Stem cell stories that caught our eye: spinal cord injury trial update, blood stem cells in lungs, and using parsley for stem cell therapies

More good news on a CIRM-funded trial for spinal cord injury. The results are now in for Asterias Biotherapeutics’ Phase 1/2a clinical trial testing a stem cell-based therapy for patients with spinal cord injury. They reported earlier this week that six out of six patients treated with 10 million AST-OPC1 cells, which are a type of brain cell called oligodendrocyte progenitor cells, showed improvements in their motor function. Previously, they had announced that five of the six patients had shown improvement with the jury still out on the sixth because that patient was treated later in the trial.

 In a news release, Dr. Edward Wirth, the Chief Medical officer at Asterias, highlighted these new and exciting results:

 “We are excited to see the sixth and final patient in the AIS-A 10 million cell cohort show upper extremity motor function improvement at 3 months and further improvement at 6 months, especially because this particular patient’s hand and arm function had actually been deteriorating prior to receiving treatment with AST-OPC1. We are very encouraged by the meaningful improvements in the use of arms and hands seen in the SciStar study to date since such gains can increase a patient’s ability to function independently following complete cervical spinal cord injuries.”

Overall, the trial suggests that AST-OPC1 treatment has the potential to improve motor function in patients with severe spinal cord injury. So far, the therapy has proven to be safe and likely effective in improving some motor function in patients although control studies will be needed to confirm that the cells are responsible for this improvement. Asterias plans to test a higher dose of 20 million cells in AIS-A patients later this year and test the 10 million cell dose in AIS-B patients that a less severe form of spinal cord injury.

 Steve Cartt, CEO of Asterias commented on their future plans:

 “These results are quite encouraging, and suggest that there are meaningful improvements in the recovery of functional ability in patients treated with the 10 million cell dose of AST-OPC1 versus spontaneous recovery rates observed in a closely matched untreated patient population. We look forward to reporting additional efficacy and safety data for this cohort, as well as for the currently-enrolling AIS-A 20 million cell and AIS-B 10 million cell cohorts, later this year.”

Lungs aren’t just for respiration. Biology textbooks may be in need of some serious rewrites based on a UCSF study published this week in Nature. The research suggests that the lungs are a major source of blood stem cells and platelet production. The long prevailing view has been that the bone marrow was primarily responsible for those functions.

The new discovery was made possible by using special microscopy that allowed the scientists to view the activity of individual cells within the blood vessels of a living mouse lung (watch the fascinating UCSF video below). The mice used in the experiments were genetically engineered so that their platelet-producing cells glowed green under the microscope. Platelets – cell fragments that clump up and stop bleeding – were known to be produced to some extent by the lungs but the UCSF team was shocked by their observations: the lungs accounted for half of all platelet production in these mice.

Follow up experiments examined the movement of blood cells between the lung and bone marrow. In one experiment, the researchers transplanted healthy lungs from the green-glowing mice into a mouse strain that lacked adequate blood stem cell production in the bone marrow. After the transplant, microscopy showed that the green fluorescent cells from the donor lung traveled to the host’s bone marrow and gave rise to platelets and several other cells of the immune system. Senior author Mark Looney talked about the novelty of these results in a university press release:

Mark Looney, MD

“To our knowledge this is the first description of blood progenitors resident in the lung, and it raises a lot of questions with clinical relevance for the millions of people who suffer from thrombocytopenia [low platelet count].”

If this newfound role of the lung is shown to exist in humans, it may provide new therapeutic approaches to restoring platelet and blood stem cell production seen in various diseases. And it will give lung transplants surgeons pause to consider what effects immune cells inside the donor lung might have on organ rejection.

Add a little vanilla to this stem cell therapy. Typically, the only connection between plants and stem cell clinical trials are the flowers that are given to the patient by friends and family. But research published this week in the Advanced Healthcare Materials journal aims to use plant husks as part of the cell therapy itself.

Though we tend to focus on the poking and prodding of stem cells when discussing the development of new therapies, an equally important consideration is the use of three-dimensional scaffolds. Stem cells tend to grow better and stay healthier when grown on these structures compared to the flat two-dimensional surface of a petri dish. Various methods of building scaffolds are under development such as 3D printing and designing molds using materials that aren’t harmful to human tissue.

Human fibroblast cells growing on decellularized parsley.
Image: Gianluca Fontana/UW-Madison

But in the current study, scientists at the University of Wisconsin-Madison took a creative approach to building scaffolds: they used the husks of parsley, vanilla and orchid plants. The researchers figured that millions of years of evolution almost always leads to form and function that is much more stable and efficient than anything humans can create. Lead author Gianluca Fontana explained in a university press release how the characteristics of plants lend themselves well to this type of bioengineering:

Gianluca Fontana, PhD

“Nature provides us with a tremendous reservoir of structures in plants. You can pick the structure you want.”

The technique relies on removing all the cells of the plant, leaving behind its outer layer which is mostly made of cellulose, long chains of sugars that make up plant cell walls. The resulting hollow, tubular husks have similar shapes to those found in human intestines, lungs and the bladder.

The researchers showed that human stem cells not only attach and grow onto the plant scaffolds but also organize themselves in alignment with the structures’ patterns. The function of human tissues rely on an organized arrangement of cells so it’s possible these plant scaffolds could be part of a tissue replacement cell product. Senior author William Murphy also points out that the scaffolds are easily altered:

William Murphy, PhD

“They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes.”

