High school students SPARK an interest in stem cell research

SPARK students at the 2017 Annual Meeting at the City of Hope.

High school is a transformative time for any student. It marks the transition from childhood to adulthood and requires discipline, dedication and determination to excel and get into their desired college or university.

The barrier to entry for college now seems much higher than when I was eighteen, but I am not worried for the current generation of high school students. That’s because I’ve met some of the brightest young minds this past week at the 2017 CIRM SPARK meeting.

SPARK is CIRM’s high school education program, which gives underprivileged students in California the opportunity to train as stem cell scientists for the summer. Students participate in a summer research internship at one of seven programs at leading research institutes in the state. They attend scientific lectures, receive training in basic lab techniques, and do an eight-week stem cell research project under the guidance of a mentor.

At the end of the summer, SPARK students congregate at the annual SPARK poster meeting where they present the fruits of their labor. Meeting these students in person is my favorite time of the year. Their enthusiasm for science and stem cell research is contagious. And when you engage them or listen to them talk about their project, it’s hard to remember that they are still teenagers and not graduate level scientists.

What impresses me most about these students is their communication skills. Each summer, I challenge SPARK students to share their summer research experience through social media and blogging, and each time they go above and beyond with their efforts. Training these students as effective science communicators is important to me. They are the next generation of talented scientists who can help humanize research for the public. They have the power to change the perception of science as a field to be embraced and one that should receive proper funding.

It’s also inspiring to me that this young generation can effectively educate their friends, family and the public about the importance of stem cell research and how it will help save the lives of patients who currently don’t have effective treatments. If you haven’t already, I highly recommend checking out the #CIRMSPARKlab hashtag on Instagram to get a taste of what this year’s group of students accomplished during their internships.

Asking students, many of whom are learning to do research for the first time, to post on Instagram once a week and write a blog about their internship is a tall task. And I believe with any good challenge, there should be a reward. Therefore, at this year’s SPARK meeting held at the City of Hope in Duarte, California, I handed out prizes.

It was very difficult to pick winners for our presentation, social media and blogging awards because honestly, all our students were excellent this year. Even Kevin McCormack, Director of CIRM’s Communications, who helped me read the students’ blogs said,

“This was really tough. The standard of the blogs this year was higher than ever; and previous years had already set the bar really high. It was really difficult deciding which were really good and which were really, really good.”

Ok, enough with the hype, I know you want to read these award-winning blogs so I’ve shared them below. I hope that they inspire you as much as they have inspired me.


Amira Hirara

Amira Hirara (Children’s Hospital Oakland Research Institute)

It was a day like any other. I walked into the room, just two minutes past 10:30am, ready for another adventurous day in the lab. Just as I settle down, I am greeted by my mentor with the most terrifying task I have ever been asked to perform, “Will you passage the cells for me…alone?” Sweat begins to pour down my cemented face as I consider what is at stake.

The procedure was possibly thirty steps long and I have only executed it twice, with the supervision of my mentor of course. To be asked to do the task without the accompaniment of an experienced individual was unthought-of. I feel my breath begin to shorten as I mutter the word “Ok”. Yet it wasn’t just the procedure that left me shaking like a featherless bird, it was the location of my expedition as well. The dreaded tissue culture room. If even a speck of dirt enters the circulating air of the biosafety cabinet, your cells are at risk of death…death! I’ll be a cell murderer. “Alright”, she said, “I’ll just take a look at the cells then you’ll be on your way.” As we walk down the hallway, my eyes began to twitch as I try to recall the first steps of the procedure. I remember freezing our plates with Poly-ornithine and laminin, which essentially simulates the extracellular environment and allows adhesion between the cell and the plate itself. I must first add antibiotics to rid the frozen plate of potential bacteria. Then I should remove my cells from the incubator, and replace the old solution with accutase and new media, to nourish the cells, as well as unbind them from the plate before. Passaging is necessary when the cell density gets too high, as the cells must be relocated to a roomier environment to better promote survival. As we approach the tissue culture room, my jaw unclenches, as I realize the whirlwind of ideas meant I know more than I thought. My mentor retrieves our cells, views them under the microscope, and deems them ‘ready for passaging’.

“Good luck Amira” she says to me with a reassuring smile. I enter the room ready for battle. Placing first my gloves and coat, I then spray my hands and all things placed in the cabinet with 70% ethanol, to insure a sterile work environment. Back to the procedure, I’ll place the cellular solution of accutase and media into a covalent tube. After, I’ll centrifuge it for two minutes until a cellular pellet forms at the bottom, then dissolve the cells in fresh media, check its density using a cell counter, and calculate the volume of cellular solution needed to add to my once frozen plates. Wait, once I do that, I’ll be all done. I eagerly execute all the steps, ensuring both accuracy and sterility in my work. Pride swells within me as I pipette my last milliliter of solution into my plate. The next day, my mentor and I stop by to check on how our sensitive neural stem cells are doing. “Wow Amira, I am impressed, your cells seem very confluent in their new home, great job!” I smile slyly and begin to nod my head. I now walk these hallways, with a puffed chest, brightened smile, and eagerness to learn. My stem cells did not die, and having the amazing opportunity to master their treatment and procedures, is something I can never forget.

 

Gaby Escobar

Gaby Escobar (Stanford University)

Walking into the lab that would become my home for the next 8 weeks, my mind was an empty canvas.  Up to that point, my perception of the realm of scientific research was one-sided. Limited to the monotonous textbook descriptions of experiments that were commonplace in a laboratory, I wanted more. I wanted to experience the alluring call of curiosity. I wanted to experience the flash of discovery and the unnerving drive that fueled our pursuit of the unknown. I was an empty canvas looking for its first artistic stroke.

Being part of the CIRM Research program, I was lucky enough to have been granted such opportunity. Through the patient guidance of my mentor, I was immersed into the limitless world of stem cell biology. From disease modeling to 3D bioprinting, I was in awe of the capabilities of the minds around me. The energy, the atmosphere, the drive all buzzed with an inimitable quest for understanding. It was all I had imagined and so, so much more.

However, what many people don’t realize is research is an arduous, painstaking process. Sample after sample day after day, frustration and doubt loomed above our heads as we tried to piece together a seemingly pieceless puzzle.  Inevitably, I faced the truth that science is not the picture-perfect realm I had imagined it to be. Rather, it is tiring, it is relentless, and it is unforgiving. But at the same time, it is incomparably gratifying. You see, the innumerable samples, the countless gels and PCRS, all those futile attempts to fruitlessly make sense of the insensible, have meaning. As we traversed through the rollercoaster ride of our project, my mentor shared a personal outlook that struck very deeply with me: her motivation to work against obstacle after obstacle comes not from the recognition or prestige of discovering the next big cure but rather from the notion that one day, her perseverance may transform someone’s life for the good.  And in that, I see the beauty of research and science: the coming together of minds and ideas and bewildering intuitions all for the greater good.

