Myocarditis in Cancer Patients Is Driven by Specific Immune Cells

In a new study, researchers from UC San Francisco and Vanderbilt University Medical Center have identified specific immune cells that cause a potentially lethal heart inflammation -called myocarditis- in a small fraction of patients treated with powerful cancer immunotherapy drugs.

Myocarditis is inflammation of the heart muscle. It can cause chest pain, shortness of breath, and rapid or irregular heart rhythms. Myocarditis can weaken the heart and its electrical system. As a result, the heart’s ability to pump blood declines. In severe cases, myocarditis causes clots and may lead to stroke, heart attack, heart failure and even death.

The form of myocarditis the researchers studied is a rare but deadly side effect of cancer immunotherapy drugs called immune checkpoint inhibitors (ICIs). 

ICI is a type of therapy method that can improve the anti-tumor immune response by regulating the activity of T cells. ICI treatment has proven lifesaving for many cancer patients and fewer than one percent of patients who receive ICI develop myocarditis.

However, according to Javid Moslehi, MD, chief of Cardio-Oncology and Immunology for the UCSF Heart and Vascular Center, nearly half of patients who do experience ICI-caused myocarditis die as a result. 

Using genetically altered mice to mimic human ICI-caused myocarditis in the new study, the researchers found an excess of immune system cells called CD8 T lymphocytes in the inflamed heart tissue of mice with myocarditis. 

“We earlier observed many T cells in patients who had died, but in the mice we performed several key experiments to show that the T lymphocytes really are drivers of the disease process, and not merely innocent bystanders,” Moslehi said. “There are therapeutic implications to this study.” 

The results of the study led the researchers to conclude that activation of CD8 T cells is necessary to trigger myocarditis in ICI-treated cancer patients and therefore immunosuppressive therapies that affect CD8 T cells might play a beneficial role.

Their new findings already have led them to begin investigating better ways to prevent and treat myocarditis. The research team already has reported a case study in which they used Abatacept, a rheumatoid arthritis drug that suppresses the activation of CD8 T cells, to successfully treat myocarditis in a cancer patient. 

Study could pave the way in reducing decline in muscle strength as people age 

A study by Stanford Medicine researchers in older mice may lead to treatments that help seniors regain muscle strength lost to aging.

Muscle stem cells—which are activated in response to muscle injury to regenerate damaged muscle tissue—lose their potency with age. A study from the National Health and Nutrition Examination Survey showed that five percent of adults aged 60 and over had weak muscle strength, and thirteen percent had intermediate muscle strength. 

Now, researchers at Stanford Medicine are seeing that old mice regain the leg muscle strength of younger animals after receiving an antibody treatment that targets a pathway mediated by a molecule called CD47.  

The study was published in Cell Stem Cell and is co-funded by the California Institute for Regenerative Medicine (CIRM).  

A Closer Look at CD47 

CD47 is a protein found on the surface of many cells in the body. Billed as the “don’t eat me” molecule, it is better known as a target for cancer immunotherapy. It’s common on the surface of many cancer cells and protects them from immune cells that patrol the body looking for dysfunctional or abnormal cells.  

Stanford researchers are finding that old muscle stem cells may use a similar approach to avoid being targeted by the immune system. 

It’s been difficult to determine why muscle stem cells lose their ability to divide rapidly in response to injury or exercise as they age. Dr. Ermelinda Porpiglia, the lead author of the study, used a technique called “single-cell mass cytometry” to study mouse muscle stem cells.  

Using the technique, Porpiglia focused on CD47, and found that the molecule was found at high levels on the surface of some muscle stem cells in older mice, but at lower levels in younger animals. Porpiglia also found that high levels of CD47 on the surface of muscle stem cells correlate with a decrease in their function.   

“This finding was unexpected because we primarily think of CD47 as an immune regulator,” Porpiglia said. “But it makes sense that, much like cancer cells, aged stem cells might be using CD47 to escape the immune system.” 

Testing an Antibody 

Further investigation revealed that a molecule called thrombospondin, which binds to CD47 on the surface of the muscle stem cells, suppresses the muscle stem cells’ activity.  