And the fact these scaffolds are natural products that are cheap to manufacture makes this a project well worth watching.

Stem Cell Stories that Caught our Eye: stem cell insights into anorexia, Zika infection and bubble baby disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem cell model identifies new culprit for anorexia.

Eating disorders like anorexia nervosa are often thought to be caused by psychological disturbances or societal pressure. However, research into the genes of anorexia patients suggests that what’s written in your DNA can be associated with an increased vulnerability to having this disorder. But identifying individual genes at fault for a disease this complex has remained mostly out of scientists’ reach, until now.

A CIRM-funded team from the UC San Diego (UCSD) School of Medicine reported this week that they’ve developed a stem cell-based model of anorexia and used it to identify a gene called TACR1, which they believe is associated with an increased likelihood of getting anorexia.

They took skin samples from female patients with anorexia and reprogrammed them into induced pluripotent stem cells (iPSCs). These stem cells contained the genetic information potentially responsible for causing their anorexia. The team matured these iPSCs into brain cells, called neurons, in a dish, and then studied what genes got activated. When they looked at the genes activated by anorexia neurons, they found that TACR1, a gene associated with psychiatric disorders, was switched on higher in anorexia neurons than in healthy neurons. These findings suggest that the TACR1 gene could be an identifier for this disease and a potential target for developing new treatments.

In a UCSD press release, Professor and author on the study, Alysson Muotri, said that they will follow up on their findings by studying stem cell lines derived from a larger group of patients.

Alysson Muotri UC San Diego

“But more to the point, this work helps make that possible. It’s a novel technological advance in the field of eating disorders, which impacts millions of people. These findings transform our ability to study how genetic variations alter brain molecular pathways and cellular networks to change risk of anorexia nervosa — and perhaps our ability to create new therapies.”

Anorexia is a disease that affects 1% of the global population and although therapy can be an effective treatment for some, many do not make a full recovery. Stem cell-based models could prove to be a new method for unlocking new clues into what causes anorexia and what can cure it.

Nature versus Zika, who will win?

Zika virus is no longer dominating the news headlines these days compared to 2015 when large outbreaks of the virus in the Southern hemisphere came to a head. However, the threat of Zika-induced birth defects, like microcephaly to pregnant women and their unborn children is no less real or serious two years later. There are still no effective vaccines or antiviral drugs that prevent Zika infection but scientists are working fast to meet this unmet need.

Speaking of which, scientists at UCLA think they might have a new weapon in the war against Zika. Back in 2013, they reported that a natural compound in the body called 25HC was effective at attacking viruses and prevented human cells from being infected by viruses like HIV, Ebola and Hepatitis C.

When the Zika outbreak hit, they thought that this compound could potentially be effective at preventing Zika infection as well. In their new study published in the journal Immunity, they tested a synthetic version of 25HC in animal and primate models, they found that it protected against infection. They also tested the compound on human brain organoids, or mini brains in a dish made from pluripotent stem cells. Brain organoids are typically susceptible to Zika infection, which causes substantial cell damage, but this was prevented by treatment with 25HC.

Left to right: (1) Zika virus (green) infects and destroys the formation of neurons (pink) in human stem cell-derived brain organoids.  (2) 25HC blocks Zika infection and preserves neuron formation in the organoids. (3) Reduced brain size and structure in a Zika-infected mouse brain. (4) 25HC preserves mouse brain size and structure. Image courtesy of UCLA Stem Cell.

A UCLA news release summarized the impact that this research could have on the prevention of Zika infection,

“The new research highlights the potential use of 25HC to combat Zika virus infection and prevent its devastating outcomes, such as microcephaly. The research team will further study whether 25HC can be modified to be even more effective against Zika and other mosquito-borne viruses.”

Harnessing a naturally made weapon already found in the human body to fight Zika could be an alternative strategy to preventing Zika infection.

Gene therapy in stem cells gives hope to bubble-babies.

Last week, an inspiring and touching story was reported by Erin Allday in the San Francisco Chronicle. She featured Ja’Ceon Golden, a young baby not even 6 months old, who was born into a life of isolation because he lacked a properly functioning immune system. Ja’Ceon had a rare disease called severe combined immunodeficiency (SCID), also known as bubble-baby disease.

 

Ja’Ceon Golden is treated by patient care assistant Grace Deng (center) and pediatric oncology nurse Kat Wienskowski. Photo: Santiago Mejia, The Chronicle.

Babies with SCID lack the body’s immune defenses against infectious diseases and are forced to live in a sterile environment. Without early treatment, SCID babies often die within one year due to recurring infections. Bone marrow transplantation is the most common treatment for SCID, but it’s only effective if the patient has a donor that is a perfect genetic match, which is only possible for about one out of five babies with this disease.

Advances in gene therapy are giving SCID babies like Ja’Ceon hope for safer, more effective cures. The SF Chronicle piece highlights two CIRM-funded clinical trials for SCID run by UCLA in collaboration with UCSF and St. Jude Children’s Research Hospital. In these trials, scientists isolate the bone marrow stem cells from SCID babies, correct the genetic mutation causing SCID in their stem cells, and then transplant them back into the patient to give them a healthy new immune system.

