Stem cell clinics make big claims but offer little evidence they can treat osteoarthritic knees

osteoarthritis knee

If someone says they have a success rate of close to 100 percent in treating a major health problem but offer little evidence to back that up, you might be excused for being more than a tad skeptical. And a new study says you would be right.

The health problem in question is osteoarthritis (OA) of the knee, something that affects almost 10 million Americans. It’s caused by the wearing down of the protective cartilage in the knee. That cartilage acts as a kind of shock absorber, so when it’s gone you have bone rubbing against bone. That’s not just painful but also debilitating, making it hard to lead an active life.

There is a lot of research taking place – including a clinical trial that CIRM is funding – that focuses on using stem cells to create new cartilage, but so far nothing has been approved by the US Food and Drug Administration for wider use. The reason for that is simple. No approach has yet proven it is both safe and effective.

No evidence? No worries

But that doesn’t stop many clinics around the US, and around the world, from claiming they have treatments that work and charging patients a hefty sum to get them.

In a study presented at the Annual Meeting of the American Academy of Orthopaedic Surgeons, researchers contacted 317 clinics in the US that directly market stem cell therapies to consumers. They asked the clinics for information on the cost of the procedure and their success rate.

  • Only 65 clinics responded
  • Lowest price was $1,150
  • Highest price was $12,000,
  • Average price of $5,156.

Only 36 clinics responded with information about success rates.

  • 10 claimed between 90 and 100 percent success
  • 15 claimed 80 to 90 percent success
  • 10 claimed 70 to 80 percent
  • One said just 55 percent.

None offered any evidence based on a clinical trial that supported those claims, and there was no connection between how much they charged and how successful they claimed to be.

In a news release about the study – which appears in the Journal of Knee Surgery – George Muschler, one of the lead authors, said that orthopedic surgeons have a duty to give patients the best information available about all treatment options.

“Recent systematic reviews of cellular therapies for the treatment of knee OA (over 400 papers screened) have found poor levels of evidence for the efficacy of these treatments to date. Current evidence does not justify the rapid rate of growth for these therapies.”

Nicolas Piuzzi, the other lead author on the study, says if the evidence doesn’t justify the growth in the number of clinics offering these therapies, it certainly doesn’t justify the prices they charge.

“The claim of “stem cell” therapy carries a high level of expectations for the potential benefits, but research is still many years away from providing clear evidence of effective treatment to patients. As clinicians and researchers, we have ethical, scientific, legal and regulatory concerns. Patients need to be aware of the status of research within the field. If they receive information from anyone offering a treatment claim of an 80 to 100 percent successful recovery, they should be concerned in observance of published peer-reviewed evidence.”

Stem Cell Patch Restores Vision in Patients with Age-Related Macular Degeneration

Stem cell-derived retinal pigmented epithelial cells. Cell borders are green and nuclei are red. (Photo Credit: Dennis Clegg, UCSB Center for Stem Cell Biology and Engineering)

Two UK patients suffering from vision loss caused by age-related macular degeneration (AMD) have regained their sight thanks to a stem cell-based retinal patch developed by researchers from UC Santa Barbara (UCSB). The preliminary results of this promising Phase 1 clinical study were published yesterday in the journal Nature Biotechnology.

AMD is one of the leading causes of blindness and affects over six million people around the world. The disease causes the blurring or complete loss of central vision because of damage to an area of the retina called the macula. There are different stages (early, intermediate, late) and forms of AMD (wet and dry). The most common form is dry AMD which occurs in 90% of patients and is characterized by a slow progression of the disease.

Patching Up Vision Loss

In the current study, UCSB researchers engineered a retinal patch from human embryonic stem cells. These stem cells were matured into a layer of cells at the back of the eye, called the retinal pigment epithelium (RPE), that are damaged in AMD patients. The RPE layer was placed on a synthetic patch that is implanted under the patient’s retina to replace the damaged cells and hopefully improve the patient’s vision.

