatty plaque in your arteries. Now a new study says we might soon be able to add another benefit: it may be able to block the progression of leukemia and other blood cancers.

Researchers at the NYU School of Medicine focused their work on an enzyme called TET2. This is found in hematopoietic stem cells (HSCs), the kind of stem cell typically found in bone marrow. The absence of TET2 is known to keep these HSCs in a pre-leukemic state; in effect priming the body to develop leukemia. The researchers showed that high doses of vitamin C can prevent, or even reverse that, by increasing the activity level of TET2.

In the study, in the journal Cell, they showed how they developed mice that could have their levels of TET2 increased or decreased. They then transplanted bone marrow with low levels of TET2 from those mice into healthy, normal mice. The healthy mice started to develop leukemia-like symptoms. However, when the researchers used high doses of vitamin C to restore the activity levels of TET2, they were able to halt the progression of the leukemia.

Now this doesn’t mean you should run out and get as much vitamin C as you can to help protect you against leukemia. In an article in The Scientist, Benjamin Neel, senior author of the study, says while vitamin C does have health benefits,  consuming large doses won’t do you much good:

“They’re unlikely to be a general anti-cancer therapy, and they really should be understood based on the molecular understanding of the many actions vitamin C has in cells.”

However, Neel says these findings do give scientists a new tool to help them target cells before they become leukemic.

Jordan reed

Bad toe forces Jordan Reed to take a knee: Photo courtesy FanRag Sports

Toeing the line: how unapproved stem cell treatment made matters worse for an NFL player  

American football players are tough. They have to be to withstand pounding tackles by 300lb men wearing pads and a helmet. But it wasn’t a crunching hit that took Washington Redskins player Jordan Reed out of the game; all it took to put the 6’2” 246 lb player on the PUP (Physically Unable to Perform) list was a little stem cell injection.

Reed has had a lingering injury problem with the big toe on his left foot. So, during the off-season, he thought he would take care of the issue, and got a stem cell injection in the toe. It didn’t quite work the way he hoped.

In an interview with the Richmond Times Dispatch he said:

“That kind of flared it up a bit on me. Now I’m just letting it calm down before I get out there. I’ve just gotta take my time, let it heal and strengthen up, then get back out there.”

It’s not clear what kind of stem cells Reed got, if they were his own or from a donor. What is clear is that he is just the latest in a long line of athletes who have turned to stem cells to help repair or speed up recovery from an injury. These are treatments that have not been approved by the Food and Drug Administration (FDA) and that have not been tested in a clinical trial to make sure they are both safe and effective.

In Reed’s case the problem seems to be a relatively minor one; his toe is expected to heal and he should be back in action before too long.

Stem cell researcher and avid blogger Dr. Paul Knoepfler wrote he is lucky, others who take a similar approach may not be:

“Fortunately, it sounds like Reed will be fine, but some people have much worse reactions to unproven stem cells than a sore toe, including blindness and tumors. Be careful out there!”

 

Brain stem cells unintentionally talk with brain tumors, allowing their spread

A stem cell’s capacity to lay quiet and, when needed, to self-renew plays a key role in restoring and maintaining the health of our organs. Unfortunately, cancer stem cells possess that same property allowing them to evade radiation and chemotherapy treatments which leads to tumor regrowth. And a CIRM-funded study published today in Cell shows the deviousness of these cancer cells goes even further. The Stanford research team behind the study found evidence that brain stem cells, which normally guide brain development and maintenance, unintentionally communicate with brain cancer cells in deadly tumors, called gliomas, providing them a means to invade other parts of the brain. But the silver lining to this scary insight is that it may lead to new treatment options for patients.

High grade gliomas do not end well
The most aggressive forms of glioma are called high grade gliomas and they carry devastating prognoses. For instance, the most common form of these tumors in children has a median survival of just 9 months with a 5-year survival of less than 1%. Surgery or anti-cancer therapies may help for a while but the tumor inevitably grows back.