The initial results from these clinical trials are promising and support other findings that gene therapy could be an effective treatment for certain genetic diseases. CIRM’s Senior Science Officer, Sohel Talib, was quoted in the Chronicle piece saying,

“Gene therapy has been shown to work, the efficacy has been shown. And it’s safe. The confidence has come. Now we have to follow it up.”

Ja’Ceon was the first baby treated at the UCSF Benioff Children’s Hospital and so far, he is responding well to the treatment. His great aunt Dannie Hawkins said that it was initially hard for her to enroll Ja’Ceon in this trial because she was a partial genetic match and had the option of donating her own bone-marrow to help save his life. In the end, she decided that his involvement in the trial would “open the door for other kids” to receive this treatment if it worked.

Ja’Ceon Golden plays with patient care assistant Grace Deng in a sterile play area at UCSF Benioff Children’s Hospital.Photo: Santiago Mejia, The Chronicle

It’s brave patients and family members like Ja’Ceon and Dannie that make it possible for research to advance from clinical trials into effective treatments for future patients. We at CIRM are eternally grateful for their strength and the sacrifices they make to participate in these trials.

Mixed Matches: How Your Heritage Can Save a Life

Today we bring you a guest blog from Athena Mari Asklipiadis. She’s the founder of Mixed Marrow, which is an organization dedicated to finding bone marrow and blood cell donors to patients of multiethnic descent. Athena helped produce a 2016 documentary film called Mixed Match that encourages mixed race and minority donors to register as adult donors.

Athena Asklipiadis

Due to the lack of diversity on the national and world bone marrow donor registries, Mixed Marrow was started in 2009 to increase the numbers of mixed race donors.

Prior to Mixed Marrow starting, other ethnic recruiters like Asians for Miracle Marrow Matches (A3M), based in Los Angeles, CA and Asian American Donor Program (AADP), based in Alameda, CA had been raising awareness in the Asian and minority communities for decades.  Closing the racial gap on the registry was something I was very much interested in helping them with so I began my outreach on the most familiar medium I knew—social media.

Because matching relies heavily on similar inherited genetic markers, I was particularly astonished seeing the less than 3% (back in 2009) sliver of the ethnic pie that mixed race donors made up.  Caucasians made up for about 70% at the time, with all minorities making up for the difference.  The ethnic breakdown made sense when comparing against actual population numbers, but a larger pool of minority donors was definitely something needed especially when multiracial people were being reported as the fastest growing demographic in the US.  Odds were just not in the favor of non-white searching patients.

Current Be The Match ethnic breakdown as of 2016.

After getting to know a local mixed race searching patient, Krissy Kobata, and hearing of her struggles finding a match, I knew I had to do my best to reach out to fellow multiracial people, most of which were young and likely online.  At the time, I was engaged with fellow hapas (half in Hawaiian Pidgin, referring mixed heritage) and mixed people via multiracial community Facebook groups and other internet forums.  One common thing I noticed, unlike topics like identity, food and culture– health was definitely not widely talked about. So with that lack of awareness, Mixed Marrow began as a facebook page and later as a website.  With the help of organizations like A3M supplying Be The Match testing kits, Mixed Marrow was able to also exist outside of the virtual world by hosting donor recruitment drives at different cultural and college events.

Athena Asklipiadis, Krissy Kobata and Mixed Match director, Jeff Chiba Stearns

After about a year of advocacy, in 2010, I connected with filmmaker Jeff Chiba Stearns to pitch an idea for a documentary on the patients I worked with.  Telling their stories in words and on flyers was not effective enough for me, I felt that more people would be inclined to register as a donor if they got to know the patients as well as I did.  Thus, the film Mixed Match was born.

Still from Mixed Match, Imani (center) and parents, Darrick and Tammy.

Still from Mixed Match, Imani mother, Tammy.

Over the course of the next 6 years, Jeff and I went on a journey across the US to gather not only patient stories, but input from pioneers in stem cell transplantation like Dr. Paul Terasaki and Dr. John E. Wagner.  It was so important to share these transplant tales while being as accurate and informed as possible.

Still from Mixed Match – Dr. Paul Teriyaki.

Our goal was to educate audiences and present a call-to-action where everyone can learn how they can save a life. Mixed Match not only highlights bone marrow and peripheral blood stem cell (PBSC) donation, but it also shares the possibilities of umbilical cord stem cells.

Mixed Match director, Jeff Chiba Stearns decided a great way to explain stem cell science and matching was through animation.  Stearns, with the help of animator, Kaho Yoshida, was able to reach across to non-medical expert audiences and create digestible and engaging imagery to teach what is usually very complex science.

Animation Still from Mixed Match.

At every screening we also make sure to host a bone marrow registry drive so audiences have the opportunity to sign up.  We have partnered with both the US national registry, Be The Match and Canadian Blood Services’ One Match registry.

Bone marrow drive at a Mixed Match screening in Toronto.

Nearly 8 years and about 40 cities later, Mixed Marrow has managed to spread advocacy for the need for more mixed race donors all over the US and even other countries like Canada, Japan, Korea and Austria all the while being completely volunteer-run.  It is our hope that through social media and film, Mixed Match, we can help share these important stories and save lives.

Further Information

License to heal: UC Davis deal looks to advance stem cell treatment for bone loss and arthritis

Nancy Lane

Wei Yao and Nancy Lane of UC Davis: Photo courtesy UC Davis

There are many challenges in taking even the most promising stem cell treatment and turning it into a commercial product approved by the Food and Drug Administration (FDA). One of the biggest is expertise. The scientists who develop the therapy may be brilliant in the lab but have little experience or expertise in successfully getting their work through a clinical trial and ultimately to market.