The stem cell-based eyepatches are being implanted in patients with severe vision loss caused by the wet form of AMD in a Phase 1 clinical trial at the Moorfields Eye Hospital NHS Foundation Trust in London, England. The trial was initiated by the London Project to Cure Blindness, which was born from a collaboration between UCSB Professor Peter Coffey and Moorsfields retinal surgeon Lyndon da Cruz. Coffey is a CIRM grantee and credited a CIRM Research Leadership award as one of the grants that supported this current study.

The trial treated a total of 10 patients with the engineered patches and reported 12-month data for two of these patients (a woman in her 60s and a man in his 80s) in the Nature Biotech study. All patients were given local immunosuppression to prevent the rejection of the implanted retinal patches. The study reported “three serious adverse events” that required patients to be readmitted to the hospital, but all were successfully treated. 12-months after treatment, the two patients experienced a significant improvement in their vision and went from not being able to read at all to reading 60-80 words per minute using normal reading glasses.

Successfully Restoring Sight

Douglas Waters, the male patient reported on, was diagnosed with wet AMD in July 2015 and received the treatment in his right eye a few months later. He spoke about the remarkable improvement in his vision following the trial in a news release:

“In the months before the operation my sight was really poor, and I couldn’t see anything out of my right eye. I was struggling to see things clearly, even when up-close. After the surgery my eyesight improved to the point where I can now read the newspaper and help my wife out with the gardening. It’s brilliant what the team have done, and I feel so lucky to have been given my sight back.”

This treatment is “the first description of a complete engineered tissue that has been successfully used in this way.” It’s exciting not only that both patients had a dramatic improvement in their vision, but also that the engineered patches were successful at treating an advanced stage of AMD.

The team will continue to monitor the patients in this trial for the next five years to make sure that the treatment is safe and doesn’t cause tumors or other adverse effects. Peter Coffey highlighted the significance of this study and what it means for patients suffering from AMD in a UCSB news release:

Peter Coffey

“This study represents real progress in regenerative medicine and opens the door to new treatment options for people with age-related macular degeneration. We hope this will lead to an affordable ‘off-the-shelf’ therapy that could be made available to NHS patients within the next five years.”

Inspiring Video: UC Irvine Stem Cell Trial Gives Orange County Woman Hope in Her Fight Against ALS

Stephen Hawking

Last week, we lost one of our greatest, most influential scientific minds. Stephen Hawking, a famous British theoretical physicist and author of “A Brief History of Time: From the Big Bang to Black Holes”, passed away at the age of 76.

Hawking lived most of his adult life in a wheelchair because he suffered from amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, ALS causes the degeneration of the nerve cells that control muscle movement.

When Hawking was diagnosed with ALS at the age of 21, he was told he only had three years to live. But Hawking defied the odds and went on to live a life that not only revolutionized our understanding of the cosmos, but also gave hope to other patients suffering from this devastating degenerative disease.

A Story of Hope

Speaking of hope, I’d like to share another story of an Orange County woman name Lisa Wittenberg who was recently diagnosed with ALS. Her story was featured this week on KTLA5 news and is also available on the UC Irvine Health website.

VIDEO: UCI Health stem cell trial helps Orange County woman fight neurodegenerative disease ALS. Click on image to view video in new window.

In this video, Lisa describes how quickly ALS changed her life. She was with her family sledding in the snow last winter, and only a year later, she is in a wheelchair unable to walk. Lisa got emotional when she talked about how painful it is for her to see her 13-year-old son watch her battle with this disease.

But there is hope for Lisa in the form of a stem cell clinical trial at the UC Irvine CIRM Alpha Stem Cell Clinic. Lisa enrolled in the Brainstorm study, a CIRM-funded phase 3 trial that’s testing a mesenchymal stem cell therapy called NurOwn. BrainStorm Cell Therapeutics, the company sponsoring this trial, is isolating mesenchymal stem cells from the patient’s own bone marrow. The stem cells are then cultured in the lab under conditions that convert them into biological factories secreting a variety of neurotrophic factors that help protect the nerve cells damaged by ALS. The modified stem cells are then transplanted back into the patient where they will hopefully slow the progression of the disease.