MRI image of high grade glioma brain tumor (white mass on left). Image: Wikipedia

Researchers have observed that gliomas typically originate in the brain stem and very often invade a brain stem cell-rich area, called the subventrical zone (SVZ), that provides a space for the therapy-resistant cancer stem cells to hole up. This path of tumor spread is associated with a shorter time to relapse and poorer survival but the exact mechanism wasn’t known. The Stanford team hypothesized that SVZ brain stem cells release some factor that attracts the gliomas to preferentially invade that part of the brain.

To test this chemo-attraction idea, they mimicked cancer cell invasion in a specialized, dual compartment petri dish called a Boyden chamber. In the bottom compartment, they placed the liquid food, or media, that SVZ brain stem cells had been grown in. On the upper compartment, they placed the cancerous glioma cells. A porous, gelatin membrane between the two compartments acts as a barrier but allows the cells to receive signals from the lower compartment and migrate down into the media if a chemoattractant is present. And that’s what they saw: a significant glioma cell migration through the gelatin toward the brain stem cell media.

Boyden chamber assay. Image: Integr. Biol., 2009,1, 170-181

Pleiotrophin: an unintentional communicator with brain cancer cells
Something or somethings in the SVZ brain stem cell media had to be attracting the glioma cells. So, the Stanford team analyzed the composition of the media and identified four proteins that, when physically complexed together, had the same chemo-attraction ability as the media. They were pleased to find that one of the four proteins is pleiotrophin which is known to not only play a role in normal brain development and regeneration but also to increase glioma cell migration. And in this study, they showed that higher levels of pleiotrophin are present in the SVZ brain stem cell area compared to other regions of the brain. They went on to show that blocking the production of pleiotrophin in mice reduced the invasion of glioma cells into the SVZ region. This result suggests that blocking the release of pleiotrophin by brain stem cells in the SVZ could help prevent or slow down the spread of glioma in patients’ brains without the need of irradiating this important part of the brain.

The silver lining: hsp90 inhibitors have therapeutic promise

Michelle Monje, MD, PhD

To further explore this potential therapeutic approach, the team examined hsp90, one of the other three proteins complexed with pleiotrophin. Though it doesn’t have chemoattractant properties, it still is a necessary component and may act to stabilize pleiotrophin. It also turns out that inhibitors for hsp90 have already been developed in the clinic for treating various cancers. When the researchers in this study blocked hsp90 production in the SVZ region of mice, they observed a reduced invasion of glioma cells. Though clinical grade hsp90 inhibitors exist, team lead  Michelle Monje, MD, PhD – assistant professor of neurology, Stanford University – tells me that some tweaking of these drugs will be necessary to reach gliomas:

“Our challenge is to find an hsp90 inhibitor that penetrates the brain at effective concentrations.”

Once they find that inhibitor, it could provide new options, and hope, for people diagnosed with this dreadful cancer.

Targeting hair follicle stem cells could be the key to fighting hair loss

Chia Pets make growing hair look easy. You might not be familiar with these chia plant terracotta figurines if you were born after the 80s, but I remember watching commercials growing up and desperately wanting a “Chia Pet, the pottery that grows!”

My parents eventually caved and got me a Chia teddy bear, and I was immediately impressed by how easy it was for my bear to grow “hair”. All I needed to do was to sprinkle water over the chia seeds and spread them over my chia pet, and in three weeks, voila, I had a bear that had sprouted a lush, thick coat of chia leaves.

These days, you can order Chia celebrities and even Chia politicians. If only treating hair loss in humans was as easy as growing sprouts on the top of Chia Mr. T’s head…

Activating Hair Follicle Stem Cells, the secret to hair growth?

That day might come sooner than we think thanks to a CIRM-funded study by UCLA scientists.

Published today in Nature Cell Biology, the UCLA team reported a new way to boost hair growth that could eventually translate into new treatments for hair loss. The study was spearheaded by senior authors Heather Christofk and William Lowry, both professors at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Christofk and Lowry were interested in understanding the biology of hair follicle stem cells (HFSCs) and how their metabolism (the set of chemical changes required for a cell to sustain itself) plays a role in hair growth. HFSCs are adult stem cells that live in the hair follicles of our skin. They are typically inactive but can quickly “wake up” and actively divide when a new hair growth cycle is initiated. When HFSCs fail to activate, hair loss occurs.