As I look back, words cannot express the gratitude I feel for the lessons I have learned. Undoubtedly, I have made countless mistakes (please don’t ask how many gels I’ve contaminated or pipettes I have dropped) but I’ve also created the most unforgettable of memories. Memories that I know I will cherish for the journey ahead of me. Having experienced the atmosphere of a vibrant scientific community, I have found a second home, a place that I can explore and question and thrive. And although not every day will hold the cure to end all diseases or hand an answer on a silver platter, every day is another opportunity.  And with that, I walk away perhaps not with the masterpiece of art that I had envisioned in my mind but rather with a burning spark of passion, ready to ignite.

 

Anh Vo

Ahn Vo (UC Davis)

With college selectivity increasing and acceptance rates plummeting, the competitive nature within every student is pushed to the limit. In high school, students are expected to pad up their resumes and most importantly, choose an academic path sooner rather than later. However, at 15, I felt too young to experience true passion for a field. As I tried to envision myself in the future, I wondered, would I be someone with the adrenaline and spirit of someone who wants to change the world or one with hollow ambitions, merely clinging onto a paycheck with each day passing? At the very least, I knew that I didn’t want to be the latter.

The unrelenting anxiety induced by the uncertainty of my own ambitions was intoxicating. As my high school career reached its halfway mark, I felt the caving pressure of having to choose an academic path.

“What do you want to be?” was one of the first questions that my mentor, Whitney Cary, asked me. When I didn’t have an answer, she assured me that I needed to keep my doors open, and the SPARK program was the necessary first step that I needed to take to discovering my passion.

As I reflected on my experience, the SPARK program was undoubtedly the “first step”. It was the first step into a lab and above all, into a community of scientists, who share a passion for research and a vehement resolve to contribute to scientific merit. It was the integration into a cohort of other high school students, whose brilliance and kindness allowed us to forge deeper bonds with each other that we will hold onto, even as we part ways. It was the first nervous step into the bay where I met the Stem Cell Core, a team, whose warm laughter and vibrancy felt contagious. Finally, it was the first uncertain stumble into the tissue culture room, where I conceived a curiosity for cell culture that made me never stop asking, “Why?”

With boundless patience, my mentor and the Stem Cell Core strove to teach me techniques, such as immunocytochemistry and continually took the time out of their busy day to reiterate concepts. Despite my initial blunders in the hood, I found myself in a place without judgement, and even after discouraging incidents, I felt a sense of consolation in the witty and good-humored banter among the Stem Cell Core. At the end of every day, the unerring encouragement from my mentor strengthened my resolve to continue improving and incited an earnest excitement in me for the new day ahead. From trembling hands, nearly tipping over culture plates and slippery gloves, overdoused in ethanol, I eventually became acquainted with daily cell culture, and most importantly, I gained confidence and pride in my work.

I am grateful to CIRM for granting me this experience that has ultimately cultivated my enthusiasm for science and for the opportunity to work alongside remarkable people, who have given me new perspectives and insights. I am especially thankful to my mentor, whose stories of her career journey have inspired me to face the future with newfound optimism in spite of adversity.

As my internship comes to a close, I know that I have taken my “first step”, and with a revived mental acquisitiveness, I eagerly begin to take my second.

Other 2017 SPARK Awards

Student Speakers: Candler Cusato (Cedars-Sinai), Joshua Ren (Stanford)

Instagram/Social Media: Jazmin Aizpuru (UCSF), Emily Beckman (CHORI), Emma Friedenberg (Cedars-Sinai)

Poster Presentations: Alexander Escudero (Stanford), Jamie Kim (CalTech), Hector Medrano (CalTech), Zina Patel (City of Hope)


Related Links:

Unfolding Collaboration: New EuroStemCell video about promoting public engagement around stem cells

What does origami have to do with stem cells? Scientists at EuroStemCell, which is a partnership of more than 400 stem cell labs across Europe, are using origami and other creative activities to engage and educate the public about stem cells.

EuroStemCell’s goal is to “make sense of stem cells” by providing “expert-reviewed information and road-tested educational resources on stem cells and their impact on society.” Their educational resource page is rich with science experiments for kids, students and even adults. They also have science videos on topics ranging from what stem cells are to bioengineering body parts.

Unfolding Organogenesis

Recently EuroStemCell posted a video about how successful public engagement activities are based on strong collaborations between scientists, doctors, educators and communicators. This video was particularly powerful because it showed how good ideas can start from an individual, but great ideas happen when individuals work together to develop these initial ideas into activities that will really connect with their audience.

The video features Dr. Cathy Southworth who begins by telling the story of how she and her collaborators developed an origami activity called “Unfolding Organogenesis”. Southworth explains her rationale behind using paper to simulate how stem cells develop the tissues and organs in our body.

“I was mulling how to use a prop or activity to talk about stem cells, and it suddenly came to me that paper and origami is a bit like the process. The whole idea of starting from a blank slate. Depending on the instructions you follow, makes a different object. If you start with a stem cell, you can make any type of cell you find in the body. And that made me think it was quite a nice analogy to talk to the public about.”

Her initial idea was made a reality when Southworth began working with science and math educators Karen Jent and Tung Ken Lam. Together the team developed an interactive activity where people used paper to build 3D hearts that can actually beat.

Ken Lam making organ origami.

Southworth said that as a science communicator, educating the public is the focus of her work. But she also believes that educating scientists on how to communicate with the public effectively is equally important.

“Part of my job is to make sure that the scientists feel confident in the activities that they are going to deliver, and also that they are having a good time as part of the engagement work.”

The video also touches on important science communications tips like teaching scientists the art of storytelling. Southworth emphasized that having scientists talk about their personal story of why they are pursuing their research adds a human component that is key to connecting with their audience. Karen Jent also added that it’s important to understand your audience and their needs,

“You always have to think about what kind of audience you’re addressing and bear in mind that people aren’t all the same kinds of learners.”

Where are my stem cells?

CIRM is also dedicated to educating the public about stem cells and the importance of stem cell research. We have our own educational resources on our website, but we love to use materials from other organizations like EuroStemCell in our public engagement activities.

One of our favorite public engagement events is the Bay Area Science Festival Discovery Day held at AT&T park. This event attracts over 50,000 people, mainly young kids and their parents who are excited to learn about science and technology. At our booth, we’ve done a few different activities to teach kids about stem cells. One activity, which is great for young kids, is using Play-Doh to model embryonic development.