Dr. Namita Goyal, a neurologist at UC Irvine Health involved in the trial, explained in the KTLA5 video that they are hopeful this treatment will give patients more time, and optimistic that in some cases, it could improve some of their symptoms.

Don’t Give Up the Fight

The most powerful part of Lisa’s story to me was the end when she says,

“I think it’s amazing that I get to fight, but I want everybody to get to fight. Everybody with ALS should get to fight and should have hope.”

Not only is Lisa fighting by being in this ground-breaking trial, she is also participated in the Los Angeles marathon this past weekend, raising money for ALS research.

More patients like Lisa will get the chance to fight as more potential stem cell treatments and drugs enter clinical trials. Videos like the one in this blog are important for raising awareness about available clinical trials like the Brainstorm study, which, by the way, is still looking for more patients to enroll (contact information for this trial can be found on the website here). CIRM is also funding another stem cell trial for ALS at the Cedars-Sinai Medical Center. You can read more about this trial on our website.

Lisa’s powerful message of fighting ALS and having hope reminds me of one of Stephen Hawking’s most famous quotes, which I’ll leave you with:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the Universe exist. Be curious. And however difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”

Related Links:

Stem Cell Round: Improving memory, building up “good” fat, nanomedicine

Stem Cell Photo of the Week

roundup03618In honor of brain awareness week, our featured stem cell photo is of the brain! Scientists at the Massachusetts General Hospital and Harvard Stem Cell Institute identified a genetic switch that could potentially improve memory during aging and symptoms of PTSD. Shown in this picture are dentate gyrus cells (DGC) (green) and CA3 interneurons (red) located in the memory-forming area of the brain known as the hippocampus. By reducing the levels of a protein called abLIM3 in the DGCs of older mice, the researchers were able to boost the connections between DGCs and CA3 cells, which resulted in an improvement in the memories of the mice. The team believes that targeting this protein in aging adults could be a potential strategy for improving memory and treating patients with post-traumatic stress disorder (PTSD). You can read more about this study in The Harvard Gazette.

New target for obesity.
Fat cells typically get a bad rap, but there’s actually a type of fat cell that is considered “healthier” than others. Unlike white fat cells that store calories in the form of energy, brown fat cells are packed with mitochondria that burn energy and produce heat. Babies have brown fat, so they can regulate their body temperature to stay warm. Adults also have some brown fat, but as we get older, our stores are slowly depleted.

In the fight against obesity, scientists are looking for ways to increase the amount of brown fat and decrease the amount of white fat in the body. This week, CIRM-funded researchers from the Salk Institute identified a molecule called ERRg that gives brown fat its ability to burn energy. Their findings, published in Cell Reports, offer a new target for obesity and obesity-related diseases like diabetes and fatty liver disease.

The team discovered that brown fat cells produce the ERRg molecule while white fat cells do not. Additionally, mice that couldn’t make the ERRg weren’t able to regulate their body temperature in cold environments. The team concluded in a news release that ERRg is “involved in protection against the cold and underpins brown fat identity.” In future studies, the researchers plan to activate ERRg in white fat cells to see if this will shift their identity to be more similar to brown fat cells.


Mice that lack ERR aren’t able to regulate their body temperature and are much colder (right) than normal mice (left). (Image credit Salk Institute)

Tale of two nanomedicine stories: making gene therapies more efficient with a bit of caution (Todd Dubnicoff).
This week, the worlds of gene therapy, stem cells and nanomedicine converged for not one, but two published reports in the journal American Chemistry Society NANO.

The first paper described the development of so-called nanospears – tiny splinter-like magnetized structures with a diameter 5000 times smaller than a strand of human hair – that could make gene therapy more efficient and less costly. Gene therapy is an exciting treatment strategy because it tackles genetic diseases at their source by repairing or replacing faulty DNA sequences in cells. In fact, several CIRM-funded clinical trials apply this method in stem cells to treat immune disorders, like severe combined immunodeficiency and sickle cell anemia.

