Board Funds Fifteen Bridges to Stem Cell Research and Therapy Programs Across California and New Sickle Cell Disease Trial

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $8.39 million to the University of California, San Francisco (UCSF) to fund a clinical trial for sickle cell disease (SCD).  An additional $51.08 million was awarded to fifteen community colleges and universities across California to fund undergraduate and master’s level programs that will help train the next generation of stem cell researchers. 

SCD is an inherited blood disorder caused by a single gene mutation that changes a single base in the B globin gene leading to the production of defective hemoglobin that polymerizes and damages red blood cells thus the “sickle” shaped red blood cells.  The damaged cells cause blood vessels to occlude/close up and that can lead to multiple organ damage as well as reduced quality of life and life expectancy. 

Mark Walters, M.D., and his team at UCSF Benioff Children’s Hospital Oakland will be conducting a clinical trial that uses CRISPR-Cas9 gene editing technology to correct the genetic mutation in the blood stem cells of patients with severe SCD.  The corrected blood stem cells will then be reintroduced back into patients with the goal of correcting the defective hemoglobin and thus producing functional, normal shaped red blood cells.

This clinical trial will be eligible for co-funding under the landmark agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI) of the NIH.  The CIRM-NHLBI agreement is intended to co-fund cell and gene therapy programs under the NHLBI’s “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD. CIRM has previously funded the preclinical development of this therapy through a Translational award as well as its IND-enabling studies through a Late Stage Preclinical award in partnership with NHLBI.

The CIRM Bridges to Stem Cell Research and Therapy program provides undergraduate and master’s students with the opportunity to take stem cell related courses and receive hands on experience and training in a stem cell research related laboratory at a university or biotechnology company.  Fifteen institutions received a total of $51.08 million to carry out these programs to train the next generation of scientists.

The awards are summarized in the table below.

ApplicationTitleInstitutionAward Amount
  EDUC2-12607Bridges to Stem Cell Research and Therapy at Pasadena City College  Pasadena City College$3,605,500
  EDUC2-12611CIRM Bridges to Stem Cell Research and Therapy Training Grant  CSU San Marcos$3,606,500
  EDUC2-12617Bridges to Stem Cell Research Internship Program  San Diego State University$3,605,500
EDUC2-12620CIRM Bridges 3.0  Humboldt State$3,605,495
  EDUC2-12638CIRM Regenerative Medicine and Stem Cell Research Biotechnology Training Program  CSU Long Beach$3,276,500
    EDUC2-12677Stem Cell Internships in Laboratory-based Learning (SCILL) continue to expand the scientific workforce for stem cells research and therapies.  San Jose State University$3,605,500
  EDUC2-12691Strengthening the Pipeline of Master’s-level Scientific and Laboratory Personnel in Stem Cell Research  CSU Sacramento$2,946,500
EDUC2-12693CIRM Bridges Science Master’s Program  San Francisco State University$3,606,500
      EDUC2-12695CIRM Graduate Student Training in Stem Cell Sciences in the Stem Cell Technology and Lab Management Emphasis of the MS Biotechnology Program  CSU Channel Islands$3,606,500
  EDUC2-12718CSUN CIRM Bridges 3.0 Stem Cell Research & Therapy Training Program  CSU Northridge$3,606,500
      EDUC2-12720Stem Cell Scholars: a workforce development pipeline, educating, training and engaging students from basic research to clinical translation.  CSU San Bernardino$3,606,500
  EDUC2-12726Training Master’s Students to Advance the Regenerative Medicine Field  Cal Poly San Luis Obispo$3,276,500
  EDUC2-12730Building Career Pathways into Stem Cell Research and Therapy Development  City College of San Francisco$2,706,200
      EDUC2-12734Bridges to Stem Cell Research and Therapy: A Talent Development Program for Training Diverse Undergraduates for Careers in Regenerative Medicine  CSU Fullerton$3,606,500
  EDUC2-12738CIRM Bridges to Stem Cell Research and Therapy  Berkeley City College  $2,806,896