Porpiglia showed that an antibody that recognizes thrombospondin and blocks its ability to bind to CD47 dramatically affected the function of muscle stem cells. Cells from older animals divided more robustly when growing in a laboratory dish in the presence of the antibody, and when the antibody was injected into the leg muscles of old mice the animals developed bigger and stronger leg muscles than control animals.  

When given prior to injury, the antibody helped the aged animals recover in ways similar to younger mice. 

Porpiglia said, “We are hopeful that it might one day be possible to inject an antibody to thrombospondin at specific sites in the body to regenerate muscle in older people or to counteract functional problems due to disease or surgery.” 

These results are significant because they could one day make it possible to boost muscle recovery in humans after surgery and reduce the decline in muscle strength as people age, but researchers say more work is needed.  

“Rejuvenating the muscle stem cell population in older mice led to a significant increase in strength,” said Dr. Helen Blau, a senior author of the study. “This is a localized treatment that could be useful in many clinical settings, although more work needs to be done to determine whether this approach will be safe and effective in humans.” 

CIRM has previously funded work with researchers using CD47 that led to clinical trials targeting cancer. You can read about that work here and here. That work led to the creation of a company, Forty Seven Inc, which was eventually bought by Gilead for $4.9 billion.  

Read the original release by Krista Conger on the Stanford Medicine website. 

Sweet 16 and counting for stem cell clinical trial

Dr. Judy Shizuru: Photo courtesy Jasper Therapeutics

Over the years the California Institute for Regenerative Medicine (CIRM) has invested a lot in helping children born with severe combined immunodeficiency (SCID), a fatal immune disorder. And we have seen great results with some researchers reporting a 95 percent success rate in curing these children.

Now there’s more encouraging news from a CIRM-funded clinical trial with Jasper Therapeutics. They have announced that they have tested their approach in 16 patients, with encouraging results and no serious adverse events.

Let’s back up a little. Children born with SCID have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life. Several of the approaches CIRM has funded use the child’s own blood stem cells to help fix the problem. But at Jasper Therapeutics they are using another approach. They use a bone marrow or hematopoietic stem cell transplant (HCT).   This replaces the child’s own blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, there’s a problem. Most bone marrow transplants use chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. It can be effective, but it is also toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To get around that problem Jasper Therapeutics is using an antibody called JSP191 – developed with CIRM funding – that directs the patient’s own immune cells to kill diseased blood stem cells, creating room to transplant new, healthy cells. To date the therapy has already been tested in 16 SCID patients.

In addition to treating 16 patients treated without any apparent problems,  Jasper has also been granted Fast Track Designation by the US Food and Drug Administration. This can help speed up the review of treatments that target serious unmet conditions. They’ve also been granted both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics said:

“The FDA’s Fast Track designation granted for JSP191 in Severe Combined Immunodeficiency (SCID) reinforces the large unmet medical need for patients with this serious disease. Along with its previous designations of Orphan and Rare Pediatric Disease for JSP191, the FDA’s Fast Track recognizes JSP191’s potential role in improving clinical outcomes for SCID patients, many of whom are too fragile to tolerate the toxic chemotherapy doses typically used in a transplant.”

Dr. Deborah Deas and Ysabel Duron recognized for their contributions to advancing public health

Dr. Deborah Deas

The California Institute for Regenerative Medicine (CIRM) has two reasons to celebrate today.

Earlier this month, Dr. Deborah Deas was elected as a member of the National Academy of Medicine, or NAM. Membership in the academy is one of the highest national honors in health and medicine.

Dr. Deas is the vice chancellor of health sciences and the Mark and Pam Rubin Dean of the UCR School of Medicine, as well as a member of CIRM’s governing Board.

Amongst many other honors, Dr. Deas is recognized for being a national contributor to addressing health disparities through diversifying the physician workforce, especially around the shortage of Black males in medicine.