Teaching kids about embryonic development with Play-Doh! Photo: Todd Dubnicoff/CIRM

Another fun activity, this one developed by EuroStemCell, that we added last year was called “Where are my stem cells?”. It’s a game that teaches people that stem cells aren’t just found in the developing embryo. You’re given laminated cutouts of human organs and tissues, which you’re asked to place on a white board that has an outline of your body. While you are doing this, you learn that there are different types of adult stem cells that live in these tissues and organs and are responsible for creating the cells that make up those structures.

Where are your stem cells? A fun activity designed by EuroStemCell. Photo: Todd Dubnicoff/CIRM

If you’re interested in doing public engagement activities around stem cell education, the resources mentioned in this blog are a great start. I’d also recommend checking out the Super Cells, Power of Stem Cells exhibit, which is touring Europe, USA and Canada. It’s a wonderful interactive exhibit that explains the concept of stem cells and how they can be used to understand and treat disease. It’s also a great example of a collaboration between stem cell organizations including CIRM, CCRM, EuroStemCell, Catapult Cell Therapy and the Stem Cell Network.

We got a chance to check out the Super Cells exhibit last year when it visited the Lawrence Hall of Science in Berkeley. You can read more about it and see pictures in our blog.

Super Cells Exhibit. Photo: Todd Dubnicoff/CIRM

 

Bridging the divide: stem cell students helping families with rare diseases become partners in research

Bridges & Rare Science

CIRM’s Bridges students and Rare Science’s families with rare diseases

Sometimes it’s the simplest things that make the biggest impact. For example, introducing a scientist to a patient can help them drive stem cell research forward faster than either one could do on their own.

Want proof? This year, students in CIRM’s Bridges to Stem Cell Research and Therapy program at California State University (CSU) San Marcos teamed up with parents of children with rare diseases, and the partnerships had a profound impact on all of them, one we hope might produce some long-term benefits.

Christina Waters, who helped create the partnerships, calls it “science with love.”

“We wanted to change the conversation and have researchers and families communicate, making families equal stakeholders in the research. The students bonded with the families and I truly feel that we made a difference in the lives of future researchers, in knowing how much their work can make a life changing impact on the lives of patients’ families who now have hope.”

The CIRM Bridges program helps prepare California’s undergraduate and master’s graduate students for highly productive careers in stem cell research. Students get a paid internship where they get hands-on training and education in stem cell research. They also work with patients and take part in outreach activities so they get an understanding of research that extends beyond the lab.

That’s where Christina Waters comes in. Christina is the founder of Rare Science, a non-profit group focused on rare diseases in children – we blogged about her work here – and she teamed up with CSU San Marcos to partner their Bridges students with five patient families with different rare diseases.

Cutting edge science

One of those families was Aaron Harding’s. Aaron’s son Jaxon has SYNGAP, a genetic disorder that can cause seizures, mental retardation, speech problems and autistic-like behavior. Two of the Bridges students who were doing their internship at ThermoFisher Scientific, Uju Nwizu and Emily Asbury, were given the task of using the gene-editing tool CRISPR Cas9 to help develop a deeper understanding of SYNGAP.

The students say it was an amazing experience:

Uju: “It had a huge impact on me. Every time I thought about SYNGAP I saw Jaxon’s face. This motivated me a lot.”

Emily: “People who work in labs everyday are most often working out the minutiae of research. They don’t often get a chance to see how their research can change or save the lives of real people. Meeting patients is so motivating because afterwards you aren’t just studying a mechanism, you now have a friend with the disease, so you can’t help but be personally invested in the search for a treatment.”

Emily and Uju are working to create iPSCs (induced pluripotent stem cells) that have the SYNGAP mutation. They hope these can be used to study the disease in greater depth and, maybe one day, lead to treatments for some of the symptoms.

Aaron says for families like his, knowing there are scientists working on his child’s disorder is a source of comfort, and hope:

“Personalizing diseases by connecting scientists with those they seek to impact is so important. Emily and Uju took this opportunity and ran with it, and that says a lot about them, and the team at ThermoFisher, taking on an exploring the unknown. That attitude is the heart of a scientist.”

Hearing stories like this is very gratifying, not just for the students and families involved, but for everyone here at CIRM. When we created the Bridges program our goal was to help students get the skills and experience needed to pursue a career in science. Thanks to the people at CSU San Marcos and Rare Science these students got a whole lot more.

Christina Waters: “We learned, we shared hope, we celebrated the courage of our families and the commitment of the students. It takes a village, and it is all of us working together that will make great changes for kids with rare diseases.”

For Uju and Emily, their experience in the Bridges program has made them doubly certain they want to pursue a career in science.

Uju: “I love stem cells and the promise they hold. After this program I hope to be part of a team that is committed to accelerating new stem cell therapies for rare and chronic diseases.”

Emily: “I’ve learned that I love research. After I finish my bachelor’s degree at CSU San Marcos I plan to pursue a graduate degree in molecular or cellular biology.”

 

School is out which means SPARK is in for the summer!

It’s mid-June, which means that school’s out for the summer! While most students are cheering about their newfound freedom from the classroom, a special group of high school students are cheering about the start of the CIRM SPARK internship program.

SPARK is CIRM’s high school educational program that gives students from underrepresented communities the opportunity to conduct stem cell research at top-notch universities in California. Students will spend the summer working in stem cell labs under the guidance and mentorship of scientists, PhDs, master’s students and postdocs. They will learn basic lab techniques like how to do PCR and how to grow stem cells.

Each student will have their own research project that answers an important question in the stem cell field. Students will also attend scientific lectures at their host university, participate in patient-centered activities and write blogs and social media posts about their experiences in the lab. At the end of the summer, they will show off their hard work through posters and talks at the annual SPARK conference.

SPARK gives students early exposure to research and proves to them that science is not only fun but is also a promising career option within their reach. We’ve offered a high school internship summer program for the past few years, and many students who’ve previously participated have told us that they are excited to pursue an education in science or medicine in college.

Ranya taking care of her stem cells!

I’ve featured some of these exciting success stories previously on our blog. One of these stellar students is Ranya Odeh. She was a student in the UC Davis SPARK program and recently told us that she will attend Stanford University to pursue bioengineering after receiving the prestigious QuestBridge scholarship. Another student we featured recently is Shannon Larsuel who participated in the Stanford SPARK program. Shannon was inspired after she worked at the Stanford bone marrow registry as part of her SPARK experience and now plans to be a pediatric oncologist.

Now that the 2017 SPARK program is in session, we can look forward to another exciting summer of talented and motivated students. Our SPARK students are encouraged to document their summer experiences on social media, so you’ll be able to follow their journeys on Instagram. Make sure to check out @CIRM_stemcells Instagram account and the #CIRMSPARKlab hashtag on both Instagram and Twitter.