That’s why a team at U.C. Davis has just signed a deal with a startup company to help them move a promising stem cell treatment for arthritis, osteoporosis and fractures out of the lab and into people.

The licensing agreement combines the business acumen of Regenerative Arthritis and Bone Medicine (RABOME) with the scientific chops of the UC Davis team, led by Nancy Lane and Wei Yao.

They plan to test a hybrid molecule called RAB-001 which has shown promise in helping direct mesenchymal stem cells (MSCs) – these are cells typically found in the bone marrow and fat tissue – to help stimulate bone growth and increase existing bone mass and strength. This can help heal people suffering from conditions like osteoporosis or hard to heal fractures. RAB-001 has also shown promise in reducing inflammation and so could prove helpful in treating people with inflammatory arthritis.

Overcoming problems

In a news article on the UC Davis website, Wei Yao, said RAB-001 seems to solve a problem that has long puzzled researchers:

“There are many stem cells, even in elderly people, but they do not readily migrate to bone.  Finding a molecule that attaches to stem cells and guides them to the targets we need provides a real breakthrough.”

The UC Davis team already has approval to begin a Phase 1 clinical trial to test this approach on people with osteonecrosis, a disease caused by reduced blood flow to bones. CIRM is funding this work.

The RABOME team also hopes to test RAB-001 in clinical trials for healing broken bones, osteoporosis and inflammatory arthritis.

CIRM solution

To help other researchers overcome these same regulatory hurdles in developing stem cell therapies CIRM created the Stem Cell Center with QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider that has deep experience and therapeutic expertise. The Stem Cell Center will help researchers overcome the challenges of manufacturing and testing treatments to meet FDA standards, and then running a clinical trial to test that therapy in people.

Stem Cell Stories That Caught our Eye: Making blood and muscle from stem cells and helping students realize their “pluripotential”

Stem cells offer new drug for blood diseases. A new treatment for blood disorders might be in the works thanks to a stem cell-based study out of Harvard Medical School and Boston Children’s hospital. Their study was published in the journal Science Translational Medicine.

The teams made induced pluripotent stem cells (iPSCs) from the skin of patients with a rare blood disorder called Diamond-Blackfan anemia (DBA) – a bone marrow disease that prevents new blood cells from forming. iPSCs from DBA patients were then specialized into blood progenitor cells, the precursors to blood cells. However, these precursor cells were incapable of forming red blood cells in a dish like normal precursors do.

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

The blood progenitor cells from DBA patients were then used to screen a library of compounds to identify drugs that could get the DBA progenitor cells to develop into red blood cells. They found a compound called SMER28 that had this very effect on progenitor cells in a dish. When the compound was tested in zebrafish and mouse models of DBA, the researchers observed an increase in red blood cell production and a reduction of anemia symptoms.

Getting pluripotent stem cells like iPSCs to turn into blood progenitor cells and expand these cells into a population large enough for drug screening has not been an easy task for stem cell researchers.

Co-first author on the study, Sergei Doulatov, explained in a press release, “iPS cells have been hard to instruct when it comes to making blood. This is the first time iPS cells have been used to identify a drug to treat a blood disorder.”

In the future, the researchers will pursue the questions of why and how SMER28 boosts red blood cell generation. Further work will be done to determine whether this drug will be a useful treatment for DBA patients and other blood disorders.

 

Students realize their “pluripotential”. In last week’s stem cell stories, I gave a preview about an exciting stem cell “Day of Discovery” hosted by USC Stem Cell in southern California. The event happened this past Saturday. Over 500 local middle and high school students attended the event and participated in lab tours, poster sessions, and a career resource fair. Throughout the day, they were engaged by scientists and educators about stem cell science through interactive games, including the stem cell edition of Family Feud and a stem cell smartphone videogame developed by USC graduate students.

In a USC press release, Rohit Varma, dean of the Keck School of Medicine of USC, emphasized the importance of exposing young students to research and scientific careers.

“It was a true joy to welcome the middle and high school students from our neighboring communities in Boyle Heights, El Sereno, Lincoln Heights, the San Gabriel Valley and throughout Los Angeles. This bright young generation brings tremendous potential to their future pursuits in biotechnology and beyond.”

Maria Elena Kennedy, a consultant to the Bassett Unified School District, added, “The exposure to the Keck School of Medicine of USC is invaluable for the students. Our students come from a Title I School District, and they don’t often have the opportunity to come to a campus like the Keck School of Medicine.”

The day was a huge success with students posting photos of their experiences on social media and enthusiastically writing messages like “stem cells are our future” and “USC is my goal”. One high school student acknowledged the opportunity that this day offers to students, “California currently has biotechnology as the biggest growing sector. Right now, it’s really important that students are visiting labs and learning more about the industry, so they can potentially see where they’re going with their lives and careers.”

You can read more about USC’s Stem Cell Day of Discovery here. Below are a few pictures from the event courtesy of David Sprague and USC.