“We are pleased to fund a promising trial for sickle cell disease that uses the Nobel Prize winning gene editing technology CRISPR-Cas9,” says Maria T. Millan, M.D., President and CEO of CIRM.  “This clinical trial is a testament to how the CIRM model supports promising early-stage research, accelerates it through translational development, and advances it into the clinics. As the field advances, we must also meet the demand for promising young scientists.  The CIRM Bridges programs across the state of California will provide students with the tools and resources to begin their careers in regenerative medicine.”

Building a new mouse, one stem cell at a time

Science is full of acronyms. There are days where it feels like you need a decoder ring just to understand a simple sentence. A recent study found that between 1950 and 2019 researchers used more than 1.1 million unique acronyms in scientific papers. There’s even an acronym for three letter acronyms. It’s TLAs. Which of course has one more letter than the thing it stands for.

I only mention this because I just learned a new acronym, but this one could help change the way we are able to study causes of infertility. The acronym is IVG or in vitro gametogenesis and it could enable scientists to create both sperm and egg, from stem cells, and grow them in the lab. And now scientists in Japan have done just that and allowed these fertilized eggs to then develop into mice.

The study, published in the journal Science, was led by Dr. Katsuhiko Hayashi of Kyushu University in Japan. Dr. Hayashi is something of a pioneer in the field of IVG. In the past his team were the first to produce both mouse sperm, and mouse eggs from stem cells. But they ran into a big obstacle when they tried to get the eggs to develop to a point where they were ready to be fertilized.

Over the last five years they have worked to find a way around this obstacle and, using mouse embryonic stem cells, they developed a process to help these stem cell-generated eggs mature to the point where they were viable.

In an article in STAT News Richard Anderson, Chair of Clinical Reproductive Science at the University of Edinburgh, said this was a huge achievement: “It’s a very serious piece of work. This group has done a lot of impressive things leading up to this, but this latest paper really completes the in vitro gametogenesis story by doing it in a completely stem-cell-derived way.”

The technique could prove invaluable in helping study infertility in people and, theoretically, could one day lead to women struggling with infertility to be able to use their own stem cells to create eggs or men their own sperm. However, the researchers say that even if that does become possible it’s likely a decade or more away.

While the study is encouraging on a scientific level, it’s raising some concerns on an ethical level. Should there be limits on how many of these manufactured embryos that a couple can create? Can someone create dozens or hundreds of these embryos and then sift through them, using genetic screening tools, to find the ones that have the most desirable traits?

One thing is clear, while the science is evolving, bioethicists, scholars and the public need to be discussing the implications for this work, and what kinds of restraints, if any, need to be applied before it’s RFPT (ready for prime time – OK, I made that one up.)

Gene therapy is life-changing for children with a life-threatening brain disorder

If you have never heard of AADC deficiency count yourself lucky. It’s a rare, incurable condition that affects only around 135 children worldwide but it’s impact on those children and their families is devastating. The children can’t speak, can’t feed themselves or hold up their head, they have severe mood swings and often suffer from insomnia.

But Dr. Krystof Bankiewicz, a doctor and researcher at the University of California San Francisco (UCSF), is using techniques he developed treating Parkinson’s disease to help those children. Full disclosure here, CIRM is funding Dr. Bankiewicz’s Parkinson’s clinical trial.

In AADC deficiency the children lack a critical enzyme that helps the brain make serotonin and dopamine, so called “chemical messengers” that help the cells in the brain communicate with each other. In his AADC clinical trial Dr. Bankiewicz and his team created a tiny opening in the skull and then inserted a functional copy of the AADC gene into two regions of the brain thought to have most benefit – the substantia nigra and ventral tegmental area of the brainstem.