If you’re a student or teacher who wants to learn more about the CIRM SPARK program, visit our website for more details. And with that, I’ll leave you with a few of the most recent Instagram posts from our new cohort of SPARK students!

Looking at our infected tissue cells!! 🔬🔬#CIRMSPARKLab

A post shared by monse mendoza (@mawnsay) on

Happy #workwednesday! I'm so excited that the @cirm_stemcells #cirmsparklab high school stem cell program has begun! It's a summer internship program where students from underrepresented communities do research in stem cell labs at universities in California. . These smiling students are part of the @uc_davis_stem_cells SPARK program led by Dr. Gerhard Bauer (left). To get into SPARK, they had to win the UC Davis #teenbiotechchallenge by creating a website about a specific science topic. . These students will spend two months doing stem cell research in a lab at UC Davis with grad student and postdoc mentors. At the end of the summer they will present their work at the CIRM spark conference. . I'm so excited for this year's new batch of students. They are posting pictures of their lab work on Instagram (see #cirmsparklab) and their enthusiasm for communicating their science is contagious. I'll be sharing more pictures from this program this summer! 👍🔬 . PS thanks to Dr. Jan Nolta from UC Davis for this photo and for her dedication to the SPARK program as a mentor and teacher!

A post shared by Dr. Karen Ring (@drkarenring) on

Don’t Be Afraid: High school stem cell researcher on inspiring girls to pursue STEM careers

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Shannon Larsuel

Shannon Larsuel is a high school senior at Mayfield Senior School in Pasadena California. Last summer, she participated in Stanford’s CIRM SPARK high school internship program and did stem cell research in a lab that studies leukemia, a type of blood cancer. Shannon is passionate about helping people through research and medicine and wants to become a pediatric oncologist. She is also dedicated to inspiring young girls to pursue STEM (Science, Technology, Engineering, and Mathematics) careers through a group called the Stem Sisterhood.

I spoke with Shannon to learn more about her involvement in the Stem Sisterhood and her experience in the CIRM SPARK program. Her interview is below.


Q: What is the Stem Sisterhood and how did you get involved?

SL: The Stem Sisterhood is a blog. But for me, it’s more than a blog. It’s a collective of women and scientists that are working to inspire other young scientists who are girls to get involved in the STEM field. I think it’s a wonderful idea because girls are underrepresented in STEM fields, and I think that this needs to change.

I got involved in the Stem Sisterhood because my friend Bridget Garrity is the founder. This past summer when I was at Stanford, I saw that she was doing research at Caltech. I reconnected with her and we started talking about our summer experiences working in labs. Then she asked me if I wanted to be involved in the Stem Sisterhood and be one of the faces on her website. She took an archival photo of Albert Einstein with a group of other scientists that’s on display at Caltech and recreated it with a bunch of young women who were involved in the STEM field. So I said yes to being in the photo, and I’m also in the midst of writing a blog post about my experience at Stanford in the SPARK program.

Members of The Stem Sisterhood

Q: What does the Stem Sisterhood do?

SL: Members of the team go to elementary schools and girl scout troop events and speak about science and STEM to the young girls. The goal is to inspire them to become interested in science and to teach them about different aspects of science that maybe are not that well known.

The Stem Sisterhood is based in Los Angeles. The founder Bridget wants to expand the group, but so far, she has only done local events because she is a senior in high school. The Stem Sisterhood has an Instagram account in addition to their blog. The blog is really interesting and features interviews with women who are in science and STEM careers.

Q: How has the Stem Sisterhood impacted your life?

SL: It has inspired me to reach out to younger girls more about science. It’s something that I am passionate about, and I’d like to pursue a career in the medical field. This group has given me an outlet to share that passion with others and to hopefully change the face of the STEM world.

Q: How did you find out about the CIRM SPARK program?

SL: I knew I wanted to do a science program over the summer, but I wasn’t sure what type. I didn’t know if I wanted to do research or be in a hospital. I googled science programs for high school seniors, and I saw the one at Stanford University. It looked interesting and Stanford is obviously a great institution. Coming from LA, I was nervous that I wouldn’t be able to get in because the program had said it was mostly directed towards students living in the Bay Area. But I got in and I was thrilled. So that’s basically how I heard about it, because I googled and found it.

Q: What was your SPARK experience like?

SL: My program was incredible. I was a little bit nervous and scared going into it because I was the only high school student in my lab. As a high school junior going into senior year, I was worried about being the youngest, and I knew the least about the material that everyone in the lab was researching. But my fears were quickly put aside when I got to the lab. Everyone was kind and helpful, and they were always willing to answer my questions. Overall it was really amazing to have my first lab experience be at Stanford doing research that’s going to potentially change the world.

Shannon working in the lab at Stanford.

I was in a lab that was using stem cells to characterize a type of leukemia. The lab is hoping to study leukemia in vitro and in vivo and potentially create different treatments and cures from this research. It was so cool knowing that I was doing research that was potentially helping to save lives. I also learned how to work with stem cells which was really exciting. Stem cells are a new advancement in the science world, so being able to work with them was incredible to me. So many students will never have that opportunity, and being only 17 at the time, it was amazing that I was working with actual stem cells.

I also liked that the Stanford SPARK program allowed me to see other aspects of the medical world. We did outreach programs in the Stanford community and helped out at the blood drive where we recruited people for the bone marrow registry. I never really knew anything about the registry, but after learning about it, it really interested me. I actually signed up for it when I turned 18. We also met with patients and their families and heard their stories about how stem cell transplants changed their lives. That was so inspiring to me.

Going into the program, I was pretty sure I wanted to be a pediatric oncologist, but after the program, I knew for sure that’s what I wanted to do. I never thought about the research side of pediatric oncology, I only thought about the treatment of patients. So the SPARK program showed me what laboratory research is like, and now that’s something I want to incorporate into my career as a pediatric oncologist.

I learned so much in such a short time period. Through SPARK, I was also able to connect with so many incredible, inspired young people. The students in my program and I still have a group chat, and we text each other about college and what’s new with our lives. It’s nice knowing that there are so many great people out there who share my interests and who are going to change the world.

Stanford SPARK students.

Q: What was your favorite part of the SPARK program?

SL: Being in the lab every day was really incredible to me. It was my first research experience and I was in charge of a semi-independent project where I would do bacterial transformations on my own and run the gels. It was cool that I could do these experiments on my own. I also really loved the end of the summer poster session where all the students from the different SPARK programs came together to present their research. Being in the Stanford program, I only knew the Stanford students, but there were so many other awesome projects that the other SPARK students were doing. I really enjoyed being able to connect with those students as well and learn about their projects.