Students have fun with robots representing osteoblast and osteoclast cells at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Students have fun with robots representing osteoblast and osteoclast cells at the USC Stem Cell Day of Discovery. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the USC Stem Cell Day of Discovery. Photo by David Sprague

New stem cell recipes for making muscle: new inroads to study muscular dystrophy (Todd Dubnicoff)

Embryonic stem cells are amazing because scientists can change or specialize them into virtually any cell type. But it’s a lot easier said than done. Researchers essentially need to mimic the process of embryo development in a petri dish by adding the right combination of factors to the stem cells in just the right order at just the right time to obtain a desired type of cell.

Making human muscle tissue from embryonic stem cells has proven to be a challenge. The development of muscle, as well as cartilage and bone, are well characterized and known to form from an embryonic structure called a somite. Researches have even been successful working out the conditions for making somites from animal stem cells. But those recipes didn’t work well with human stem cells.

Now, a team of researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overcome this roadblock by carrying out a systematic approach using human tissue. As described in Cell Reports, the scientists isolated somites from early human embryos and studied their gene activity. By comparing somites that were just beginning to emerge with fully formed somites, the researchers pinpointed differences in gene activity patterns. With this data in hand, the team added factors to the cells that were known to affect the activity of those genes. Through some trial and error, they produced a recipe – different than those used in animal cells – that could convert 90 percent of the human stem cells into somites in only four days. Those somites could then readily transform into muscle or bone or cartilage.

This new method for making human muscle will be critical for the lab’s goal to develop therapies for Duchenne muscular dystrophy, an incurable muscle wasting disease that strikes young boys and is usually fatal by their 20’s.

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells.  Image: April Pyle Lab/UCLA

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells. Image: April Pyle Lab/UCLA

Curing the Incurable through Definitive Medicine

“Curing the Incurable”. That was the theme for the first annual Center for Definitive and Curative Medicine (CDCM) Symposium held last week at Stanford University, in Palo Alto, California.

The CDCM is a joint initiative amongst Stanford Healthcare, Stanford Children’s Health and the Stanford School of Medicine. Its mission is to foster an environment that accelerates the development and translation of cell and gene therapies into clinical trials.

The research symposium focused on “the exciting first-in-human cell and gene therapies currently under development at Stanford in bone marrow, skin, cardiac, neural, pancreatic and neoplastic diseases.” These talks were organized into four different sessions: cell therapies for neurological disorders, stem cell-derived tissue replacement therapies, genome-edited cell therapies and anti-cancer cell-based therapies.

A few of the symposium speakers are CIRM-funded grantees, and we’ll briefly touch on their talks below.

Targeting cancer

The keynote speaker was Irv Weissman, who talked about hematopoietic or blood-forming stem cells and their value as a cell therapy for patients with blood disorders and cancer. One of the projects he discussed is a molecule called CD47 that is found on the surface of cancer cells. He explained that CD47 appears on all types of cancer cells more abundantly than on normal cells and is a promising therapeutic target for cancer.

Irv Weissman

Irv Weissman

“CD47 is the first gene whose overexpression is common to all cancer. We know it’s molecular mechanism from which we can develop targeted therapies. This would be impossible without collaborations between clinicians and scientists.”

 

At the end of his talk, Weissman acknowledged the importance of CIRM’s funding for advancing an antibody therapeutic targeting CD47 into a clinical trial for solid cancer tumors. He said CIRM’s existence is essential because it “funds [stem cell-based] research through the [financial] valley of death.” He further explained that CIRM is the only funding entity that takes basic stem cell research all the way through the clinical pipeline into a therapy.

Improving bone marrow transplants

judith shizuru

Judith Shizuru

Next, we heard a talk from Judith Shizuru on ways to improve current bone-marrow transplantation techniques. She explained how this form of stem cell transplant is “the most powerful form of cell therapy out there, for cancers or deficiencies in blood formation.” Inducing immune system tolerance, improving organ transplant outcomes in patients, and treating autoimmune diseases are all applications of bone marrow transplants. But this technique also carries with it toxic and potentially deadly side effects, including weakening of the immune system and graft vs host disease.

Shizuru talked about her team’s goal of improving the engraftment, or survival and integration, of bone marrow stem cells after transplantation. They are using an antibody against a molecule called CD117 which sits on the surface of blood stem cells and acts as an elimination signal. By blocking CD117 with an antibody, they improved the engraftment of bone marrow stem cells in mice and also removed the need for chemotherapy treatment, which is used to kill off bone marrow stem cells in the host. Shizuru is now testing her antibody therapy in a CIRM-funded clinical trial in humans and mentioned that this therapy has the potential to treat a wide variety of diseases such as sickle cell anemia, leukemias, and multiple sclerosis.

Tackling stroke and heart disease

img_1327We also heard from two CIRM-funded professors working on cell-based therapies for stroke and heart disease. Gary Steinberg’s team is using human neural progenitor cells, which develop into cells of the brain and spinal cord, to treat patients who’ve suffered from stroke. A stroke cuts off the blood supply to the brain, causing the death of brain cells and consequently the loss of function of different parts of the body.  He showed emotional videos of stroke patients whose function and speech dramatically improved following the stem cell transplant. One of these patients was Sonia Olea, a young woman in her 30’s who lost the ability to use most of her right side following her stroke. You can read about her inspiring recover post stem cell transplant in our Stories of Hope.