A closer look at HFSCs in mice revealed that these stem cells are dependent on the products of the glycolytic pathway, a metabolic pathway that converts the nutrient glucose into a metabolite called pyruvate, to stimulate their activation. The HFSCs have a choice, they can either give the pyruvate to their mitochondria to produce more energy, or they can break down the pyruvate into another metabolite called lactate.

The scientists found that if they tipped the balance towards producing more lactate, the HFSCs activated and induced hair growth. On the other hand, if they blocked lactate production, HFSCs couldn’t activate and new hair growth was blocked.

In a UCLA news release, Lowry explained the novel findings of their study,

“Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells. Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.”

New drugs for hair loss?

In the second half of the study, the UCLA team went on the hunt for drugs that promote lactate production in HFSCs in hopes of finding new treatment strategies to battle hair loss. They found two drugs that boosted lactate production when applied to the skin of mice. One was called RCGD423, which activates the JAK-Stat signaling pathway and stimulates lactate production. The other drug, UK5099, blocks the entry of pyruvate into the mitochondria, thereby forcing HFSCs to turn pyruvate into lactate resulting in hair growth. The use of both drugs for boosting hair growth are covered by provisional patent applications filed by the UCLA Technology Development Group.

Untreated mouse skin showing no hair growth (left) compared to mouse skin treated with the drug UK5099 (right) showing hair growth. Credit: UCLA Broad Stem Cell Center/Nature Cell Biology

Aimee Flores, the first author of the study, concluded by explaining why using drugs to target the HFSC metabolism is a promising approach for treating hair loss.

“Through this study, we gained a lot of interesting insight into new ways to activate stem cells. The idea of using drugs to stimulate hair growth through hair follicle stem cells is very promising given how many millions of people, both men and women, deal with hair loss. I think we’ve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general; I’m looking forward to the potential application of these new findings for hair loss and beyond.”

If these hair growth drugs pan out, scientists might give Chia Pets a run for their money.

How mice and zebrafish are unlocking clues to repairing damaged hearts

Bee-Gees

The Bee Gees, pioneers in trying to find ways to mend a broken heart. Photograph: Michael Ochs Archives

This may be the first time that the Australian pop group the Bee Gees have ever been featured in a blog about stem cell research, but in this case I think it’s appropriate. One of the Bee Gees biggest hits was “How can you mend a broken heart” and while it was a fine song, Barry and Robin Gibb (who wrote the song) never really came up with a viable answer.

Happily some researchers at the University of Southern California may succeed where Barry and Robin failed. In a study, published in the journal Nature Genetics, the USC team identify a gene that may help regenerate damaged heart tissue after a heart attack.

When babies are born they have a lot of a heart muscle cell called a mononuclear diploid cardiomyocyte or MNDCM for short. This cell type has powerful regenerative properties and so is able to rebuild heart muscle. However, as we get older we have less and less MNDCMs. By the time most of us are at an age where we are most likely to have a heart attack we are also most likely to have very few of these cells, and so have a limited ability to repair the damage.

Michaela Patterson, and her colleagues at USC, set out to find ways to change that. They found that in some adult mice less than 2 percent of their heart cells were MNDCMs, while other mice had a much higher percentage, around 10 percent. Not surprisingly the mice with the higher percentage of MNDCMs were better able to regenerate heart muscle after a heart attack or other injury.

So the USC team – with a little help from CIRM funding – dug a little deeper and did a genome-wide association study of these mice, that’s where they look at all the genetic variants in different individuals to see if they can spot common traits. They found one gene, Tnni3k, that seems to play a key role in generating MNDCMs.

Turning Tnni3K off in mice resulted in higher numbers of MNDCMs, increasing their ability to regenerate heart muscle. But when they activated Tnni3k in zebrafish it reduced the number of MNDCMs and impaired the fish’s ability to repair heart damage.

While it’s a long way from identifying something interesting in mice and zebrafish to seeing if it can be used to help people, Henry Sucov, the senior author on the study, says these findings represent an important first step in that direction:

“The activity of this gene, Tnni3k, can be modulated by small molecules, which could be developed into prescription drugs in the future. These small molecules could change the composition of the heart over time to contain more of these regenerative cells. This could improve the potential for regeneration in adult hearts, as a preventative strategy for those who may be at risk for heart failure.”