Q: Why do you want to pursue pediatric oncology?

SL: I’ve always been interested in the medical field but I’ve had a couple of experiences that really inspired me to become a doctor. My friend has a charity that raises money for Children’s Hospital Los Angeles. Every year, we deliver toys to the hospital. The first year I participated, we went to the hospital’s oncology unit and something about it stuck with me. There was one little boy who was getting his chemotherapy treatment. He was probably two years old and he really inspired to create more effective treatments for him and other children.

I also participated in the STEAM Inquiry program at my high school, where I spent two years reading tons of peer reviewed research on immunotherapy for pediatric cancer. Immunotherapy is something that really interests me. It makes sense that since cancer is usually caused by your body’s own mutations, we should be able to use the body’s immune system that normally regulates this to try and cure cancer. This program really inspired me to go into this field to learn more about how we can really tailor the immune system to fight cancer.

Q: What advice do you have for young girls interested in STEM.

SL: My advice is don’t be afraid. I think that sometimes girls are expected to be interested in less intellectual careers. This perception can strike fear into girls and make them think “I won’t be good enough. I’m not smart enough for this.” This kind of thinking is not good at all. So I would say don’t be afraid and be willing to put yourself out there. I know for me, sometimes it’s scary to try something and know you could fail. But that’s the best way to learn. Girls need to know that they are capable of doing anything and if they just try, they will be surprised with what they can do.

Teach your kids about stem cells and science with Think-A-Lot-Tots children’s books

It’s never too early to start learning.

When it comes to teaching science to kids, here’s my advice: don’t shy away from talking about topics like mitochondria or nuclei. Children are curious and intelligent. They can understand complex scientific concepts if you engage them in the right way. So it’s time to set aside the baby talk and educate young minds about science early so that they can understand their own biology and the world around them.

There are many ways to educate kids about science, but a tried and true method is children’s picture books. Images capture children’s attention and tell a visual story that connects with their brains better than words can on their own.

Thomai Dion

Thomai Dion

One of my favorite children’s science books is a series called “Think-A-Lot-Tots.” They are written for babies, toddlers and kids and have beautiful hand-drawn illustrations. The author, Dr. Thomai Dion, is a pharmacist and science writer who was inspired to write this series to satisfy her young son’s curiosity for science. So far she has written books about animal cells, neurons, microorganisms, and just this week, she published a new book about stem cells!

I have to admit that I’m to blame for this new stem cell book. When I first read her stories, I was so excited by how simply and elegantly she wrote about neurons, that I started daydreaming about a children’s book on stem cells. I contacted Thomai and asked her whether she wanted to collaborate on a stem cell book. She was very eager, so I wrote the initial script and Thomai used her artistic expertise to visualize my ideas.  Fast forward three months and Thomai has turned my dream into a wonderful book that I can share with my family and friends with kids!

The stem cell book covers the basics, starting with what a stem cell is and then expanding into the different types of stem cells in the body. By the end, kids will understand that they come from embryonic stem cells and that they have adult stem cells in their body that keep them healthy.

Below are a few pages from Think-A-Lot-Tots: Stem Cells and also a short interview where Thomai explains her inspiration behind her children’s book series and her newest edition on stem cells.

41w9lwy6qhlpluripotent

somatic-stem-cellsbrain

Interview with Author Thomai Dion

Q: Tell us about the mission of your Think-A-Lot-Tots series.

TD: The mission for my “Think-A-Lot-Tots” series is to introduce science education to our youngest thinkers in a fun, approachable and engaging way. My books do not strive to make an expert of the reader; rather, they provide an overview of a seemingly abstract and advanced scientific concept otherwise reserved for “older children” in an effort to show that babies, toddlers and younger kids can not only retain but also enjoy these same topics. My books focus on building scientific vocabulary, promoting STEM education at a very young age and sparking a love of learning as soon as possible.

Q: How did you get interested in writing children’s books about science?

TD: It was my son’s questions about the world around him that made me want to teach him as much as I could about all that I could. Similar to other children, several of his questions would revolve around topics such as why the sky is blue and why the grass is green. He has also pleasantly surprised me with several very insightful inquiries such as why do “tall trees” lose their leaves but pines trees do not, as well as “how do my eyes see?”. His natural inclination to ask “why” coupled with an insatiable desire to learn inspired me to teach him about science-focused concepts beyond what is readily seen such as the cell, the neuron and microorganisms. I created my first book as a helpful way for him and I to talk about topics like the cell, and I thought since I was making this available to my family, I may as well make it available to others. As such, my first book was created and 4 others have followed with a 5th nearly finished.

Q: Why were you inspired to write a book about stem cells?

TD: My first children’s science book focused on the parts of the cell, providing an overview of the cell membrane, the nucleus, mitochondria and others. My second book focused on the neuron, which discussed not only its different parts but also its special function within our bodies. I found that I enjoyed not only talking about what a cell or neuron was but also why it was important, and so I began thinking about what other ideas I could write about in this manner.

I am a pharmacist by trade and although familiar with stem cells, I was not initially as knowledgeable as I would have liked to be about what their function was within the body, what types of work were currently being done with regards to their research, and what a significant impact they could have on science and medicine. I learned more about all of this as I connected with folks within the field who focused on stem cell research, and only then did I realize how important it was for not only myself to understand stem cells but also our future big thinkers.

I was thrilled when you reached out to me with the idea of writing a book about stem cells and am so thankful for the guidance and expertise you provided with the creation of “Think-A-Lot-Tots: Stem Cells”. My little one will be 4-years-old soon and we’ve read the book together several times. To hear a child want to talk about and exclaim “stem cells!” before they have even begun elementary school is so wonderful!

Q: What other types of science books are you planning to write?

TD: I admittedly have an entire list of topics that I’d like to write about for children’s STEM education. As a medical professional, most of these topics can be found within biology, anatomy and physiology, although I do have some ideas that introduce concepts within chemistry and other areas as well. I am a few days away from officially releasing a STEM coloring book and it would be a very exciting area to explore further with additional coloring and activity books in the future. I also currently have a children’s notebook available that outlines the steps found within the scientific method and I’d love to continue creating hands-on learning tools in addition to read-along books.

Q: What are your insights for the best ways to teach young kids science?

TD: I think we vastly underestimate our children’s ability to learn about their world. Provided the child has an interest in learning about a topic, I don’t see any limitation in explaining the facets of that topics or introducing the terminology typically associated with its discussion. I truly believe there is no difference between teaching a child the word “ball” and the word “nucleus”; rather, it builds familiarity with the term and could even be associated with enjoyable memories if presented in a fun and engaging way.