This technique requires getting DNA into diseased cells to make the genetic fix. Current methods have low efficiency and can be very damaging to the cells. The UCLA research team behind the study tested the nanospear-delivery of DNA encoding a gene that causes cells to glow green. They showed that 80 percent of treated cells did indeed glow green, a much higher efficiency than standard methods. And probably due to their miniscule size, the nanospears were gentle with 90 percent of the green glowing cells surviving the procedure.

As Steve Jonas, one of the team leads on the project mentions in a press release, this new method could bode well for future recipients of gene therapies:

“The biggest barrier right now to getting either a gene therapy or an immunotherapy to patients is the processing time. New methods to generate these therapies more quickly, effectively and safely are going to accelerate innovation in this research area and bring these therapies to patients sooner, and that’s the goal we all have.”

While the study above describes an innovative nanomedicine technology, the next paper inserts a note of caution about how experiments in this field should be set up and analyzed. A collaborative team from Brigham and Women’s Hospital, Stanford University, UC Berkeley and McGill University wanted to get to the bottom of why the many advances in nanomedicine had not ultimately led to many new clinical trials. They set out looking for elements within experiments that could affect the uptake of nanoparticles into cells, something that would muck up the interpretation of results.


imaging of female human amniotic stem cells incubated with nanoparticles demonstrated a significant increase in uptake compared to male cells. (Green dots: nanoparticles; red: cell staining; blue: nuclei) Credit: Morteza Mahmoudi, Brigham and Women’s Hospital.

In this study, they report that the sex of cells has a surprising, noticeable impact on nanoparticle uptake. Nanoparticles were incubated with human amniotic stem cells derived from either males or females. The team showed that the female cells took up the nanoparticles much more readily than the male cells.  Morteza Mahmoudi, PhD, one of the authors on the paper, explained the implications of these results in a press release:

“These differences could have a critical impact on the administration of nanoparticles. If nanoparticles are carrying a drug to deliver [including gene therapies], different uptake could mean different therapeutic efficacy and other important differences, such as safety, in clinical data.”


Video illustrates potential path to stem cell repair for multiple sclerosis

“Can you imagine slowly losing the ability to live life as you know it? To slowly lose the ability to see, to walk, to grab an object, all the while experiencing pain, fatigue and depression?”

These sobering questions are posed at the beginning of a recent video produced by Youreka Science and Americans for Cures about multiple sclerosis (MS), a debilitating neurodegenerative disorder in which a person’s own immune system attacks cells that are critical for sending nerve signals from the brain and spinal cord to our limbs and the rest of our body.

In recognition of Multiple Sclerosis Awareness Week, today’s blog features this video. Using an easy to understand narrative and engaging hand-drawn illustrations, this whiteboard “explainer” video does a terrific job of describing the biological basis of multiple sclerosis. It also highlights promising research out of UC Irvine showing that stem cell-based therapies may one day help repair the damage caused by multiple sclerosis.

But don’t take my word for it, check out the five-minute video below:

Related Links:

CIRM-funded clinical trial takes a combination approach to treating deadly blood cancers

Stained blood smear shows enlarged chronic lymphocytic leukemia cells among normal red blood cells. (UCSD Health)

A diagnosis of cancer often means a tough road ahead, with surgery, chemotherapy and radiation used to try and kill the tumor. Even then, sometimes cancer cells manage to survive and return later, spreading throughout the body. Now researchers at UC San Diego and Oncternal Therapeutics are teaming up with a combination approach they hope will destroy hard-to-kill blood cancers like leukemia.

The combination uses a monoclonal antibody called cirmtuzumab (so called because CIRM funding helped develop it) and a more traditional anti-cancer therapy called ibrutinib. Here’s how it is hoped this approach will work.

Ibrutinib is already approved by the US Food and Drug Administration (FDA) to treat blood cancers such as leukemia and lymphoma. But while it can help, it doesn’t always completely eradicate all the cancer cells. Some cancer stem cells are able to lie dormant during treatment and then start proliferating and spreading the cancer later. That’s why the team are pairing ibrutinib with cirmtuzumab.