“I was ecstatic to learn that I was elected. It will allow me to have a greater voice at the national level in science as well as in diversity, equity, and inclusion. I’m also so pleased about what we are doing at CIRM, and this is such a great opportunity to not only represent myself but also the UC system as well as CIRM.”

Ysabel Duron (pictured on left) at While House Cancer Moonshot event.

Simultaneously, another Board member, founder and President of the Latino Cancer Institute Ysabel Duron was asked to join the American Cancer Society (ACS) National Breast Cancer Roundtable (NBCRT).

Last week, Ms. Duron attended the event at the white house with First Lady Dr. Jill Biden, where she announced the launch of NBCRT.

The ACS NBCRT is a national coalition working to accelerate progress across the breast cancer continuum through strategic partnerships to eliminate disparities and reduce mortality. The ACS NBCRT works to ensure all women have access to quality screening and treatment, including Black women and women in other historically excluded communities, to address the social and emotional needs of patients and their families.

“I feel both honored to join the ACS NBCRT and the weight of this responsibility and obligation to those who suffer and die from this horrific disease every day. I am also committed, during the critical next steps in determining initiatives to propose, to spotlight the gaps and needs in education, quality care and access to the most advanced diagnostics and treatment for Latina and other underserved populations.”

CIRM Board Approves Funding for New Clinical Trial Targeting Brain Tumors

The governing Board of the California Institute for Regenerative Medicine (CIRM) has awarded almost $12 million to carry out a clinical trial targeting brain tumors.

This brings the total number of CIRM funded clinical trials to 83.  

$11,999,984 was awarded to Dr. Jana Portnow at the Beckman Research Institute of City of Hope. They are using Neural stem cells (NSCs) as a form of delivery vehicle to carry a cancer-killing virus that specifically targets brain tumor cells.

Glioblastoma is the most common malignant primary brain tumor in adults and each year about 12,000 Americans are diagnosed. The 5-year survival rate is only about 10%.

The current standard of care involves surgically removing the tumor followed by radiation, chemotherapy, and alternating electric field therapy. Despite these treatments, survival remains low.

The award to Dr. Portnow will fund a clinical trial to assess the safety and effectiveness of this stem cell-based treatment for Glioblastoma.

The Board also awarded $3,111,467 to Dr. Boris Minev of Calidi Biotherapeutics. This award is in the form of a CLIN1 grant, with the goal of completing the testing needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial in people.

This project uses donor fat-derived mesenchymal stem cells that have been loaded with oncolytic virus to target metastatic melanoma, triple negative breast cancer, and advanced head & neck squamous cell carcinoma.

“There are few options for patients with advanced solid tumor cancers such as glioblastoma, melanoma, breast cancer, and head & neck cancer,” says Maria T. Millan, M.D., President and CEO of CIRM. “Surgical resection, chemotherapy and radiation are largely  ineffective in advanced cases and survival typically is measured in months. These new awards will support novel approaches to address the unmet medical needs of patients with these devastating cancers.”

The CIRM Board also voted to approve awarding $71,949,539 to expand the CIRM Alpha Clinics Network. The current network consists of six sites and the Board approved continued funding for those and added an additional three sites. The funding is to last five years.

The goal of the Alpha Clinics award is to expand existing capacities for delivering stem cell, gene therapies and other advanced treatment to patients. They also serve as a competency hub for regenerative medicine training, clinical research, and the delivery of approved treatments.

Each applicant was required to submit a plan for Diversity, Equity and Inclusion to support and facilitate outreach and study participation by underserved and disproportionately affected populations in the clinical trials they serve.