Similarly to teaching about scientific terminology, science as a whole does not have to be limited to an academic setting and only after a certain age. In reality, children are naturally-born scientists, eager to inquire about any and everything around them from the very beginning of their childhood. I recently wrote an article discussing this concept that was published in Ar Magazine entitled “The Science of Why and its Impact on Children’s Learning”.

In summary and to quote part of this article, I note that “My son and I talk together constantly throughout the day about his observations, what he thinks of this leaf or that rock. I also read to him daily either the books that I created myself as well as those from other talented authors and illustrators. To hinder my child’s natural aptitude towards science would be to mute his interest in the world around him. More simply stated, my brushing-off his questions would stifle his drive to learn. In my humble opinion, I cannot bring myself to do that.” In short, I would say the best ways to teach young kids about science would be to: Talk together. Talk often. Talk about it all.


You can find Thomai’s Think-A-Lot-Tots science books on Amazon and learn more about her quest to educate young minds on her website.

Stem Cell Stories That Caught our Eye: Making blood and muscle from stem cells and helping students realize their “pluripotential”

Stem cells offer new drug for blood diseases. A new treatment for blood disorders might be in the works thanks to a stem cell-based study out of Harvard Medical School and Boston Children’s hospital. Their study was published in the journal Science Translational Medicine.

The teams made induced pluripotent stem cells (iPSCs) from the skin of patients with a rare blood disorder called Diamond-Blackfan anemia (DBA) – a bone marrow disease that prevents new blood cells from forming. iPSCs from DBA patients were then specialized into blood progenitor cells, the precursors to blood cells. However, these precursor cells were incapable of forming red blood cells in a dish like normal precursors do.

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

Red blood cells were successfully made via induced pluripotent stem cells from a Diamond-Blackfan anemia patient. Image: Daley lab, Boston Children’s

The blood progenitor cells from DBA patients were then used to screen a library of compounds to identify drugs that could get the DBA progenitor cells to develop into red blood cells. They found a compound called SMER28 that had this very effect on progenitor cells in a dish. When the compound was tested in zebrafish and mouse models of DBA, the researchers observed an increase in red blood cell production and a reduction of anemia symptoms.

Getting pluripotent stem cells like iPSCs to turn into blood progenitor cells and expand these cells into a population large enough for drug screening has not been an easy task for stem cell researchers.

Co-first author on the study, Sergei Doulatov, explained in a press release, “iPS cells have been hard to instruct when it comes to making blood. This is the first time iPS cells have been used to identify a drug to treat a blood disorder.”

In the future, the researchers will pursue the questions of why and how SMER28 boosts red blood cell generation. Further work will be done to determine whether this drug will be a useful treatment for DBA patients and other blood disorders.

 

Students realize their “pluripotential”. In last week’s stem cell stories, I gave a preview about an exciting stem cell “Day of Discovery” hosted by USC Stem Cell in southern California. The event happened this past Saturday. Over 500 local middle and high school students attended the event and participated in lab tours, poster sessions, and a career resource fair. Throughout the day, they were engaged by scientists and educators about stem cell science through interactive games, including the stem cell edition of Family Feud and a stem cell smartphone videogame developed by USC graduate students.

In a USC press release, Rohit Varma, dean of the Keck School of Medicine of USC, emphasized the importance of exposing young students to research and scientific careers.

“It was a true joy to welcome the middle and high school students from our neighboring communities in Boyle Heights, El Sereno, Lincoln Heights, the San Gabriel Valley and throughout Los Angeles. This bright young generation brings tremendous potential to their future pursuits in biotechnology and beyond.”

Maria Elena Kennedy, a consultant to the Bassett Unified School District, added, “The exposure to the Keck School of Medicine of USC is invaluable for the students. Our students come from a Title I School District, and they don’t often have the opportunity to come to a campus like the Keck School of Medicine.”

The day was a huge success with students posting photos of their experiences on social media and enthusiastically writing messages like “stem cells are our future” and “USC is my goal”. One high school student acknowledged the opportunity that this day offers to students, “California currently has biotechnology as the biggest growing sector. Right now, it’s really important that students are visiting labs and learning more about the industry, so they can potentially see where they’re going with their lives and careers.”

You can read more about USC’s Stem Cell Day of Discovery here. Below are a few pictures from the event courtesy of David Sprague and USC.

Students have fun with robots representing osteoblast and osteoclast cells at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Students have fun with robots representing osteoblast and osteoclast cells at the USC Stem Cell Day of Discovery. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Dr. Francesca Mariana shows off a mouse skeleton that has been dyed to show bones and cartilage. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

USC masters student Shantae Thornton shows students how cells are held in long term cold storage tanks at -195 celsius. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the Stem Cell Day of Discovery event held at the USC Health Sciences Campus in Los Angeles, CA. February 4th, 2017. The event encourages students to learn more about STEM opportunities, including stem cell study and biotech, and helps demystify the fields and encourage student engagement. Photo by David Sprague

Genesis Archila, left, and Jasmine Archila get their picture taken at the USC Stem Cell Day of Discovery. Photo by David Sprague

New stem cell recipes for making muscle: new inroads to study muscular dystrophy (Todd Dubnicoff)

Embryonic stem cells are amazing because scientists can change or specialize them into virtually any cell type. But it’s a lot easier said than done. Researchers essentially need to mimic the process of embryo development in a petri dish by adding the right combination of factors to the stem cells in just the right order at just the right time to obtain a desired type of cell.

Making human muscle tissue from embryonic stem cells has proven to be a challenge. The development of muscle, as well as cartilage and bone, are well characterized and known to form from an embryonic structure called a somite. Researches have even been successful working out the conditions for making somites from animal stem cells. But those recipes didn’t work well with human stem cells.

Now, a team of researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overcome this roadblock by carrying out a systematic approach using human tissue. As described in Cell Reports, the scientists isolated somites from early human embryos and studied their gene activity. By comparing somites that were just beginning to emerge with fully formed somites, the researchers pinpointed differences in gene activity patterns. With this data in hand, the team added factors to the cells that were known to affect the activity of those genes. Through some trial and error, they produced a recipe – different than those used in animal cells – that could convert 90 percent of the human stem cells into somites in only four days. Those somites could then readily transform into muscle or bone or cartilage.

This new method for making human muscle will be critical for the lab’s goal to develop therapies for Duchenne muscular dystrophy, an incurable muscle wasting disease that strikes young boys and is usually fatal by their 20’s.

