Graphite Bio launches and will prepare for clinical trial based on CIRM-funded research

Josh Lehrer, M.D., CEO of Graphite Bio

This week saw the launch of the 45th startup company enabled by CIRM funding of translational research at California academic institutions. Graphite Bio officially launched with the help of $45M in funding led by bay area venture firms Versant Ventures and Samsara BioCapital to spinout a novel CRISPR gene editing platform from Stanford University to treat severe diseases. Graphite Bio’s lead candidate is for sickle cell disease and it harnesses CRISPR gene correction technology to correct the single DNA mutation in sickle cell disease and to restore normal hemoglobin expression in the red blood cells of sickle cell patients (Learn more about CRISPR from a previous blog post linked here).

Matt Porteus, M.D., Ph.D (left) and Maria Grazia Roncarolo, M.D. (right)
Graphite Bio scientific founders

Matt Porteus, M.D., Ph.D and Maria Grazia Roncarolo, M.D., both from Stanford University, are the company’s scientific founders. Dr. Porteus, Dr. Roncarolo, and the Stanford team are currently supported by a CIRM  late stage preclinical grant  to complete the final preclinical studies and to file an Investigational New Drug application with the FDA, which will enable Graphite Bio to commence clinical studies of the CRISPR sickle cell disease gene therapy candidate in sickle cell patients in 2021.

Josh Lehrer, M.D., was appointed CEO of Graphite Bio and elaborated on the company’s gene editing approach in a news release.

“Our flexible, site-specific approach is extremely powerful and could be used to definitively correct the underlying causes of many severe genetic diseases, and also is applicable to broader disease areas. With backing from Versant and Samsara, we look forward to progressing our novel medicines into the clinic for patients with high unmet needs.”

In a press release, Dr. Porteus take a retrospective look on his preclinical research and its progress towards a clinical trial.

“It is gratifying to see our work on new gene editing approaches being translated into novel therapies. I’m very excited to be working with Versant again on a start-up and I look forward to collaborating with Samsara and the Graphite Bio team to bring a new generation of genetic treatments to patients.”

CIRM’s funding of late stage preclinical projects such this one is critical to its funding model, which de-risks the discovery, translational development and clinical proof of concept of innovative stem cell-based treatments until they can attract industry partnerships. You can learn more about CIRM-enabled spinout companies and CIRM’s broader effort to facilitate industry partnering for its portfolio projects on CIRM’s Industry Alliance Program website.

You can contact CIRM’s Director of Business Development at the email below to learn more about the Industry Alliance Program.

Shyam Patel, Ph.D.
Director, Business Development
Email: spatel@cirm.ca.gov

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

Precision guided therapy from a patient’s own cells

Dr. Wesley McKeithan, Stanford

Imagine having a tool you could use to quickly test lots of different drugs against a disease to see which one works best. That’s been a goal of stem cell researchers for many years but turning that idea into a reality hasn’t been easy. That may be about to change.

A team of CIRM-funded researchers at the Stanford Cardiovascular Institute and the Human BioMolecular Research Institute in San Diego found a way to use stem cells from patients with a life-threatening heart disease, to refine an existing therapy to make it more effective, with fewer side effects.

The disease in question is called long QT syndrome (LQTS). This is a heart rhythm condition that can cause fast, chaotic heartbeats. Some people with the condition have seizures. In some severe cases, particularly in younger people, LQTS can cause sudden death.

There are a number of medications that can help keep LQTS under control. One of these is mexiletine. It’s effective at stabilizing the heart’s rhythm, but it also comes with some side effects such as stomach pain, chest discomfort, drowsiness, headache, and nausea.

The team wanted to find a way to test different forms of that medication to see if they could find one that worked better and was safer to take. So they used induced pluripotent stem cells (iPSCs) from patients with LQTS to do just that.

iPSCs are cells that are made from human tissue – usually skin – that can then be turned into any other cell in the body. In this case, they took tissue from people with LQTS and then turned them into heart cells called cardiomyocytes, the kind affected by the disease. The beauty of this technique is that even though these cells came from another source, they now look and act like cardiomyocytes affected by LQTS.