The successful applicants are:

ApplicationProgram TitleInstitution/Principal InvestigatorAmount awarded
INFR4-13579The Stanford Alpha Stem Cell ClinicStanford University – Matthew Porteus  $7,997,246  
INFR4-13581UCSF Alpha Stem Cell ClinicU.C. San Francisco – Mark Walters  $7,994,347  
INFR4-13586A comprehensive stem cell and gene therapy clinic to
advance new therapies for a diverse patient
population in California  
Cedars-Sinai Medical Center – Michael Lewis  $7,957,966    
INFR4-13587The City of Hope Alpha Clinic: A roadmap for equitable and inclusive access to regenerative medicine therapies for all Californians  City of Hope – Leo Wang  $8,000,000
INFR4-13596Alpha Stem Cell Clinic for Northern and Central California  U.C. Davis – Mehrdad Abedi  $7,999,997  
INFR4-13685Expansion of the Alpha Stem Cell and Gene Therapy Clinic at UCLA  U.C. Los Angeles – Noah Federman  $8,000,000
INFR4-13878Alpha Clinic Network Expansion for Cell and Gene Therapies  University of Southern California – Thomas Buchanan  $7,999,983  
INFR4-13952A hub and spoke community model to equitably deliver regenerative medicine therapies to diverse populations across four California counties  U.C. Irvine – Daniela Bota  $8,000,000
INFR4-13597UC San Diego Health CIRM Alpha Stem Cell Clinic  U.C. San Diego – Catriona Jamieson  $8,000,000

The Board also unanimously, and enthusiastically, approved the election of Maria Gonzalez Bonneville to be the next Vice Chair of the Board. Ms. Bonneville, the current Vice President of Public Outreach and Board Governance at CIRM, was nominated by all four constitutional officers: the Governor, the Lieutenant Governor, the Treasurer and the Controller.

In supporting the nomination, Board member Ysabel Duron said: “I don’t think we could do better than taking on Maria Gonzalez Bonneville as the Vice Chair. She is well educated as far as CIRM goes. She has a great track record; she is empathetic and caring and will be a good steward for the taxpayers to ensure the work we do serves them well.”

In her letter to the Board applying for the position, Ms. Bonneville said: “CIRM is a unique agency with a large board and a long history. With my institutional knowledge and my understanding of CIRM’s internal workings and processes, I can serve as a resource for the new Chair. I have worked hand-in-hand with both the Chair and Vice Chair in setting agendas, prioritizing work, driving policy, and advising accordingly.  I have worked hard to build trusted relationships with all of you so that I could learn and understand what areas were of the most interest and where I could help shed light on those particular programs or initiatives. I have also worked closely with Maria Millan for the last decade, and greatly enjoy our working relationship. In short, I believe I provide a level of continuity and expertise that benefits the board and helps in times of transition.”

In accepting the position Ms. Bonneville said: “I am truly honored to be elected as the Vice Chair for the CIRM Board. I have been a part of CIRM for 11 years and am deeply committed to the mission and this new role gives me an opportunity to help support and advance that work at an exciting time in the Agency’s life. There are many challenges ahead of us but knowing the Board and the CIRM team I feel confident we will be able to meet them, and I look forward to helping us reach our goals.”

Ms. Bonneville will officially take office in January 2023.

The vote for the new Chair of CIRM will take place at the Board meeting on December 15th.

Developing a natural killer for cancer

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

When Lili Yang was studying for her PhD she approached her mentor, the Nobel Laureate Dr. David Baltimore, and told him she was thinking about writing her thesis on a combination of gene therapy, immunotherapy and stem cell therapy. She says he looked at her and told her that all three of those approaches had a bad reputation because of so many past failures. He asked her, “Are you sure?” She was.

Fast forward 20 years and Dr. Yang and her team at UCLA have developed stem cell-engineered invariant Natural Killer T (iNKT) cells, a kind of specialized immune system cell, that has the ability to attack and kill a broad range of cancerous cells, while leaving the body’s healthy tissues unharmed.

Thanks to several CIRM grants, Dr. Yang has developed a platform that can use healthy donor blood stem cells to produce clinical scalable “off-the-shelf” iNKT cells. That has led to the creation of Appia Bio, a start-up company, and talks with the FDA about testing a series of iNKT cell products in clinical trials.

Besides developing cell products targeting the more established blood cancer disease indications, Dr. Yang is most excited about using the same platform to generate off-the-shelf iNKT cell products that could target solid tumor cancers that comprise over 90% of the total cancer cases, such as breast, ovarian, prostate, lung, liver, and colon cancers.