Image showing target areas for AADC gene insertion: Courtesy UCSF

When the clinical trial began none of the seven children were able to sit up on their own, only two had any ability to control their head movement and just one could grasp an object in their hands. Six of the seven were described as moody or irritable and six suffered from insomnia.

In a news release Dr. Bankiewicz says the impact of the gene therapy was quite impressive: “Remarkably, these episodes were the first to disappear and they never returned. In the months that followed, many patients experienced life-changing improvements. Not only did they begin laughing and have improved mood, but some were able to start speaking and even walking.”

Those weren’t the only improvements, at the end of one year:

  • All seven children had better control of their head and body.
  • Four of the children were able to sit up by themselves.
  • Three patients could grasp and hold objects.
  • Two were able to walk with some support.

Two and a half years after the surgery:

  • One child was able to walk without any support.
  • One child could speak with a vocabulary of 50 words.
  • One child could communicate using an assistive device.

The parents also reported big improvements in mood and ability to sleep.

UCSF posted some videos of the children before and after the surgery and you can see for yourself the big difference in the children. It’s not a cure, but for families that had nothing in the past, it is a true gift.

The study is published in the journal Nature Communications.

Stem cell treatment improves motor function in monkeys modeling Parkinson’s Disease

Neurodegenerative diseases impact millions of people worldwide with the risk of being affected by one of these diseases increasing as you get older. For many of these diseases, there are very few treatments available to patients. As life expectancy increases and the population continues to age, it is crucial to try and find treatments that can potentially slow the progression of these diseases or cure them entirely. This is one of the reasons why CIRM has committed directing around $1.5 billion in funding over the next few years to research related to neurological disorders.

One of the most common neurodegenerative diseases is Parkinson’s Disease (PD), a movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, insomnia, fatigue, and problems with walking, balance, and coordination.  It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.

A recent study published in Nature Medicine has shown improved motor function and growth of neurons over a two year period in monkeys modeling PD. The study was conducted by Su-Chun Zhang, M.D., Ph.D. and his team at the University of Wisconsin using induced pluripotent stem cells (iPSCs), a kind of stem cell that can become virtually any type of cell that can be made from skin cells. The hope is that these results can pave the way for starting human clinical trials.

In order to replicate PD in humans, the team injected 10 adult monkeys with a neurotoxin that produces PD like symptoms. As a result of this, all 10 monkeys developed slow movements, imbalances, tremors, and impaired coordination in the hand on the opposite side of the injection. Additionally, scans revealed that on the injected side, monkeys lost most brain activity involving dopamine in two key brain areas. The team then waited three years after injecting the neurotoxin before administering the therapy, during which time the monkeys’ symptoms persisted.

To generate iPSC lines, the team obtained skin cells from five of the monkeys. The iPSCs were then turned into dopamine neural progenitor cells, which have the ability to create dopamine. These newly created cells were then administered into the brains of the five monkeys, with each monkey receiving a treatment derived from their own skin cells. A sixth iPSC line from a donor monkey was used for the remaining five monkeys to see how the treatment would work if it was not derived from their own skin cells.

The results showed that the monkeys that received the treatment derived from their own skin cells recovered. These animals moved more, moved faster, and were nimbler than before the treatment. They gained the ability to grasp treats, use all four limbs for walking, and climb their cages with ease and increased agility. However, the monkeys that received iPSCs derived from a donor did not recover. Their symptoms remained unchanged or worsened compared to before the treatment.

In a news article, Zhang emphasizes how he and his team are proceeding with a treatment derived from one’s own cells (autologous) vs. one from a donor (allogeneic).

“I initially wanted to do allogeneic transplants in patients because the autologous approach is too expensive. However, after seeing [our] data, I changed my mind. I want to go with the autologous first… because I feel the chance of success is really, really high.”

CIRM is currently funding a human clinical trial ($5.5 million) that is using a gene therapy approach for PD.