Dr. Mark Mercola, Stanford

In a news release Stanford’s Dr. Mark Mercola, the senior author of the study, said using these kinds of cells gave them a powerful tool.

“Drugs for heart disease are typically developed using overly simplified models, like tumor cells engineered in a specific way to mimic a biochemical event. Consequently, drugs like this one, mexiletine, have undesirable properties of concern in treating patients. Here, we used cells from a patient to generate that person’s heart muscle cells in a dish so we could visualize both the good and bad effects of the drug.”

The researchers then used these man-made cardiomyocytes to test various drugs that were very similar in structure to mexiletine. They were looking for ones that could help stabilize the heart arrhythmia but didn’t produce the unpleasant side effects. And they found some promising candidates.

Study first author, Dr. Wesley McKeithan, says the bigger impact of the study is that they were able to show how this kind of cell from patients with a particular disease can be used to “guide drug development and identify better drug improvement and optimization in a large-scale manner.”

 “Our approach shows the feasibility of introducing human disease models early in the drug development pipeline and opens the door for precision drug design to improve therapies for patients.”

The study is published in the journal Cell Stem Cell.

CIRM Funded Trial for Parkinson’s Treats First Patient

Dr. Krystof Bankiewicz

Brain Neurotherapy Bio, Inc. (BNB) is pleased to announce the treatment of the first patient in its Parkinson’s gene therapy study.  The CIRM-funded study, led by Dr. Krystof Bankiewicz, is one of the 64 clinical trials funded by the California state agency to date.

Parkinson’s is a neurodegenerative movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, and problems with walking, balance, and coordination.  It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.

The patient was treated at The Ohio State University Wexner Medical Center with a gene therapy designed to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The treatment seeks to increase dopamine production in the brain, alleviating Parkinson’s symptoms and potentially slowing down the disease progress.

“We are pleased to support this multi-institution California collaboration with Ohio State to take a novel first-in-human gene therapy into a clinical trial for Parkinson’s Disease.” says Maria T. Millan, M.D., President and CEO of CIRM.  “This is the culmination of years of scientific research by the Bankiewicz team to improve upon previous attempts to translate the potential therapeutic effect of GDNF to the neurons damaged in the disease. We join the Parkinson’s community in following the outcome of this vital research opportunity.”

CIRM Board Member and patient advocate David Higgins, Ph.D. is also excited about this latest development.  For Dr. Higgins, advocating for Parkinson’s is a very personal journey since he, his grandmother, and his uncle were diagnosed with the disease.

“Our best chance for developing better treatments for Parkinson’s is to test as many logical approaches as possible. CIRM encourages out-of-the-box thinking by providing funding for novel approaches. The Parkinson’s community is a-buzz with excitement about the GDNF approach and looks to CIRM to identify, fund, and promote these kinds of programs.”

In a news release Dr. Sandra Kostyk, director of the Movement Disorders Division at Ohio State Wexner Medical Center said this approach involves infusing a gene therapy solution deep into a part of the brain affected by Parkinson’s: “This is a onetime treatment strategy that could have ongoing lifelong benefits. Though it’s hoped that this treatment will slow disease progression, we don’t expect this strategy to completely stop or cure all aspects of the disease. We’re cautiously optimistic as this research effort moves forward.” 

Other trial sites located in California that are currently recruiting patients are the University of California, Irvine (UCI) and the University of California, San Francisco (UCSF). Specifically, the Irvine trial site is using the UCI Alpha Stem Cell Clinic, one of five leading medical centers throughout California that make up the CIRM Alpha Stem Cell Clinic (ASSC) Network.  The ASSC Network specializes in the delivery of stem cell therapies by providing world-class, state of the art infrastructure to support clinical research.