“I have this dream that cell therapy can become off-the-shelf, and how this would really help all cancer patients in need. The current cancer cell therapy requires treating patients one-by-one, resulting in a steep price that is hard to afford ($300,000-$500,000 per patient per treatment) and a complex therapy delivery logistics that is challenging to fulfill (coordination of hospitalization, blood collection, cell manufacturing and infusion for each patient). Not everyone lives near a hospital capable of handling such a personalized therapy or can afford such a steep price. If we can make this therapy with centralized manufacturing, pre-quality controlled and ready for wide use then we don’t need to worry about the gender or age or location of the patient. For off-the-shelf therapy, price is also expected to drop down significantly- this will eventually be ready for everyone everywhere.”

Pioneering a new approach to HIV/AIDS

Dr. Steven Deeks. Photo courtesy UCSF

I’ve always been impressed by the willingness of individuals to step forward and volunteer for a clinical trial. Even more so when they are the first person ever to test a first-in-human therapy. They really are pioneers in helping advance a whole new approach to treating disease. 

That’s certainly the case for the first individual treated in a CIRM-funded clinical trial to develop a functional cure for HIV/AIDS. Caring Cross announced recently that they have dosed the first patient in the trial testing their anti-HIV duoCAR-T cell therapy.  

The trial is being led by UC San Francisco’s Dr. Steven Deeks and UC Davis’ Dr. Mehrdad Abedi. Their approach involves taking a patient’s own blood and extracting T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient. 

The goal of this one-time therapy is to act as a long-term control of HIV with patients no longer needing to take anti-HIV medications. If it is successful it would be, in effect, a form of functional HIV cure.   

This first phase involves giving different patients different levels of the duoCAR-T therapy to determine the best dose, and to make sure it is safe and doesn’t cause any negative side effects.  

This is obviously just the first step in a long process, but it’s an important first step and certainly one worth marking. As Dr. Deeks said in the news release, “We have reached an important milestone with the dosing of the first participant in the Phase 1/2a clinical trial evaluating a potentially groundbreaking anti-HIV duoCAR-T cell therapy. Our primary goal for this clinical trial is to establish the safety of this promising therapeutic approach.” 

Dr. Abedi, echoed that saying. “The first participant was dosed with anti-HIV duoCAR-T cells at the UC Davis medical center in mid-August. There were no adverse events observed that were related to the product and the participant is doing fine.” 

This approach carries a lot of significance not just for people with HIV in the US, but also globally. If successful it could help address the needs of people who are not able to access antiretroviral therapies or for whom those medications are no longer effective.  

Today there are an estimated 38 million people living with HIV around the world. Every year some 650,000 people die from the disease.  

California researchers developing vaccine to curb the spread of Zika virus

Zika is caused by a virus that is mainly transmitted by infected female Aedes aegypti mosquitoes but also through sexual intercourse. People infected by Zika virus usually have mild symptoms that normally last for two to seven days and can include fever, skin rashes, conjunctivitis, muscle and joint pain, or headaches.

Zika also causes devastating congenital neurodefective disorders, most notably microcephaly, where a child’s head is much smaller than expected, in children born to infected mothers as well as neurological problems in those infected like Guillain-Barré syndrome.

To date, no vaccines or other treatments have been approved for Zika virus. Nor have investigations into other ways of fighting the virus led to clearly effective countermeasures. 

But there is good news. Researchers from the University of California, Los Angeles (UCLA) have developed a Zika vaccine technology that is both highly effective and safe in preclinical mouse models. The study—partially funded by the California Institute for Regenerative Medicine (CIRM)—found that in a pregnant mouse model, the vaccine prevented both the pregnant mothers and the developing fetuses from developing systemic infection. 

Dr. Vaithilingaraja Arumugaswami, an associate professor of molecular and medical pharmacology at the University of California, Los Angeles (UCLA) is a co-senior author of the study.