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Dr. Joe Wu. (Image Source: Sean Culligan/OZY)

Joe Wu followed with a talk on adult stem cell therapies for heart disease. His work, which is funded by a CIRM disease team grant, involves making heart cells called cardiomyocytes from human embryonic stem cells and transplanting these cells into patient with end stage heart failure to improve heart function. His team’s work has advanced to the point where Wu said they are planning to file for an investigational new drug (IND) application with the US Food and Drug Administration (FDA) in six months. This is the crucial next step before a treatment can be tested in clinical trials. Joe ended his talk by making an important statement about expectations on how long it will take before stem cell treatments are available to patients.

He said, “Time changes everything. It [stem cell research] takes time. There is a lot of promise for the future of stem cell therapy.”

Stem Cell Profiles in Courage: Brenden Whittaker

brenden-and-dog

Brenden Whittaker: Photo Colin McGuire

It’s not often you meet someone who says one of their favorite things in the world is mowing the lawn. But then, there aren’t many people in the world like Brenden Whittaker. In fact, as of this writing, he may be unique.

Brenden was born with severe chronic granulomatous disease (x-CGD), a rare genetic disorder that left him with an impaired immune system that was vulnerable to repeated bacterial and fungal infections. Over 22 years Brenden was in and out of the hospital hundreds of times, he almost died a couple of times, and lost parts of his lungs and liver.

Then he became the first person to take part in a clinical trial to treat x-CGD. UCLA researcher Don Kohn had developed a technique that removed Brenden’s blood stem cells, genetically re-engineered them to correct the mutation that caused the disease, and then returned those stem cells to Brenden. Over time they created a new blood system, and restored Brenden’s immune system.

He was cured.

We profiled Brenden for our 2016 Annual Report. Here’s an extended version of the interview we did with him, talking about his life before and after he was cured.

brenden_stories_of_hope

Brenden with a CIRM Game Ball – signed by everyone at CIRM

Brenden’s story:

I still think about it, my disease, every few days or so and it’s weird because in the past I was sick so often; before this year, I was sick consistently for about 5 years and going to doctor’s appointments 2 or 3 times a week and being in the hospital. So, it’s weird having a cough and not having to be rushed to the ER, not having to call someone every time the smallest thing pops up, and not having to worry about what it means.

It’s been good but it’s been weird to not have to do that.  It’s a nice problem to have.

What are you doing now that you didn’t do before?

Cutting the grass is something I couldn’t do before, that I’ve taken up now. Most people look at me as if I’m crazy when I say it, but I love cutting grass, and I wasn’t able to do it for 22 years of my life.

People will complain about having to pick up after their dog goes to the bathroom and now I can follow my dog outside and can pick up after her. It really is just the little things that people don’t think of. I find enjoyment in the small things, things I couldn’t do before but now I can and not have to worry about them.

The future

I was in the boy scouts growing up so I love camping, building fires, just being outdoors. I hiked on the Appalachian Trail. Now I’ll be able to do more of that.

I have a part time job at a golf course and I’m actually getting ready to go back to school full time in January. I want to get into pre-med, go to medical school and become a doctor. All the experience I’ve had has just made me more interested in being a doctor, I just want to be in a position where I can help people going through similar things, and going through all this just made me more interested in it.

Before the last few months I couldn’t schedule my work more than a week in advance because I didn’t know if I was going to be in the hospital or what was going on. Now my boss jokes that I’m giving him plans for the next month or two. It’s amazing how far ahead you can plan when you aren’t worried about being sick or having to go to the hospital.

I’d love to do some traveling. Right now most of my traveling consists of going to and from Boston (for medical check-ups), but I would love to go to Europe, go through France and Italy. That would be a real cool trip. I don’t need to see everything in the world but just going to other countries, seeing cities like London, Paris and Rome, seeing how people live in other cultures, that would be great.

Advice for others

I do think about the fact that when I was born one in a million kids were diagnosed with this disease and there weren’t any treatments. Many people only lived a few years. But to be diagnosed now you can have a normal life. That’s something all on its own. It’s almost impossible for me to fathom it’s happening, after all the years and doctor’s appointments and illnesses.

So, for people going through anything like this, I’d say just don’t give up. There are new advances being made every day and you have to keep fighting and keep getting through it, and some day it will all work out.


Related Links:

Stories that caught our eye: frail bones in diabetics, ethics of future IVF, Alzheimer’s

The connection between diabetes and frail bones uncovered
Fundamentally, diabetes is defined by abnormally high blood sugar levels. But that one defect over time carries an increased risk for a wide range of severe health problems. For instance, compared to healthy individuals, type 2 diabetics are more prone to poorly healing bone fractures – a condition that can dramatically lower one’s quality of life.

image-img-320-high

Bones of the healthy animals (top) form larger calluses during healing which lead to stronger repaired bones. Bones of the diabetic mice (bottom) have smaller calluses and the healed bones are more brittle. Image: Stanford University

To help these people, researchers are trying to tease out how diabetes impacts bone health. But it’s been a complicated challenge since there are many factors at play. Is it from potential side effects of diabetes drugs? Or is the increased body weight associated with type 2 diabetes leading to decreased bone density? This week a CIRM-funded team at Stanford pinpointed skeletal stem cells, a type of adult stem cell that goes on to make all the building blocks of the bone, as important pieces to this scientific puzzle.