For more information on the trial and enrollment eligibility, you can directly contact the study coordinators by email at the trial sites listed:

  1. The Ohio State University: OSUgenetherapyresearch@osumc.edu
  2. University of California, San Francisco: GDNF@ucsf.edu
  3. University of California, Irvine: chewbc@hs.uci.edu

Meet the people who are changing the future

Kristin MacDonald

Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.

I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.

Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.

That’s when you know the treatment works. At least for Rosie.

There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.

It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.

Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.

And it’s free!

You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.

We hope to see you there.

CIRM & CZI & MOU for COVID-19

Too many acronyms? Not to worry. It is all perfectly clear in the news release we just sent out about this.

A new collaboration between the California Institute for Regenerative Medicine (CIRM) and the Chan Zuckerberg Initiative (CZI) will advance scientific efforts to respond to the COVID-19 pandemic by collaborating on disseminating single-cell research that scientists can use to better understand the SARS-CoV-2 virus and help develop treatments and cures.

CIRM and CZI have signed a Memorandum of Understanding (MOU) that will combine CIRM’s infrastructure and data collection and analysis tools with CZI’s technology expertise. It will enable CIRM researchers studying COVID-19 to easily share their data with the broader research community via CZI’s cellxgene tool, which allows scientists to explore and visualize measurements of how the virus impacts cell function at a single-cell level. CZI recently launched a new version of cellxgene and is supporting the single-cell biology community by sharing COVID-19 data, compiled by the global Human Cell Atlas effort and other related efforts, in an interactive and scalable way.

“We are pleased to be able to enter into this partnership with CZI,” said Dr. Maria T. Millan, CIRM’s President & CEO. “This MOU will allow us to leverage our respective investments in genomics science in the fight against COVID-19. CIRM has a long-standing commitment to generation and sharing of sequencing and genomic data from a wide variety of projects. That’s why we created the CIRM genomics award and invested in the Stem Cell Hub at the University of California, Santa Cruz, which will process the large complex datasets in this collaboration.”  

“Quickly sharing scientific data about COVID-19 is vital for researchers to build on each other’s work and accelerate progress towards understanding and treating a complex disease,” said CZI Single-Cell Biology Program Officer Jonah Cool. “We’re excited to partner with CIRM to help more researchers efficiently share and analyze single-cell data through CZI’s cellxgene platform.”

In March 2020, the CIRM Board approved $5 million in emergency funding to target COVID-19. To date, CIRM has funded 17 projects, some of which are studying how the SARS-CoV-2 virus impacts cell function at the single-cell level.

Three of CIRM’s early-stage COVID-19 research projects will plan to participate in this collaborative partnership by sharing data and analysis on cellxgene.   

  • Dr. Evan Snyder and his team at Sanford Burnham Prebys Medical Discovery Institute are using induced pluripotent stem cells (iPSCs), a type of stem cell that can be created by reprogramming skin or blood cells, to create lung organoids. These lung organoids will then be infected with the novel coronavirus in order to test two drug candidates for treating the virus.
  • Dr. Brigitte Gomperts at UCLA is studying a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19.
  • Dr. Justin Ichida at the University of Southern California is trying to determine if a drug called a kinase inhibitor can protect stem cells in the lungs and other organs, which the novel coronavirus selectively infects and kills.

“Cumulative data into how SARS-CoV-2 affects people is so powerful to fight the COVID-19 pandemic,” said Stephen Lin, PhD, the Senior CIRM Science Officer who helped develop the MOU. “We are grateful that the researchers are committed to sharing their genomic data with other researchers to help advance the field and improve our understanding of the virus.”

CZI also supports five distinct projects studying how COVID-19 progresses in patients at the level of individual cells and tissues. This work will generate some of the first single-cell biology datasets from donors infected by SARS-CoV-2 and provide critical insights into how the virus infects humans, which cell types are involved, and how the disease progresses. All data generated by these grants will quickly be made available to the scientific community via open access datasets and portals, including CZI’s cellxgene tool.