 

 

 

Stem cell stories that caught our eye: skin grafts fight diabetes, reprogramming the immune system, and Asterias expands spinal cord injury trial sites

Here are the stem cell stories that caught our eye this week.

Skin grafts fight diabetes and obesity.

An interesting new gene therapy strategy for fighting type 1 diabetes and obesity surfaced this week. Scientists from the University of Chicago made genetically engineered skin grafts that secrete a peptide hormone called glucagon-liked peptide-1 (GLP-1). This peptide is released by cells in the intestine and can lower blood sugar levels by stimulating pancreatic islet cells to secrete insulin (a hormone that promotes the absorption of glucose from the blood).

The study, which was published in the journal Cell Stem Cell, used CRISPR gene editing technology to introduce a mutation to the GLP-1 gene in mouse and human skin stem cells. This mutation stabilized the GLP-1 peptide, allowing it to hang around in the blood for longer. The team matured these stem cells into skin grafts that secreted the GLP-1 into the bloodstream of mice when treated with a drug called doxycycline.

When fed a high-fat diet, mice with a skin graft (left), genetically altered to secrete GLP-1 in response to the antibiotic doxycycline, gained less weight than normal mice (right). (Image source: Wu Laboratory, the University of Chicago)

On a normal diet, mice that received the skin graft saw a rise in their insulin levels and a decrease in their blood glucose levels, proving that the gene therapy was working. On a high fat diet, mice with the skin graft became obese, but when they were treated with doxycycline, GLP-1 secreted from their grafts reduced the amount of weight gain. So not only does their engineered skin graft technology look like a promising new strategy to treat type 1 diabetes patients, it also could be used to control obesity. The beauty of the technology is in its simplicity.

An article in Genetic Engineering and Biotechnology News that covered this research explained that Xiaoyang Wu, the senior author on the study, and his team “worked with skin because it is a large organ and easily accessible. The cells multiply quickly and are easily transplanted. And, transplanted cells can be removed, if needed. “Skin is such a beautiful system,” Wu says, noting that its features make it a perfect medium for testing gene therapies.”

Wu concluded that, “This kind of therapy could be potentially effective for many metabolic disorders.” According to GenBio, Wu’s team “is now testing the gene-therapy technique in combination with other medications.” They also hope that a similar strategy could be used to treat patients that can’t make certain proteins like in the blood clotting disorder hemophilia.

How to reprogram your immune system (Kevin McCormack)

When your immune system goes wrong it can cause all manner of problems, from type 1 diabetes to multiple sclerosis and cancer. That’s because an overactive immune system causes the body to attack its own tissues, while an underactive one leaves the body vulnerable to outside threats such as viruses. That’s why scientists have long sought ways to correct those immune dysfunctions.

Now researchers at the Gladstone Institutes in San Francisco think they have found a way to reprogram specific cells in the immune system and restore a sense of health and balance to the body. Their findings are published in the journal Nature.

The researchers identified a drug that targets effector T cells, which get our immune system to defend us against outside threats, and turns them into regulatory T cells, which control our immune system and stops it from attacking our own body.

Why would turning one kind of T cell into another be helpful? Well, in some autoimmune diseases, the effector T cells become overly active and attack healthy tissues and organs, damaging and even destroying them. By converting them to regulatory T cells you can prevent that happening.

In addition, some cancers can hijack regulatory T cells and suppress the immune system, allowing the disease to spread. By turning those cells into effector T cells, you can boost the immune system and give it the strength to fight back and, hopefully, kill the cancer.

In a news release, Gladstone Senior Investigator Sheng Ding, the lead scientists on the study, said their findings could have several applications:

“Our findings could have a significant impact on the treatment of autoimmune diseases, as well as on stem cell and immuno-oncology therapies.” 