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells.  Image: April Pyle Lab/UCLA

The new protocol turned 90 percent of human pluripotent stem cells into somite cells in just four days; those somite cells then generated (left to right) cartilage, bone and muscle cells. Image: April Pyle Lab/UCLA

Life after SPARK: CIRM high school intern gets prestigious scholarship to Stanford

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Ranya Odeh

Ranya Odeh

Meet Ranya Odeh. She is a senior at Sheldon high school in Elk Grove, California, and a 2016 CIRM SPARK intern. The SPARK program provides stem cell research internships to underprivileged high school students at leading research institutes in California.

This past summer, Ranya worked in Dr. Jan Nolta’s lab at UC Davis improving methods that turn mesenchymal stem cells into bone and fat cells. During her internship, Ranya did an excellent job of documenting her journey in the lab on Instagram and received a social media prize for her efforts.

Ranya is now a senior in high school and was recently accepted into Stanford University through the prestigious QuestBridge scholarship program. She credits the CIRM SPARK internship as one of the main reasons why she was awarded this scholarship, which will pay for all four years of her college.

I reached out to Ranya after I heard about her exciting news and asked her to share her story so that other high school students could learn from her experience and be inspired by her efforts.


How did you learn about the CIRM SPARK program?

At my high school, one of our assignments is to build a website for the Teen Biotech Challenge (TBC) program at UC Davis. I was a sophomore my first year in the program, and I didn’t feel passionate about my project and website. The year after, I saw that some of my friends had done the CIRM SPARK internship after they participated in the TBC program. They posted pictures about their internship on Instagram, and it looked like a really fun and interesting thing to do. So I decided to build another website (one that I was more excited about) in my junior year on synthetic biology. Then I entered my website in the TBC and got first prize in the Nanobiotechnology field. Because I was one of the winners, I got the SPARK internship.

What did you enjoy most about your SPARK experience?

For me, it was seeing that researchers aren’t just scientists in white lab coats. The Nolta lab (where I did my SPARK internship) had a lot of personality that I wasn’t really expecting. Working with stem cells was so cool but it was also nice to see at the same time that people in the lab would joke around and pull pranks on each other. It made me feel that if I wanted to have a future in research, which I do, it wouldn’t be doing all work all the time.

What was it like to do research for the first time?

Ranya taking care of her stem cells!

Ranya taking care of her stem cells!

The SPARK internship was my first introduction to research. During my first experiment, I remember I was changing media and I thought that I was throwing my cells away by mistake. So I freaked out, but then my mentor told me that I hadn’t and everything was ok. That was still a big deal and I learned a lesson to ask more questions and pay more attention to what I was doing.

Did the SPARK program help you when you applied to college?

Yes, I definitely feel like it did. I came into the internship wanting to be a pharmacist. But my research experience working with stem cells made me want to change my career path. Now I’m looking into a bioengineering degree, which has a research aspect to it and I’m excited for that. Having the SPARK internship on my college application definitely helped me out. I also got to have a letter of recommendation from Dr. Nolta, which I think played a big part as well.

Tell us about the scholarship you received!

I got the QuestBridge scholarship, which is a college match scholarship for low income, high achieving students. I found out about this program because my career counselor gave me a brochure. It’s actually a two-part scholarship. The first part was during my junior year of high school and that one didn’t involve a college acceptance. It was an award that included essay coaching and a conference that told you about the next step of the scholarship.

The second part during my senior year was called the national college match scholarship. It’s an application on its own that is basically like a college application. I submitted it and got selected as a finalist. After I was selected, they have partner colleges that offer full scholarships. You rank your choice of colleges and apply to them separately with a common application. If any of those colleges want to match you and agree to pay for all four years of your college, then you will get matched to your top choice. There’s a possibility that more than one college would want to match you, but you will only get matched with the one that you rank the highest. That was Stanford for me, and I am very happy about that.

Why did you pick Stanford as your top choice?

It’s the closest university to where I grew up that is very prestigious. It was also one of the only colleges I’ve visited. When I was walking around on campus, I felt I could see myself there as a student and with the Stanford community. Also, it will be really nice to be close to my family.

What do you do in your free time?

I don’t have a lot of free time because I’m in Academic Decathalon and I spend most of my time doing that. When I do have free time, I like to watch Netflix, blogs on YouTube, and I try to go to the gym [laughs].

Did you enjoy posting about your SPARK internship on Instagram?

I had a lot of fun posting pictures of me in the lab on Instagram. It was also nice during the summer to see other SPARK students in different programs talk about the same things. We shared jokes about micropipettes and culturing stem cells. It was really cool to see that you’re not the only one posting nerdy science pictures. I also felt a part of a larger community outside of the SPARK program. Even people at my school were seeing and commenting on what I was doing.

UC Davis CIRM SPARK program 2016

UC Davis CIRM SPARK program 2016

I also liked that I got feedback about what I was doing in the lab from other SPARK students. When I posted pictures during my internship, I talked about working with mesenchymal stem cells. Because we all post to the same #CIRMSPARKlab hashtag, I saw students from CalTech commenting that they worked with those stem cells too. That motivated me to work harder and accomplish more in my project. Instagram also helped me with my college application process. I saw that there were other students in the same position as me that were feeling stressed out. We also gave each other feedback on college essays and having advice about what I was doing really helped me out.

Do you think it’s important for students to be on social media?

Yes, I think it’s important with boundaries of course. There are probably some people who are on social media too often, and you should have a balance. But it’s nice to see what other students are doing to prepare for college and to let loose and catch up with your friends.

What advice would you give to younger high school students about pursuing science?

I feel like students can’t expect things to be brought to them. If they are interested in science, they need to take the initiative to find something that they are going to want to do. The CIRM internship was brought to my attention. But I have friends that were interested in medicine and they found their own internships and ways to learn more about what they wanted to do. So my advice is to take initiative and not be scared of rejection, because if you’re scared of rejection you’re not going to do anything.

To hear more about Ranya’s SPARK internship experience, read her blog “Here’s what you missed this summer on the show coats.” You can also follow her on Instagram and Twitter. For more information about the CIRM SPARK internship program, please visit the CIRM website.


Related Links:

Discovering stem cells and science at Discovery Day

discoveryday

The CIRM booth at Discovery Day at AT&T Park

Someone stole my thigh bone. One minute it was there. The next, gone. I have narrowed down the list of suspects to the more than 25,000 people attending Discovery Day at San Francisco’s AT&T Park.

To be honest, the bone was just a laminated image of a bone, stuck to the image of a person drawn on a white board. We were using it, along with laminated images of a brain, liver, stomach and other organs and tissues, to show that there are many different kinds of stem cells in the body, and they all have different potential uses.