A new way to evade immune rejection in transplanting cells

Immune fluorescence of HIP cardiomyocytes in a dish; Photo courtesy of UCSF

Transplanting cells or an entire organ from one person to another can be lifesaving but it comes with a cost. To avoid the recipient’s body rejecting the cells or organ the patient has to be given powerful immunosuppressive medications. Those medications weaken the immune system and increase the risk of infections. But now a team at the University of California San Francisco (UCSF) have used a new kind of stem cell to find a way around that problem.

The cells are called HIP cells and they are a specially engineered form of induced pluripotent stem cell (iPSC). Those are cells that can be turned into any kind of cell in the body. These have been gene edited to make them a kind of “universal stem cell” meaning they are not recognized by the immune system and so won’t be rejected by the body.

The UCSF team tested these cells by transplanting them into three different kinds of mice that had a major disease; peripheral artery disease; chronic obstructive pulmonary disease; and heart failure.

The results, published in the journal Proceedings of the National Academy of Science, showed that the cells could help reduce the incidence of peripheral artery disease in the mice’s back legs, prevent the development of a specific form of lung disease, and reduce the risk of heart failure after a heart attack.

In a news release, Dr. Tobias Deuse, the first author of the study, says this has great potential for people. “We showed that immune-engineered HIP cells reliably evade immune rejection in mice with different tissue types, a situation similar to the transplantation between unrelated human individuals. This immune evasion was maintained in diseased tissue and tissue with poor blood supply without the use of any immunosuppressive drugs.”

Deuse says if this does work in people it may not only be of great medical value, it may also come with a decent price tag, which could be particularly important for diseases that affect millions worldwide.

“In order for a therapeutic to have a broad impact, it needs to be affordable. That’s why we focus so much on immune-engineering and the development of universal cells. Once the costs come down, the access for all patients in need increases.”

Hollywood and Patient Advocacy – two people who are on our Board but never boring

At first glance Lauren Miller Rogen and Dr. David Higgins seem an unlikely pair. She’s an actor, writer, director and has worked with some of the biggest names in Hollywood. He has a doctorate in molecular biology and genetics and has worked at some of the most well-known companies in biotech. But together they make a great team.

Lauren and David are both on the CIRM Board. She’s a patient advocate for Alzheimer’s and the driving force (with her husband Seth) of HFC (Hilarity for Charity), which has raised millions of dollars to help families battling the disease and to educate young people about the condition. It’s also made a lot of people laugh along the way. David is a patient advocate for Parkinson’s and has been instrumental is creating support groups that help patients and families cope with the disease.

Together they are a force for good. And they’re also really funny. And that’s why we invited them to be guests on the CIRM Podcast, Talking ‘Bout (re)Generation. They are smart, engaging, witty, and they don’t pull punches.

I know you are going to enjoy the show.

We’ve got cash, here’s how you can get some

When the voters of California approved Proposition 14 last November (thanks folks) they gave us $5.5 billion to continue the work we started way back in 2014. It’s a great honor, and a great responsibility.

It’s also a great opportunity to look at what we do and how we do it and try to come up with even better ways of funding groundbreaking research and helping create a new generation of researchers.

In addition to improving on what we already do, Prop 14 introduced some new elements, some new goals for us to add to the mix, and we are in the process of fleshing out how we can best do that.

Because of all these changes we decided it would be a good idea to hold a “Town Hall” meeting and let everyone know what these changes are and how they may impact applications for funding.

The Town Hall, on Tuesday June 29, was a great success with almost 200 participants. But we know that not everyone who wanted to attend could, so here’s the video of the event, and below that are the questions that were posed by people during the meeting, and the answers to those questions.

Having seen the video we would be eternally grateful if you could respond to a short online survey, to help us get a better idea of your research and education needs and to be better able to serve you and identify potential areas of opportunity for CIRM. Here’s a link to that survey: https://www.surveymonkey.com/r/VQMYPDL

We know that there may be issues or questions that are not answered here, so feel free to send those to us at info@cirm.ca.gov and we will make sure you get an answer.