Gladstone scientists Sheng Ding (right) and Tao Xu (left) discovered how to reprogram cells in our immune system. (Gladstone Institutes)

CIRM-funded spinal cord injury trial expands clinical sites

We have another update from CIRM’s clinical trial front. Asterias Biotherapeutics, which is testing a stem cell treatment for complete cervical (neck) spinal cord injury, is expanding its clinical sites for its CIRM-funded SCiStar Phase 1/2a trial. The company is currently treating patients at six sites in the US, and will be expanding to include two additional sites at Thomas Jefferson University Hospital in Philadelphia and the UC San Diego Medical Center, which is part of the UCSD Health CIRM Alpha Stem Cell Clinic.

In a company news release, Ed Wirth, Chief Medical Officer of Asterias said,

Ed Wirth

“We are excited about the clinical site openings at Thomas Jefferson University Hospital and UC San Diego Health. These sites provide additional geographical reach and previous experience with spinal cord injury trials to our SCiStar study. We have recently reported completion of enrollment in four out of five cohorts in our SCiStar study so we hope these institutions will also participate in a future, larger study of AST-OPC1.”

The news release also gave a recap of the trial’s positive (but still preliminary) results this year and their plans for completing trial enrollment.

“In June 2017, Asterias reported 9 month data from the AIS-A 10 million cell cohort that showed improvements in arm, hand and finger function observed at 3-months and 6-months following administration of AST-OPC1 were confirmed and in some patients further increased at 9-months. The company intends to complete enrollment of the entire SCiStar study later this year, with multiple safety and efficacy readouts anticipated during the remainder of 2017 and 2018.”

Scientists fix heart disease mutation in human embryos using CRISPR

Last week the scientific community was buzzing with the news that US scientists had genetically modified human embryos using CRISPR gene editing technology. While the story broke before the research was published, many journalists and news outlets weighed in on the study’s findings and the ethical implications they raise. We covered this initial burst of news in last week’s stem cell stories that caught our eye.

Shoukhrat Mitalipov (Leah Nash, New York Times)

After a week of suspense, the highly-anticipated study was published yesterday in the journal Nature. The work was led by senior author Dr. Shoukhrat Mitalipov from Oregon Health and Sciences University (and a member of CIRM’s Grants Working Group, the panel of experts who review applications to us for funding) in collaboration with scientists from the Salk Institute and Korea’s Institute for Basic Science.

In brief, the study revealed that the teams’ CRISPR technology could correct a genetic mutation that causes a disease called hypertrophic cardiomyopathy (HCM) in 72% of human embryos without causing off-target effects, which are unwanted genome modifications caused by CRISPR. These findings are a big improvement over previous studies by other groups that had issues with off-target effects and mosaicism, where CRISPR only correctly modifies mutations in some but not all cells in an embryo.

Newly fertilized eggs before gene editing, left, and embryos after gene editing and a few rounds of cell division. (Image from Shoukrat Mitalipov in New York Times)

Mitalipov spoke to STATnews about a particularly interesting discovery that he and the other scientists made in the Nature study,

“The main finding is that the CRISPR’d embryos did not accept the “repair DNA” that the scientists expected them to use as a replacement for the mutated gene deleted by CRISPR, which the embryos inherited from their father. Instead, the embryos used the mother’s version of the gene, called the homologue.”

Sharon Begley, the author of the STATnews article, argued that this discovery means that “designer babies” aren’t just around the corner.

“If embryos resist taking up synthetic DNA after CRISPR has deleted an unwanted gene, then “designer babies,” created by inserting a gene for a desirable trait into an embryo, will likely be more difficult than expected.”

Ed Yong from the Atlantic also took a similar stance towards Mitalipov’s study in his article titled “The Designer Baby Era is Not Upon Us”. He wrote,

“The bigger worry is that gene-editing could be used to make people stronger, smarter, or taller, paving the way for a new eugenics, and widening the already substantial gaps between the wealthy and poor. But many geneticists believe that such a future is fundamentally unlikely because complex traits like height and intelligence are the work of hundreds or thousands of genes, each of which have a tiny effect. The prospect of editing them all is implausible. And since genes are so thoroughly interconnected, it may be impossible to edit one particular trait without also affecting many others.”