In a news release announcing the start of the trial, UCSD’s Dr. Thomas Kipps,  said they hope this one-two punch combination will be more effective.

Thomas Kipps, UCSD

“As a result {of the failure to kill all the cancer cells}, patients typically need to take ibrutinib indefinitely, or until they develop intolerance or resistance to this drug. Cirmtuzumab targets leukemia and cancer stem cells, which are like the seeds of cancer. They are hard to find and difficult to destroy. By blocking signaling pathways that promote neoplastic-cell growth and survival, cirmtuzumab may have complementary activity with ibrutinib in killing leukemia cells, allowing patients potentially to achieve complete remissions that permit patients to stop therapy altogether.”

Because this is an early stage clinical trial, the goal is to first make sure the approach is safe, and second to identify the best dose and treatment schedule for patients.

The researchers hope to recruit 117 patients around the US. Some will get the cirmtuzumab and ibrutinib combination, some will get ibrutinib alone to see if one approach is more effective than the other.

CIRM has a triple investment in this research. Not only did our funding help develop cirmtuzumab, but CIRM is also funding this clinical trial and one of the trial sites is at UCSD, one of the CIRM Alpha Stem Cell Clinics.

CIRM’s Dr. Ingrid Caras says this highlights our commitment to our mission of accelerating stem cell therapies to patients with unmet medical needs.

“Our partnership with UC San Diego and the Alpha Stem Cell Clinics has enabled this trial to more quickly engage potential patient-participants. Being among the first to try new therapies requires courage and CIRM is grateful to the patients who are volunteering to be part of this clinical trial.”

Related Links:

Stem Cell Roundup: No nerve cells for you, old man; stem cells take out the trash; clues to better tattoo removal

Stem cell image of the week: Do they or don’t they? The debate on new nerve cell growth in adult brain rages on.


Young neurons (green) are shown in the human hippocampus at the ages of (from left) birth, 13 years old and 35 years old. Images by Arturo Alvarez-Buylla lab

For the longest time, it was simply a given among scientists that once you reach adulthood, your brain’s neuron-making days were over. Then, over the past several decades, evidence emerged that the adult brain can indeed make new neurons, in a process called neurogenesis. Now the pendulum of understanding may be swinging back based on research reported this week out of Arturo Alvarez-Buylla’s lab at UCSF.

Through the careful examination of 59 human brain samples (from post mortem tissue and those collected during epilepsy surgery), Alvarez-Buylla’s team in collaboration with many other labs around the world, found lots of neurogenesis in neonatal and newborn brains. But after 1 year of age, a steep drop in the number of new neurons was observed. Those numbers continued to plummet through childhood and were barely detectable in samples from teens. New neurons were undetectable in adult brain samples.

This week’s stem cell image shows this dramatic decline of new neurons when comparing brain samples from a newborn, a 13 year-old and a 35 year-old.

It was no surprise that these surprising results, published in Nature, got quite a bit of attention by a wide range of news outlets including the LA Times, CNN, The Scientist and NPR to name just a few.

Limitless life of stem cells requires taking out the trash

It’s minding blowing to me that, given the proper nutrients, an embryonic stem cell in a lab dish can exist indefinitely. The legendary fountain of youth that Ponce de León searched in vain for is actually hidden inside these remarkable cells. So how do they do it? It’s a tantalizing question for researchers because the answers could lead to a better understanding of and eventually novel therapies for age-related diseases.


Cartoon of a proteosome, the cell’s garbage disposal. Image: Wikipedia

A team from the University of Cologne reports this week on a connection between the removal of degraded proteins and the longevity of stem cells. Cells in general use special enzymes to tag wonky proteins for the cellular trash heap, called a proteasome. Without this ability to clean up, unwanted proteins can accumulate and make cells unhealthy, a scenario that is seen in age-related diseases like Alzheimer’s. The research team found that reducing the protein disposal activity in embryonic stem cells disrupted characteristics that are specific to these cells. So, one way stem cells may keep their youthful appearance is by being good about taking out their trash.