Are there any DISC funding opportunities specific to early-stage investigators?

DISC funding opportunities are open to all investigators.  There aren’t any that are specific to junior investigators.

Are DISC funding opportunities available for early-mid career researchers based out of USA such as Australia?

Sorry, you have to be in California for us to fund your work.

Does tumor immunology/ cancer immunotherapy fall within the scope of the CIRM discovery grants?

Yes, they do.  Here is a link to various CIRM DISC Awards that fall within the cancer category.  https://www.cirm.ca.gov/grants?disease_focus%5B%5D=1427&program_type%5B%5D=1230

Will Disc1 (Inception awards) and/or seed funding mechanisms become available again?

CIRM is anticipating launching a program to meet this need toward the end of this year.

For DISC award is possible to contact a grant advisor for advice before applying?

Please email discovery@cirm.ca.gov to discuss Discovery stage applications before applying

Is co-funding requirement a MUST for clinical trials?

Co-funding requirements vary.  Please refer to the following link for more information: https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CLIN2_Mini_Brochure2.pdf

Hi, when will reviews for DISC 2: CIRM Quest – Discovery Stage Research Projects (deadline March 2021) be available? Thanks!

Review summaries for the March 2021 Discovery submitted applications will be available by mid-August, with final board funding decisions at the August 24th Application Review Subcommittee Meeting

Has CIRM project made it to Phase III or product launch with FDA approval? What is CIRM strategy for start-up biotech companies?

CIRM has funded several late-stage Phase III/potentially pivotal clinical trials. You can view them here: https://www.cirm.ca.gov/our-impact/funding-clinical-trials

CIRM funding supports non-profit academic grantees as well as companies of all sizes.

I am studying stem cells using mouse. Is my research eligible for the CIRM grants?

Yes it is.

Your programs more specifically into stem cell research would be willing to take patients that are not from California?

Yes, we have treated patients who are not in California. Some have come to California for treatment and others have been treated in other states in the US by companies that are based here in California.

Can you elaborate how the preview of the proposals works? Who reviews them and what are the criteria for full review?

The same GWG panel both previews and conducts the full review. The panel first looks through all the applications to identify what each reviewer believes represents the most likely to be impactful and meet the goals of the CIRM Discovery program. Those that are selected by any reviewer moves forward to the next full review step.

If you meet your milestones-How likely is it that a DISC recipient gets a TRAN award?

The milestones are geared toward preparation of the TRAN stage.  However, this is a different application and review that is not guaranteed to result in funding.

Regarding Manufacturing Public Private partnerships – What specific activities is CIRM thinking about enabling these partnerships? For example, are out of state for profit commercial entities able to conduct manufacturing at CA based manufacturing centers even though the clinical program may be primarily based out of CA? If so, what percent of the total program budget must be expended in CA? How will CIRM enable GMP manufacturing centers interact with commercial entities?

We are in the early stages of developing this concept with continued input from various stakeholders. The preliminary vision is to build a network of academic GMP manufacturing centers and industry partners to support the manufacturing needs of CIRM-funded projects in California.

We are in the process of widely distributing a summary of the manufacturing workshop. Here’s a link to it:

If a center is interested in being a sharing lab or competency hub with CIRM, how would they go about it?

CIRM will be soliciting applications for Shared Labs/Competency hubs in potential future RFAs. The survey asks several questions asking for feedback on these concepts so it would really help us if you could complete the survey.

Would preclinical development of stem cell secretome-derived protein therapies for rare neuromuscular diseases and ultimately, age-related muscle wasting be eligible for CIRM TRAN1 funding? The goal is to complete IND-enabling studies for a protein-based therapy that enhances tissue regeneration to treat a rare degenerative disease. the screening to identify the stem-cell secreted proteins to develop as therapeutics is done by in vitro screening with aged/diseased primary human progenitor cells to identify candidates that enhance their differentiation . In vivo the protein therapeutic signals to several cell types , including precursor cells to improve tissue homeostasis.