Dr. Juan Carlos Izpisua Belmonte, who’s a corresponding author on the paper and a former CIRM grantee from the Salk Institute, commented on the impact that this research could have on human health in a Salk news release.

Co-authors Juan Carlos Izpisua Belmonte and Jun Wu. (Salk Institute)

“Thanks to advances in stem cell technologies and gene editing, we are finally starting to address disease-causing mutations that impact potentially millions of people. Gene editing is still in its infancy so even though this preliminary effort was found to be safe and effective, it is crucial that we continue to proceed with the utmost caution, paying the highest attention to ethical considerations.”

Pam Belluck from The New York Times also suggested that this research could have a significant impact on how we prevent disease in newborns.

“This research marks a major milestone and, while a long way from clinical use, it raises the prospect that gene editing may one day protect babies from a variety of hereditary conditions.”

So when will the dawn of CRISPR babies arrive? Ed Yong took a stab at answering this million dollar question with help from experts in the field.

“Not for a while. The technique would need to be refined, tested on non-human primates, and shown to be safe. “The safety studies would likely take 10 to 15 years before FDA or other regulators would even consider allowing clinical trials,” wrote bioethicist Hank Greely in a piece for Scientific American. “The Mitalipov research could mean that moment is 9 years and 10 months away instead of 10 years, but it is not close.” In the meantime, Mitalipov’s colleague Sanjiv Kaul says, “We’ll get the method to perfection so that when it’s possible to use it in a clinical trial, we can.”

ViaCyte treats first patients in PEC-Direct stem cell trial for type 1 diabetes

Today, ViaCyte shared an update on its latest clinical trial for type 1 diabetes (T1D). The company is based in San Diego and is developing two stem cell-based products that attempt to replace the pancreatic beta islet cells that are attacked by the immune system of patients with T1D.

Their first product, called VC-01 or PEC-Encap, is an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood. Because the cells are encapsulated in a protective semi-permeable membrane, hormones and nutrients can pass in and out of the device, but the implanted cells are guarded against the patient’s immune system. VC-01 is currently being tested in a Phase 1 clinical trial that is funded CIRM.

ViaCyte now has a second product called VC-02, or PEC-Direct, that also transplants pancreatic progenitors but in a device that allows a patient’s blood vessels to make direct contact with the implanted cells. This “direct vascularization” approach is being tested in patients that are at high risk for severe complications associated with T1D including hypoglycemia unawareness – a condition where patients fail to recognize when their blood glucose level drops to dangerously low levels because the typical symptoms of hypoglycemia fail to appear.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.

In May, ViaCyte announced that the US Food and Drug Administration (FDA) approved their Investigational New Drug (IND) application for PEC-Direct, which gave the company the green light to proceed with a Phase 1 safety trial to test the treatment in patients. ViaCyte’s pre-IND work on PEC-Direct was supported in part by a late stage preclinical grant from CIRM.

Today, the ViaCyte announced in a press release that it has treated its first patients with PEC-Direct in a Phase 1/2 trial at the University of Alberta Hospital in Edmonton, Alberta and at the UCSD Alpha Stem Cell Clinic in San Diego, California.

“The first cohort of type 1 diabetes patients is receiving multiple small-format cell-filled devices called sentinels in order to evaluate safety and implant viability.  These sentinel units will be removed at specific time points and examined histologically to provide early insight into the progression of engraftment and maturation into pancreatic islet cells including insulin-producing beta cells.”

The news release also revealed plans for enrollment of a larger cohort of patients by the end of 2017.

“A second cohort of up to 40 patients is expected to begin enrolling later this year to evaluate both safety and efficacy.  The primary efficacy measurement in the trial will be the clinically relevant production of insulin, as measured by the insulin biomarker C-peptide, in a patient population that has little to no ability to produce endogenous insulin at the time of enrollment.  Other important endpoints will be evaluated including injectable insulin usage and the incidence of hypoglycemic events.  ViaCyte’s goal is to demonstrate early evidence of efficacy in the first half of 2018 and definitive efficacy 6 to 12 months later.”

President and CEO of ViaCyte, Dr. Paul Laikind, is hopeful that PEC-Direct will give patients with high-risk T1D a better treatment option than what is currently available.