The study was published in Scientific Reports and picked up by Science Daily.

Why tattoos stay when your skin cells don’t ( by Kevin McCormack)

We replace our skin cells every two or three weeks. As each layer dies, the stem cells in the skin replace them with a new batch. With that in mind you’d think that a tattoo, which is just ink injected into the skin with a needle, would disappear as each layer of skin is replaced. But obviously it doesn’t. Now some French researchers think they have figured out why.


Thank your macrophages for keeping your tattoo intact. Tattoo by: Sansanana

It’s not just fun science, published in the Journal of Experimental Medicine, it could also mean that that embarrassing tattoo you got saying you would love Fred or Freda forever, can one day be easily removed.

The researchers found that when the tattoo needle inflicts a wound on the skin, specialized cells called macrophages flock to the site and take up the ink. As those macrophages die, instead of the ink disappearing with them, new macrophages come along, gobble up the ink and so the tattoo lives on.

In an interview with Health News Digest, Bernard Malissen, one of the lead investigators, says the discovery, could help erase a decision made in a moment of madness:

“Tattoo removal can be likely improved by combining laser surgery with the transient ablation of the macrophages present in the tattoo area. As a result, the fragmented pigment particles generated using laser pulses will not be immediately recaptured, a condition increasing the probability of having them drained away via the lymphatic vessels.”

It’s World Kidney Day: Highlighting CIRM’s Investments in Treating Kidney Failure

WKD-Logo-HiToday is World Kidney Day. Hundreds of events across the globe are taking place “to raise awareness of the importance of our kidneys to our overall health and to reduce the frequency and impact of kidney disease and its associated health problems worldwide.” (Side note: in recognition that today is also International Women’s Day, World Kidney Day’s theme this year is “Kidney’s & Women: Include, Value, Empower.)

To honor this day, we’re highlighting how CIRM is playing its part in that mission. The infographic below provides big picture summaries of the four CIRM-funded clinical trials that are currently testing stem cell-based therapies for kidney failure, a condition that affects well over 600,000 Americans.

When a person’s kidneys fail, their body can no longer filter out waste products and extra fluid from the blood which leads to life-threatening complications. About 30% of those affected in the U.S. have organ transplants. Due to the limited availability of donor organs, the other 70% need dialysis, a blood filtration therapy, that requires several trips a week to a special clinic.

Both treatment options have serious limitations. Organ recipients have to take drugs that prevent organ rejections for the rest of their lives. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes. In the case of dialysis treatment, the current procedure uses a plastic tube called a shunt to connect to a patient’s vein. These shunts are far from ideal and can lead to infection, blood clots and can be rejected by the patient’s immune system. These complications probably play a role in the average life expectancy of 5-10 years for dialysis patients.

Four CIRM-funded clinical trials aim to circumvent these drawbacks. Humacyte has received over $24 million from the Agency to support two clinical trials that are testing an alternative to the plastic shunt used in dialysis treatment. The company has developed a bioengineered vessel that is implanted in the patient’s arm and over time is populated with the patient’s own stem cells which develop into a natural blood vessel. The trials will determine if the bioengineered vessel is superior to the shunt in remaining open for longer periods of time and with lower incidence of interventions due to blood clots and infections.

The other two CIRM-funded trials, one headed by Stanford University and the other by Medeor Therapeutics, aims to eliminate the need for long-life, anti-rejection medicine after kidney transplant. Both trials use a similar strategy: blood stem cells and immune cells from the organ donor are infused into the patient receiving the organ. If all goes as planned, those donor cells will engraft into and mix with the recipient’s immune system, making organ rejection less likely and ending the need for immune-system suppressing drugs.

For more details visit our Clinical Trial Dashboard.


A shot in the arm for people with bad knees


Almost every day I get an email or phone call from someone asking if we have a stem cell therapy for bad knees. The inquiries are from people who’ve been told they need surgery to replace joints damaged by age and arthritis. They’re not alone. Every year around 600,000 Americans get a knee replacement. That number is expected to rise to three million by 2030.