Reporting in Science Translational Medicine, the team, led by Michael Longaker – co-director of Stanford’s Institute for Stem Cell Biology and Regenerative Medicine – found that, compared to healthy animals, type 2 diabetic mice have a reduced number of skeletal stem cells after bone fracture. A study of the local cellular “neighborhood” of these stem cells showed that the diabetic mice also had a reduction in the levels of a protein called hedgehog. Blocking hedgehog activity in healthy mice led to the slow bone healing seen in the diabetic mice. More importantly, boosting hedgehog levels near the site of the fracture in diabetic mice lead to bone healing that was just as good as in the healthy mice.

To see if this result might hold up in humans, the team analyzed hedgehog levels in bone samples retrieved from diabetics and non-diabetics undergoing joint replacement surgeries. Sure enough, hedgehog was depleted in the diabetic bone exactly reflecting the mouse results.

Though more studies will be needed to develop a hedgehog-based treatment in humans, Longaker talked about the exciting big picture implications of this result in a press release:

longaker

Michael Longaker

“We’ve uncovered the reason why some patients with diabetes don’t heal well from fractures, and we’ve come up with a solution that can be locally applied during surgery to repair the break. Diabetes is rampant worldwide, and any improvement in the ability of affected people to heal from fractures could have an enormously positive effect on their quality of life.”

 

Getting the ethics ahead of the next generation of fertility treatments
The Business Insider ran an article this week with a provocative title, “Now is the time to talk about creating humans from stem cells.” I initially read too much into that title because I thought the article was advocating the need to start the push for the cloning of people. Instead, author Rafi Letzter was driving at the importance for concrete, ethical discussion right now about stem cell technologies for fertility treatments that may not be too far off.

web_12-the-mice-at-11-month

These mice were born from artificial eggs that were made from stem cells in a dish.
It’s great news for infertility specialist but carries many ethical dilemmas. 
(Image: K. Hayashi, Kyushu University)

In particular, he alludes to a paper from October (read our blog about it) that reported the creation of female mouse eggs from stem cells. These eggs were fertilized, implanted into the mother and successfully developed into living mice. What’s more, one set of stem cells were derived from mouse skin samples via the induced pluripotent stem cell method. This breakthrough could one day make it possible for an infertile woman to simply go through a small skin biopsy or mouth swab to generate an unlimited number of eggs for in vitro fertilization (IVF). Just imagine how much more efficient, less invasive and less costly this procedure could be compared to current IVF methods that require multiple hormone injections and retrieval of eggs from a woman’s ovaries.

But along with that hope for couples who have trouble conceiving a child comes a whole host of ethical issues. Here, Letzter refers to a perspective letter published on Wednesday in Science Translation Medicine by scientists and ethicists about this looming challenge for researchers and policymakers.

It’s an important read that lays out the current science, the clinical possibilities and regulatory and ethical questions that must be addressed sooner than later. In an interview with Letzter, co-author Eli Adashi, from the Alpert Medical School at Brown University, warned against waiting too long to heed this call to action:

eadashi_photo_

Eli Adashi

“Let’s start the [ethical] conversation now. Like all conversations it will be time consuming. And depending how well we do it, and we’ve got to do it well, it will be demanding. It will not be wise to have that conversation when you’re seeing a paper in Science or Nature reporting the complete process in a human. That would not be wise on our collective part. We should be as much as possible ready for that.”

 

 

Tackling Frontotemporal dementia and Alzheimer’s by hitting the same target.
To develop new disease therapies, you usually need to understand what is going wrong at a cellular level. In some cases, that approach leads to the identification of a specific protein that is either missing or in short supply. But this initial step is just half the battle because it may not be practical to make a drug out of the protein itself. So researchers instead search for other proteins or small molecules that lead to an increase in the level of the protein.

A CIRM-funded project at the Gladstone Institutes has done just that for the protein called progranulin. People lacking one copy of the progranulin gene carry an increased risk for  frontotemporal dementia (FTD), a degenerative disease of the brain that is the most common cause of dementia in people under 60 years of age. FTD symptoms are often mistaken for Alzheimer’s. In fact, mutations in progranulin are also associated with Alzheimer’s.

Previous studies have shown that increasing levels of progranulin in animals with diseases that mimic FTP and Alzheimer’s symptoms can reverse symptoms. But little was known how progranulin protein levels were regulated in the cells. Amanda Mason, the lead author on the Journal of Biological Chemistry report, explained in a press release how they tackled this challenge:

“We wanted to know what might regulate the levels of progranulin. Many processes in biology are controlled by adding or removing a small chemical group called phosphate, so we started there.”

These phosphate groups hold a lot of energy in their chemical bonds and can be harnessed to activate or turn off the function of proteins and DNA. The team systematically observed the effects of enzymes that add and remove phosphate groups and zeroed in on one called Ripk1 that leads to increases in progranulin levels. Now the team has set their sights on Ripk1 as another potential target for developing a therapeutic that could be effective against both FTP and Alzheimer’s. Steve Finkbeiner, the team lead, gave a big picture perspective on these promising results:

finkbeiner-profile

Steve Finkbeiner

“This is an exciting finding. Alzheimer’s disease was discovered over 100 years ago, and we have essentially no drugs to treat it. To find a possible new way to treat one disease is wonderful. To find a way that might treat two diseases is amazing.”

 

Stem cell stories that caught our eye: designer socks for cancer patients, stem-cell derived stomachs and fighting off bone infections

Inspiring cancer patients with designer socks. (Karen Ring)
Here’s a motivating story we found in the news this week about a cancer survivor who’s bringing inspiration to other cancer patients with designer socks. Yes, you read that correctly, socks.