ViaCyte’s President & CEO, Paul Laikind

“There are limited treatment options for patients with high-risk type 1 diabetes to manage life-threatening hypoglycemic episodes. We believe that the PEC-Direct product candidate has the potential to transform the lives of these patients and we are excited to move closer to that goal with the initiation of clinical evaluation announced today.  This also represents a step towards a broader application of the technology.  We remain fully committed to developing a functional cure for all patients with insulin-requiring diabetes.  To that end, we are hard at work on next-generation approaches as well, and expect the work with PEC-Direct to further advance our knowledge and drive progress.”


Related links:

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

UC Irvine scientists engineer stem cells to “feel” cancer and destroy it

By blocking cell division, chemotherapy drugs take advantage of the fact that cancer cells multiply rapidly in the body. Though this treatment can extend and even save the lives of cancer patients, it’s somewhat like destroying an ant hill with an atomic bomb: there’s a lot of collateral damage. The treatment is infused through the blood so healthy cells that also divide frequently – like those in hair follicles, the intestines and bone marrow – succumb to the chemotherapy. To add insult to injury, cancers often become resistant to these drugs and metastasize, or invade, other parts of the body. Sadly, this spreading of a cancer is responsible for 90% of cancer deaths.

uci-stem-cell-therapy-attacks-cancer-by-targeting-unique-tissue-stiffness

UCI doctoral students Shirley Zhang, left, and Linan Liu are co-leading authors of the study. Photo: UC Irvine

Developing more specific, effective anti-cancer therapies is the focus of many research institutes and companies. While some new strategies target cell surface proteins that are unique to cancer cells, a UC Irvine (UCI) team has devised a stem cell-based technique that can seek out and destroy breast cancer cells that have metastasized in the lungs of mice by sensing the stiffness of the surrounding tissue. The CIRM-funded study was published this week in Science Translational Medicine.

While cells make up the tissues and organs of our bodies, they also secrete proteins and molecules that form a scaffold between cells called the extracellular matrix. This cell scaffolding is not just structural, it also plays a key role in regulating cell growth and other functions. And previous studies have shown that at sites of tumors, accumulation of collagen and other proteins in the matrix increases tissue stiffness and promotes metastasis.

Based on this knowledge, the UCI team aimed to create a cell system that would release chemotherapy drugs in response to increased stiffness. It turns out that mesenchymal stem cells – which give rise to bone, muscle, cartilage and fat – not only migrate to tumors in the body but also activate particular genes in response to the stiffness of their local cellular environment.  The researchers engineered mesenchymal stem cells to carry a gene that codes for a protein involved in the activation of a chemotherapy drug which is given by mouth. They also designed the gene to turn on only when it encounters stiff, cancerous tissue. They called the method a mechanoresponsive cell system (MRCS).

To test the MRCS, mice were infused with human breast cancer cells, which metastasized or spread to the lung. The MRCS-engineered mesenchymal stem cells were infused through the blood and homed to the lungs where they activated the chemotherapy drug which caused localized killing of the tumor cells with minimal damage to lung tissue. When the MRSC stem cells were given to mice without tumors, no increase in tissue damage was seen, proving that the MRSC-induced chemotherapy drug is only activated in the presence of cancerous tissue and has few side effects.

In a press release, team leader Weian Zhao, explained that these promising results could have wide application:

Weian-Zhao2-757x1024

Weian Zhao
Photo: UC Irvine

“This published work is focused on breast cancer metastases in the lungs. However, the technology will be applicable to other metastases as well, because many solid tumors have the hallmark of being stiffer than normal tissue. This is why our system is innovative and powerful, as we don’t have to spend the time to identify and develop a new genetic or protein marker for every kind of cancer.”

 

The team envisions even more applications. The MRCS could be engineered to carry genes that would enable detection with imaging technologies like PET scans. In this scenario, the MRCS could act as a highly sensitive detection system for finding areas of very early metastases when current techniques would miss them. They could also design the MRCS to activate genes that code for proteins that can break down and soften the stiff cancerous tissues which may inhibit the ability for a tumor to spread.