CIRM-funded research aims to create a platform to test therapies for AMD

People with late stage age-related macular degeneration lose their central vision. So an image like the one on the left might appear to them as shown on the right.
Credit: University of California – Santa Barbara

Our vision is one of the most important senses that we use in our everyday lives. Whether its to help somebody perform complex surgeries or soak in a beautiful impressionist painting, a layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images. Unfortunately, as we get older, problems with this part of the eye can begin to develop.

Age-related macular degeneration (AMD) is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million. The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD. One form of AMD for which there is no treatment is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases. This version of dAMD is due to the inability of the RPE cells to heal.

CIRM-funded research at UC Santa Barbara aims to create a platform to test therapies for dAMD. Led by Dr. Peter Coffey and Dr. Lindsay Bailey-Steinitz, the team outlined two main objectives for this project. The first was to better understand what is occurring at the cellular level as the disease advances. The second was to develop a model that could be used to test therapeutics.

In a press release, Dr. Bailey-Steinitz discusses the importance of developing a disease model for dAMD.

“Part of the struggle of finding a treatment option is that we’ve not been able to really model the progression of the disease in cell culture or in animals.”

An overview of Dr. Coffey and Dr. Bailey-Steinitz’s experiment.
Credit: Lindsay Bailey-Steinitz

In dAMD, when RPE cells fail to repair themselves, they form a hole that gradually continues to expand. Dr. Bailey-Steinitz recreated this hole in the lab by culturing RPE cells on a plate with an electrode and then zapping them. This process created a hole very similar to the one that appears in dAMD. However, since the cells used in this experiment were younger cells, they were more prone to self healing. But the team found that 10 pulses of electricity over the course of 10 days prevented the younger cells from healing. The team also found that shocking the cells suppressed important genes involved in RPE cell function.

The team is planning future experiments with older cells since they demonstrate a decreased ability to heal.

In the same press release, Dr. Coffey highlights the potential impact of this work.

“”If we can improve this setup, then we’ve got a therapeutic testbed for AMD.”

CIRM has also funded a separate clinical trial for dAMD conducted by Dr. Mark Humayun at the University of Southern California.

The full results of this study were published in PLOS ONE.

CIRM joins forces with US Department of Defense to fight COVID

Photo courtesy of Gabrielle Lurie / San Francisco Chronicle / Polaris

Small state agencies like CIRM don’t normally get to partner with a behemoth like the Department of Defense (DOD), but these are not normal times. Far from it. That’s why we are both joining forces with the National Institutes of Health to fund a clinical trial that hopes to help patients on a ventilator battling a sometime fatal condition that attacks their lungs.

The study is being run by Dr. Michael Matthay from U.C. San Francisco. CIRM awarded Dr. Matthay $750,000 to help expand an existing trial and to partner with U.C. Davis to bring in more patients, particularly from underserved communities.

This approach uses mesenchymal stem cells (MSCs) taken from bone marrow to help patients with a condition called acute respiratory distress syndrome (ARDS). This occurs when the virus attacks the lungs.

In an article in UCSF News, Dr. Matthay says the impact can be devastating.

“Tiny air spaces in the lungs fill up with fluid and prevent normal oxygen uptake in the lungs. That’s why the patient has respiratory failure. Usually these patients have to be intubated and treated with a mechanical ventilator.”

Many patients don’t survive. Dr. Matthay estimates that as many as 60 percent of COVID-19 patients who get ARDS die.

This is a Phase 2 double blind clinical trial which means that half the 120 patients who are enrolled will get MSCs (which come from young, health donors) and the other half will get a placebo. Neither the patients getting treated nor the doctors and nurses treating them will know who gets what.

Interestingly this trial did not get started as a response to COVID-19. In fact, it’s the result of years of work by Dr. Matthay and his team hoping to see if MSC’s could help people who have ARDs as a result of trauma, bacterial or other infection. They first started treating patients earlier this year when most people still considered the coronavirus a distant threat.

“We started the study in January 2020, and then COVID-19 hit, so we have been enrolling patients over the last eight months. Most of the patients we’ve enrolled in the trial have ended up having severe viral pneumonia from COVID.”