In engineering the vaccine, researchers deleted the part of the Zika genome that codes for the viral shell, the protective shell that a virus forms to evade the immune system. “This modification both stimulates an immunogenic reaction and prevents the virus from replicating and spreading from cell to cell,” said Vaithilingaraja Arumugaswami, D.V.M., Ph.D., Associate Professor of Molecular and Medical Pharmacology at UCLA.  

This is important progress because the average length of time between periods of extensive Zika viral spread is approximately 7 years. Given that the virus was last widespread in 2016, “it is only a matter of time before we start seeing the virus spread again,” said Kouki Morizono, M.D., Ph.D., Associate Professor of Medicine at UCLA and co-senior author of this study. 

“The ongoing COVID-19 pandemic has shown us the power of a strong pandemic preparedness plan and clear communication about prevention methods – all culminating in the rapid rollout of safe and reliable vaccines. Our research is a crucial first step in developing an effective vaccination program that could curb the spread of Zika virus and prevent large-scale spread from occurring,” said Arumugaswami. 

This research is published in Microbiology Spectrum,  a journal of the American Society for Microbiology. 

CIRM-funding supports world’s first stem cell treatment for spina bifida delivered during fetal surgery

Dr. Diana Farmer (right) meets with Emily Lofton and her baby Robbie who had stem cell treatment for spina bifida in the womb. Photo: UC Davis Health

The California Institute for Regenerative Medicine (CIRM) recently shared some encouraging news on The Stem Cellar about a CIRM-funded stem cell clinical trial for spina bifida at UC Davis Health. 
 
Spina bifida is a birth defect that occurs when the spine and spinal cord don’t form properly and can result in life-long walking and mobility problems for the child, even paralysis. 
 
Now, UC Davis has released more details about the clinical trial and the babies born after receiving the world’s first spina bifida treatment combining surgery with stem cells. The story was featured in BBC News and The Sacramento Bee.  
 
The first phase of the trial is funded by a $9 million grant from the California Institute for Regenerative Medicine. 
 
The one-of-a-kind treatment, delivered while a fetus is still developing in the mother’s womb, could improve outcomes for children with this birth defect. 

A Decade’s Work

“I’ve been working toward this day for almost 25 years now,” said Dr. Diana Farmer, the world’s first woman fetal surgeon, professor and chair of surgery at UC Davis Health and principal investigator on the study.  

In previous clinical trial, Farmer had helped to prove that fetal surgery reduced neurological deficits from spina bifida. Many children in that study showed improvement but still required wheelchairs or leg braces.  

Dr. Diana Farmer and Dr. Aijun Wang. Photo courtesy UC Davis Health

Farmer recruited bioengineer Dr. Aijun Wang to help take that work to the next level. Together, they researched and tested ways to use stem cells and bioengineering to advance the effectiveness and outcomes of the surgery.  

Farmer, Wang and their research team have been working on their novel approach using stem cells in fetal surgery for more than 10 years. Over that time, animal modeling has shown it is capable of preventing the paralysis associated with spina bifida. 

Preliminary work by Farmer and Wang proved that prenatal surgery combined with human placenta-derived mesenchymal stromal cells, held in place with a biomaterial scaffold to form a “patch,” helped lambs with spina bifida walk without noticeable disability. When the team refined their surgery and stem cells technique for canines, the treatment also improved the mobility of dogs with naturally occurring spina bifida. 

The CuRe Trial

When Emily and her husband Harry learned that they would be first-time parents, they never expected any pregnancy complications. But the day that Emily learned that her developing child had spina bifida was also the day she first heard about the CuRe trial, as the clinical trial is known.  

Participating in the trial would mean that she would need to temporarily move to Sacramento for the fetal surgery and then for weekly follow-up visits during her pregnancy.  

After screenings, MRI scans and interviews, Emily received the news that she was accepted into the trial. Her fetal surgery was scheduled for July 12, 2021, at 25 weeks and five days gestation.  

Farmer and Wang’s team manufactured clinical grade stem cells—mesenchymal stem cells—from placental tissue in the UC Davis Health’s CIRM-funded Institute for Regenerative Cures. The lab is a Good Manufacturing Practice (GMP) Laboratory for safe use in humans. It is here that they made the stem cell patch for Emily’s fetal surgery. 