The white board and its body parts were gimmicks that we used to get kids to come up to the CIRM booth and ask what we were doing. Then, as they played with the images, and tried to guess which stem cells went where, we talked to their parents about stem cell research, and CIRM and the progress being made.

discoveryday-karen

Dr. Karen Ring explaining embryonic development to kids

We also used Play Doh so that the kids could model cell division and specialization during embryonic development. But mostly it was so the kids could play with the Play Doh while we talked to their parents.

It is shameless I know but when you are competing against more than 130 other booths for people’s attention – and some of these booths had live snakes, virtual reality devices, or they just let kids throw and hit things – you have to be creative.

And creativity was certainly the key word, because Discovery Day – part of the annual week-long Bay Area Science Fair – was filled with booths from companies and academic institutions promoting every imaginable aspect of science.

So why were we there? Well, first, education has been an important part of CIRM’s mission ever since we were created. Second, we’re a state agency that gets public funding so we feel we owe it to the public to explain how their money is being used. And third, it’s just a lot of fun.

NASA was there, talking about exploring deep space. And there were booths focused on exploring the oceans, and saving them from pollution and over-fishing. You could learn about mathematics and engineering by building wacky-looking paper airplanes that flew long distances, or you could just sit in the cockpit of a fighter jet.

discoveryday-victor

And everywhere you looked were families, with kids running up to the different booths to see what was there. All they needed was a little draw to get them to stick around for a few minutes, so you could talk to them and explain to them what stem cells are and why they are so amazing. Some of the kids were fascinated and wanted to know more: some just wanted to use the Play Doh;  at least one just wanted to eat the Play Doh, but fortunately we were able to stop that happening.

It was an amazing sight to see a baseball stadium filled with tens of thousands of people, all there to learn about science. At a time when we are told that kids don’t care about science, that they don’t like math, this was the perfect response. All you had to do was look around and see that kids were fascinated by science. They were hungry to learn how pouring carbon dioxide on a candle puts out the flame. They delighted in touching an otter pelt and feeling how silky smooth it is, and then looking at the pelt under a microscope to see just how extraordinarily dense the hairs are and how that helps waterproof the otter.

And so yes, we used Play Doh and a white board person to lure the kids to us. But it worked.

There was another booth where they had a couple of the San Francisco 49er’s cheerleaders in full uniform. I don’t actually know what that had to do with teaching science but it was very popular with some of the men. Maybe next year I could try dressing up like that. It would certainly draw a crowd.


Check us out on Instagram to learn more about CIRM’s educational outreach efforts.

We had a lot of fun this weekend teaching young minds about what stem cells are and where they are located in the human body at the @bayareascience #DiscoveryDay festival. We had one activity where kids learned about embryonic stem cells and development using playdoh and another white board activity about adult stem cells. Students learned that each organ has its own set of adult stem cells that can regenerate lost or damaged cells in that specific organ. It was really fun to explain to kids and their parents why stem cells and regenerative medicine research are important. • • • #BASF2016 #stemcells #stemcellresearch #stemeducation #STEM #teaching #education #research #attpark #CIRM #development #embryonicstemcells

A post shared by California's Stem Cell Agency (@cirm_stemcells) on

Investing in student researchers now for future stem cell therapy homeruns

Even though my San Francisco Giants didn’t make it to the World Series this year, I still watched Game 1 two nights ago between the Cleveland Indians and the Chicago Cubs. As each batter stepped up to the plate for their first at bat, I thought about all the years of training and in-game experience it must have required for each athlete to reach this pinnacle of their profession. That training certainly relied on mentoring from great coaches and early financial support in the form of athletic scholarships, etc. Without that help, you could argue that the number of young, high-caliber baseball players would dwindle over the generations and the sport eventually would lose relevance.

eliana_lab

The CIRM Bridges Program: training the next generation of all-star stem cell researchers, like Eliana Ochoa-Bolton (pictured here)

I think the same can be said for stem cell research. The field is currently chock-full of veteran, superstar scientists who are leading the charge of bringing first-of-their-kind stem cell treatments to clinical trials (for example, check out Monday’s exciting blog). But the field is still in its infancy and will require a well-trained workforce of scientists, physicians and technicians throughout the 21st century and beyond to fully realize and implement the potential of stem cells to treat patients with unmet medical needs. But cuts in federal funding for research mean this is a particularly challenging time to get started on a scientific career, especially for economically disadvantaged students.

That’s where the Bridges to Stem Cell Research and Therapy Awards Program comes into the picture. Started in 2009, the program provides paid stem cell research internships to students at universities and colleges that don’t have major stem cell research programs. Each Bridges internship includes thorough hands-on training and education in stem cell research, and direct patient engagement and outreach activities that engage California’s diverse communities.

Earlier this year, the CIRM governing Board re-upped on their investment in the Bridges Program to the tune of $40 million. Each of the fourteen awarded schools will have enough funding to support up to ten trainees per year for up to five years. The program has become a source of pride for the CIRM team as well as for each campus. Case in point, this past Wednesday the news center at California State University, Northridge (CSUN) featured a story about the school’s new $2.77 million Bridges grant. Professor Cindy Malone, CSUN’s Bridges Program Director, looked back at the accomplishments from their previous round of funding which began in 2009:

malone-cindy2-287x300

Cindy Malone
CSUN biology professor

“When we first launched the [CSUN-UCLA Bridges to Stem Cell Research Program], we didn’t know how successful it would become. Our students are taking part in cutting-edge research alongside some of the greatest minds in stem cell research. They are presenting papers at some of the top professional conferences in the world. When they graduate, they are highly sought after by the top medical and graduate schools in the country, and rightly so.”

eliana

Eliana Ochoa-Bolton

One of those students is Eliana Ochoa-Bolton who spent much of her senior year at CSUN as a Bridges intern in the laboratory of Samantha Butler at UCLA. There, she contributed to the lab’s efforts to better understand the nerve signals that become damaged in spinal cord injury with the hope of eventually restoring them. Ochoa-Bolton, who is now a CSUN master’s student in biology and aspires to earn a doctorate, is very grateful for her Bridges experience: “It was such an amazing opportunity. I got to do work I didn’t think possible as an undergraduate.”

Now embarking on the second round of Bridges funding, Malone mapped out the plan for the program’s next five years:

“We will continue to partner with UCLA as our internship-host institution. There, our students will perform 10 months of intensive stem cell research. New research training courses will be launched in the next year to prepare our undergraduates for the new Stem Cell Scientist Training Program and for the increasingly technical job market in California.”

For us CIRM team members and the CIRM governing Board, the Bridges program and its high school counterpart, the CIRM Spark program, continue to be among our favorite awards because we’re continually amazed how much the student’s learn and we’re inspired by their unbounded enthusiasm for stem cell research.

It makes me very optimistic that these students are destined to hit some future stem cell treatments home runs.