Jake Teitelbaum is a student at Wake Forest University and suffers from a rare form of blood cancer called Refractory Hodgkin’s lymphoma. Since his diagnosis, Jake has been admitted to hospitals multiple times. Each time he received a welcome package of a gown and a pair of beige, “lifeless” socks. After his fifth welcome package, this time to receive a life-saving stem cell treatment, Jake had had enough of the socks.

He explained in a story by USA Today College,

“[Those socks] represented chemotherapy and being in isolation. They were the embodiment of that experience.”

Jake ditched the hospital socks and started bringing his own to prove that his cancer didn’t define him. Even though his cancer kept coming back, Jake wanted to prove he was just as resilient.

Jake Teitelbaum

Jake Teitelbaum

Feeling liberated and in control, Jake decided to share his socks with other patients by starting the Resilience Project. Patients can go to the Resilience website and design their own socks that represent their experiences with cancer. The Resilience project also raises money for cancer patients and their families.

“We provide tangible benefits and create fun socks, but what we’re doing comes back to the essence of resilience,” said Jake. “These terrible circumstances where we’re at our most vulnerable also give us the unique opportunity to grow.”

Jake was declared cancer free in October of 2016. You can learn more about the Resilience project on their website and by watching Jake’s video below.

 

Feeding disease knowledge with stem cell-derived stomach cells.
Using educated guess work and plenty of trial and error in the lab, researchers around the world have successfully generated many human tissues from stem cells, including heart muscle cells, insulin-producing cells and nerve cells to name just a few. Reporting this week in Nature, stem cell scientists at Cincinnati’s Children Hospital have a new cell type under their belt. Or maybe I should say above their belt, because they have devised a method for coaxing stem cells to become stomach mini organs that can be studied in a petri dish.

Confocal microscopic image shows tissue-engineered human stomach tissues from the corpus/fundus region, which produce acid and digestive enzymes. Image: Cincinnati Children’s Hospital Medical Center

Confocal microscopic image shows tissue-engineered human stomach tissues from the corpus/fundus region, which produce acid and digestive enzymes. Image: Cincinnati Children’s Hospital Medical Center

With this method in hand, the team is poised to make new discoveries about how the stomach forms during human development and to better understand stomach diseases. In a press release, team lead Jim Wells pointed out the need to find new therapies for stomach disease:

“Diseases of the stomach impact millions of people in the United States and gastric [stomach] cancer is the third leading cause of cancer-related deaths worldwide.”

The cells they generated are those found in the corpus/fundus area of the stomach which releases enzymes and hydrochloric acid to help us break down and digest the food we eat. The team is particularly interested to use the mini organs to study the impact of H. pylori infection, a type of bacteria that causes ulcers and has been linked to stomach cancers.

In an earlier study, Wells’ group devised stem cell recipes for making cells from an area of the stomach, called the antrum, that produces hormones that affect digestion and appetite. Wells thinks having both tissue types recreated in a petri dish may help provide a complete picture of stomach function:

James Wells

James Wells

“Now that we can grow both antral- and corpus/fundic-type human gastric mini-organs, it’s possible to study how these human gastric tissues interact physiologically, respond differently to infection, injury and react to pharmacologic treatments.”

 

 

A silver bullet for antibiotic-resistant bone infections?
Alexander Fleming’s discover of penicillin in the 1920’s marked the dawn of antibiotics – drugs which kill off bacteria and help stop infections. Rough estimates suggest that over 200 million lives have been saved by these wonder drugs. But over time there’s been a frightening rise in bacteria that are resistant to almost all available antibiotics.

These super resistant “bugs” are particularly scary for people with chronic bone infections because the intense, long term antibiotic medication required to keep the infection in check isn’t effective. But based on research published this week in Tissue Engineering, the use of stem cells and silver may provide a new treatment option.

Scanning Electron micrograph of methicillin-resistant Staphylococcus aureus (MRSA, brown spheres) surrounded by cellular debris. MRSA, the bacteria examined in this study, is resistant by many antibiotics

Scanning Electron micrograph of methicillin-resistant Staphylococcus aureus (MRSA, brown spheres) surrounded by cellular debris. MRSA, the bacteria examined in this study, is resistant by many antibiotics. (Wikimedia)

It’s been known for many years that silver in liquid form can kill bacteria and scientists have examined ways to deliver a controlled release of silver nanoparticles at the site of the bone infection. But there has been a lot of concern, including by the Food and Drug Administration (FDA), about the toxicity of silver nanoparticles to human cells.

In this study, a team led by Elizabeth Loboa from the University of Missouri instead looked at the use of silver ions which are safer than the nanoparticles. The team developed a three-dimensional cell culture system that resembles bone by growing human bone-forming stem cells on a tissue engineered scaffold, which also slowly releases silver ions.

The researchers stimulated the stem cells within the scaffold to specialize into bone cells and included a strain of bacteria that’s resistant to multiple antibiotics. They found that the silver ions effectively killed the bacteria and at the same time did not block the bone-forming stem cells. If this work holds up, doctors may one day use this silver ion-releasing, biodegradable scaffold to directly treat the area of bone infection. And to help prevent infection after joint replacement procedures, surgeons may rely on implants that are coated with these scaffolds.

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.