I would suggest reaching out to our Translation team to discuss the details as it will depend on several factors. You can email the team at translational@cirm.ca.gov

Here are the slides used in the presentations.

CIRM funded trial for AMD shows promising results

This upcoming July is healthy vision month, a time to remember the importance of making vision and eye health a priority. It’s also a time to think about the approximately 12 million people, 40 and over in the United States, that have a vision impairment. Vision can be something that many of us take for granted, but losing even a portion of it can have a profound impact on our everyday life. It can impact your ability to do everyday things, from basic hygiene routines and driving to hobbies such as reading, writing, or watching a film.

It is because of this that CIRM has made vision related problems a priority, providing over $69 million in funding for six clinical trials related to vision loss. There is reason to be hopeful as these trials have demonstrated promising results. One of these trials, conducted by Regenerative Patch Technologies LLC (RPT), announced today results from its CIRM funded clinical trial ($16.3 million) for advanced, dry age-related macular degeneration (AMD).

AMD is a progressive disease resulting in death of the retinal pigment epithelium (RPE), an area of the eye that plays a key role in maintaining vision. Damage to the RPE causes distortion to central vision and eventually leads to legal blindness. Thanks to CIRM funding, RPT and scientists at the University of Southern California (USC) and UC Santa Barbara (UCSB) are growing specialized RPE cells from human embryonic stem cells (hESCs), placing them on a single layer scaffold, and implanting the combination device in the back of the eye to try to reverse the blindness caused by AMD.

One of the trial participants is Anna Kuehl, a USC alumna and avid nature lover. She was diagnosed with AMD in her mid 30s and gradually began losing the central vision in her left eye. Although her peripheral vision remained intact, she could no longer make out people’s faces clearly, drive a car, or read the time on her watch. This also meant she would have much more difficulty going on the nature hikes she enjoys so much. After receiving treatment, she noticed improvements in her vision.

Anna was not alone in these improvements post treatment. The implant, known as CPCB-RPE1, was delivered to the worst eye of 15 patients with AMD. All treated eyes were legally-blind having a best corrected visual acuity (BCVA) of 20/200 or worse (20/20 indicates perfect vision).

Patients in the clinical trial were assessed for visual function and the results were as follows:

  • At an average of 34 months post-implantation (range 12-48 months), 27% (4/15) showed a greater than 5 letter improvement in BCVA and 33% (5/15) remained stable with a BCVA within 5 letters of baseline value. The improvements ranged from 7-15 letters or 1-3 lines on an eye chart.
  • In contrast, BCVA in the fellow, untreated eye declined by more than 5 letters (range 8-21 letters or 1-4 lines on an eye chart) in 80% (12/15) of subjects. There was no improvement in BCVA in the untreated eye of any subject. 
  • The implant was delivered safely and remained stably in place throughout the trial.
  • Refinements to the implantation procedure during the trial further improved its efficiency and safety profile.

In a news release from RPT, Mark Humayun, M.D., Ph.D., founder and co-owner of RPT, Director of the USC Ginsburg Institute for Biomedical Therapeutics and Co-Director of the USC Roski Eye Institute, Keck Medicine of USC, had this to say about the trial results.

“The improvements in best corrected visual acuity observed in some eyes receiving the implant are very promising, especially considering the very late stage of their disease. Improvements in visual acuity are exceedingly rare in geographic atrophy as demonstrated by the large decline in vision in many of the untreated eyes which also had disease. There are currently no approved therapies for this level of advanced dry age-related macular degeneration”. 

The full presentation can be found on RPT’s website linked here.

Watch the video below to learn more about Anna’s story.

CIRM Board Approves New Clinical Trial for ALS

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $11.99 million to Cedars-Sinai to fund a clinical trial for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. 