Up till now my answer to those calls and emails has been ‘I’m sorry, we don’t have anything’. But a new CIRM-funded study from USC stem cell scientist Denis Evseenko says that may not always be the case.


The ability to regenerate joint cartilage cells instead of surgically replacing joints would be a big boon for future patients. (Photo/Nancy Liu, Denis Evseenko Lab, USC Stem Cell)

Evseenko and his team have discovered a molecule they have called Regulator of Cartilage Growth and Differentiation or RCGD 423. This cunning molecule works in two different ways. One is to reduce the inflammation that many people with arthritis have in their joints. The second is to help stimulate the regeneration of the cartilage destroyed by arthritis.

When they tested RCGD 423 in rats with damaged cartilage, the rats cartilage improved. The study is published in the Annals of Rheumatic Diseases.

In an article in USC News, Evseenko, says there is a lot of work to do but that this approach could ultimately help people with osteoarthritis or juvenile arthritis.

“The goal is to make an injectable therapy for an early to moderate level of arthritis. It’s not going to cure arthritis, but it will delay the progression of arthritis to the damaging stages when patients need joint replacements, which account for a million surgeries a year in the U.S.”

Breaking the isolation of rare diseases

Rare disease day

Rare Disease Day in Sacramento, California

How can something that affects 30 million Americans, one in ten people in the US, be called rare? But that’s the case with people who have a rare disease. There are around 7,000 different diseases that are categorized as rare because they affect fewer than 200,000 people. Less than five percent of these diseases have a treatment.

That’s why last Wednesday, in cities across the US, members of the rare disease community gathered to call for more support, more research, and more help for families battling these diseases. Their slogan tells their story, ‘Alone we are rare; Together we are strong.’

At the Rare Disease Day rally in Sacramento, California, I met Kerry Rivas. Kerry’s son Donovan has a life-threatening condition called Shprintzen-Goldberg Syndrome. Talk about rare. There are only 70 documented cases of the syndrome worldwide. Just getting a diagnosis for Donovan took years.

DonovanDonovan suffers from a lot of problems but the most serious affect his heart, lungs and spinal cord. Getting him the care he needs is time consuming and expensive and has forced Kerry and her family to make some big sacrifices. Even so they work hard to try and see that Donovan is able to lead as normal a life as is possible.

While the disease Kerry’s son has is rarer than most, everyone at Rare Disease Day had a similar story, and an equal commitment to doing all they can to be an effective advocate. And their voices are being heard.

To honor the occasion the US Food and Drug Administration (FDA) announced it was partnering with the National Organization of Rare Diseases (NORD) to hold listening sessions involving patients and FDA medical reviewers.

In a news release Peter L. Saltonstall, President and CEO of NORD, said:

“These listening sessions will provide FDA review division staff with better insight into what is important to patients in managing their diseases and improving their quality of life. It is important for FDA to understand, from the patient perspective, disease burden, management of symptoms, daily impact on quality of life, and patients’ risk tolerance. Patients and caregivers bring a pragmatic, realistic perspective about what they are willing to deal with in terms of potential risks and benefits for new therapies.”

FDA Commissioner Dr. Scott Gottlieb said his agency is committed to doing everything possible to help the rare disease community:

“Despite our successes, there are still no treatments for the vast proportion of rare diseases or conditions. FDA is committed to do what we can to stimulate the development of more products by improving the consistency and efficiency of our reviews, streamlining our processes and supporting rare disease research.”

At CIRM we are also committed to doing all we can to help the cause. Many of the diseases we are currently funding in clinical trials are rare diseases like ALS or Lou Gehrig’s disease, SCID, spinal cord injury and sickle cell disease.

Many pharmaceutical companies are shy about funding research targeting these diseases because the number of patients involved is small, so the chances of recouping their investment or even making a profit is small.

At CIRM we don’t have to worry about those considerations. Our focus is solely on helping those in need. People like Donovan Rivas.