The Procedure

During Emily’s historic procedure, a small opening was made in her uterus and they floated the fetus up to that incision point so they could expose its spine and the spina bifida defect. 

Credit: UC Davis Health

Then, the stem cell patch was placed directly over the exposed spinal cord of the fetus. The fetal surgeons then closed the incision to allow the tissue to regenerate. The team declared the first-of-its-kind surgery a success. 

On Sept. 20, 2021, at 35 weeks and five days gestation, Robbie was born at 5 pounds, 10 ounces, 19 inches long via C-section. 

For Farmer, this day is what she had long hoped for, and it came with surprises. If Robbie had remained untreated, she was expected to be born with leg paralysis. 

Baby Robbie underwent treatment for spina bifida while in the womb. Photo credit: UC David Health

“It was very clear the minute she was born that she was kicking her legs and I remember very clearly saying, ‘Oh my God, I think she’s wiggling her toes!’” said Farmer. “It was amazing. We kept saying, ‘Am I seeing that? Is that real?’” 

Both mom and baby are at home and in good health. Robbie just celebrated her first birthday. 

Emily Lofton and her baby daughter Robbie who underwent treatment for spina bifida while in the womb.

The CuRe team is cautious about drawing conclusions and says a lot is still to be learned during this safety phase of the trial. The team will continue to monitor Robbie and the other babies in the trial until they are 6 years old, with a key checkup happening at 30 months to see if they are walking and potty training. 

“This experience has been larger than life and has exceeded every expectation. I hope this trial will enhance the quality of life for so many patients to come,” Emily said. “We are honored to be part of history in the making.” 


Read the official release from UC Davis Health here.  

Strength forged from adversity

Regina Karchner – Photo courtesy Nancy Ramos Photography

Our 2021-22 Annual Report is now online. It’s filled with information about the work we have done over the last year (we are on a fiscal calendar year from July 1 – June 30), the people who have helped us do that work, and some of the people who have benefited from that work. One of those is Regina Karchner. 


Regina Karchner says she feels as if she’s been a patient advocate for people with brain cancer almost from birth. When she was three, her father died of a brain tumor. When she was 16 Regina was diagnosed with brain cancer. While she was in the hospital she heard about the Children’s Brain Tumor Foundation (CBTF) and as soon as she was able she became a volunteer with the organization. Today she is a social work regional coordinator at CBTF.  

She says that as an advocate she feels she has a responsibility to help families deal with devastating news, to talk about death, and how to cope with the emotional trauma of it. She also advocates on behalf of survivors, like herself.  

“I am just such an advocate for the need for long term programming for brain cancer survivors, because it’s so different from other cancers. The emotional, cognitive and physical impacts of brain tumors are dramatic, that’s even if the individuals survive.  

“We are working with people in their 40’s who were the first group of childhood survivors and there’s nowhere to go that matches their needs, they can’t function enough to live independently and work full time. It’s a big problem in the medical world and even in schools, they don’t understand brain tumors, they don’t see it as a traumatic brain injury which it is and even the most well-intended schools don’t really know what to do or handle the patients.” 

“We found that survivors with better social skills have a better quality of life, so we are now trying to focus on kids in elementary school, giving them the social skills they need to survive and that are hard to catch up on later in life. They can get math or history or other subjects anytime, but the social skills are essential” 

Regina also serves on a CIRM Clinical Advisory Panel or CAP for a clinical trial for children with brain cancer. She says having the patient advocate at the table is vital to the success of the trial. “I help the researchers understand the needs of the patient, even understand why families don’t enroll in trials. 80% of families who have kids with brain tumors are on Medicaid so it’s a select group of people who can afford to be in these trials. Letting the researchers know that and coming up with ways to help them is so important.” 

She says it’s challenging work, but also very rewarding. “It feels wonderful to help families in a time of need. I feel I grow as a person and as a parent, I have learnt so much that helps me in my personal life and being grateful for having a healthy family and being a healthy survivor myself.”