ALS is a neurodegenerative disease that results in the death of nerve cells in the brain and spinal cord, causing the muscles in the body to gradually weaken, leading to loss of limb function, difficulty breathing, paralysis, and eventually death.  There are medications that can slow down the progression of ALS, but unfortunately there is no cure for the disease.

Clive Svendsen, Ph.D., executive director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and his team will be conducting a trial that uses a combined cell and gene therapy approach as a treatment for ALS.  The trial builds upon the Stem Cell Agency’s first ALS trial, also conducted by Cedars-Sinai and Svendsen.

Genetically engineered stem cells will be transplanted into the motor cortex, an area of the brain responsible for voluntary movements.  These transplanted cells then become astrocytes, a type of support cell that help keep nerve cells functioning.  The astrocytes have been genetically altered to deliver high doses of a growth factor which has been shown to protect nerve cells.  The goal of this approach is to protect the upper motor neurons controlling muscle function and meaningfully improve the quality of life for ALS patients.

“ALS is a devastating disease that attacks the spinal cord and brain and results in the progressive loss of the ability to move, to swallow and eventually to breathe. ” says Maria T. Millan, M.D., President and CEO of CIRM.  “This clinical trial builds on Dr. Svendsen’s work previously funded by CIRM. We are fortunate to be able to support this important work, which was made possible by California citizens who voted to reauthorize CIRM under Proposition 14 this past November.”

An Open Letter to CIRM for World Sickle Cell Day

Nancy M. Rene

Dear CIRM,

World Sickle Cell Day is this Saturday June 19th. The goal of this day is to increase knowledge of the disease and understanding of the challenges faced.

It is a day that I greet with very mixed feelings.  I’m of course extremely grateful to CIRM for the time and money spent looking for a cure.  The work of doctors, of researchers, the courage of families in the sickle cell community who are taking part in studies, and of course those of you who worked so hard for the original funding for CIRM, I applaud all of you, yet it’s hard to wait for a cure.

While I wait I worry. I worry about my friends who are not getting good care.  They are the ones who can’t find a doctor to treat them, not able to take advantage of the medications that are already approved.  They are the ones who walk into the Emergency Room hoping for knowledgeable treatment while understanding that they may be accused of being a drug seeker,  turned away in excruciating pain. They are the ones who succumb after years of poor care.

With sickle cell disease there is the same level of understanding about medical malpractice that we had of police brutality before George Floyd. We hardly remember Rodney King or Eric Garner. As a country we were aware that something was wrong but we tended to retreat in denial after each terrible headline.

That’s where we are with sickle cell disease.  We may see a heart-wrenching story and watch televised reports with interest, but after all, it’s easier to live in disbelief, to think that medical care is not that bad, rather than understand that people are being dismissed and denied treatment. We call it structural racism without understanding what that term really means.

While I wait I must acknowledge that change is coming.  We have a Sickle Cell Data Collection Project in California that helps us track healthcare for sickle cell disease. This is data that we can use to point to structural weakness and address health disparities.  NASEM, the National Academies of Science Engineering and Medicine, has published a huge report with significant suggestions for improving sickle cell care. Many scientists, researchers and advocates took part in this landmark study, detailing what has gone wrong in health care and how to improve the work. And of course we have CIRM. I am very thankful for the leadership and pioneering work of doctors Donald Kohn, Matthew Porteus, Mark Walters, and Joseph Rosenthal who are using their knowledge and experience in this fight.

When we have successful research on stem cell transplants for sickle cell disease, many of us with sickle cell family members will want to relax, but we can’t forget those who may not be able to get a curative transplant. I hope Dr Niihara at Emmaus, and Dr. Love of Global Blood Therapeutics will continue their important work finding effective treatments. We must continue this fight on all fronts.

World Sickle Cell Day will come again next year.  Let’s see what it brings.

A sickle cell grandmother,

Nancy M. René