So far CIRM has funded 17 different projects targeting COVID-19. You can read about those in our Press Release section.

Researchers discover how to steer stem cells to regenerate cartilage in joints

Dr. Charles K.F. Chan (Left) and Dr. Michael Longaker (right), Stanford University

Cartilage is a flexible, connective tissue in our joints that is important for cushioning our bones against impacts. This cartilage deteriorates as we age due to normal wear and tear and in some instances excessive damage or a deteriorating disease. The deterioration of cartilage is also the primary cause of joint pain and arthritis, which affects more than 55 million Americans.

It was generally assumed that adult cartilage could not be regenerated after damage. Fortunately, a CIRM funded project by Dr. Charles K.F. Chan, Dr. Michael Longaker, and Dr. Matthew Murphy at Stanford University found a way to use chemical signals to steer skeletal stem cells, which are responsible for the production of bone and cartilage, to regrow cartilage in joints.

Damaged cartilage is currently treated with a technique known as microfracture. Tiny holes are drilled into the surface of a joint, which activates the body’s skeletal stem cells to create fibrocartilage in the joint. Unfortunately, this newly created tissue lacks the flexible properties and cushion of normal cartilage.

The team theorized that there might be a way to influence skeletal stem cells to produce normal cartilage after microfracture. In a mouse model, the researchers used a molecule called BMP2 to initiate bone formation after microfracture. Next, they stopped the bone formation process midway with another molecule called VEGF. The result of this process was the generation of cartilage that had the same important properties as natural cartilage.

In a Stanford press release, Dr. Chan elaborated on these findings.

“What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get. It also restored mobility to osteoarthritic mice and significantly reduced their pain.”

To show that this process could work in humans, the team then transferred human tissue into special mice that wouldn’t reject the tissue. They showed that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.

The next stage for this research is to conduct experiments in larger animals before eventually starting human clinical trials. The ultimate goal of this treatment would be to help prevent arthritis by rejuvenating cartilage in the joints before it is badly degraded.

In the same press release, Dr. Longaker discusses the advantages of using BMP2 and VEGF for this process.

“BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies. This would help speed the approval of any therapy we develop.”

The full results of this study were published in Nature.

CIRM partners with UCLA scientists to take on COVID-19

Don’t you love it when someone does your job for you and does it so well you have no need to add anything to it! Doesn’t happen very often – sad to say – but this week our friends at UCLA wrote a great article describing the work they are doing to target COVID-19. Best of all, all the work described is funded by CIRM. So read, and enjoy.

Two scientists in a lab at the UCLA Broad Stem Cell Research Center

By Tiare Dunlap, UCLA

As the COVID-19 pandemic rages on, UCLA researchers are rising to the occasion by channeling their specialized expertise to seek new and creative ways to reduce the spread of the virus and save lives. Using years’ — or even decades’ — worth of knowledge they’ve acquired studying other diseases and biological processes, many of them have shifted their focus to the novel coronavirus, and they’re collaborating across disciplines as they work toward new diagnostic tests, treatments and vaccines.

At UCLA, more than 230 research projects, including several being led by members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, are contributing to that mission.

Dr. Brititte Gomperts, Photo courtesy UCLA

“As a result of the pandemic, everyone on campus is committed to finding ways that their unique expertise can help out,” said Dr. Brigitte Gomperts, professor and vice chair of research in pediatric hematology-oncology and pulmonary medicine at the David Geffen School of Medicine at UCLA and a member of the UCLA Children’s Discovery and Innovation Institute. “So many of my colleagues have repurposed their labs to work on the virus. It’s very seldom that you have one thing that everybody’s working on, and it has been truly inspiring to see how everyone has come together to try and solve this.”

Here’s a look at five projects in which UCLA scientists are using stem cells — which can self-replicate and give rise to all cell types — to take on COVID-19.

Using lung organoids as models to test possible treatments 

Dr. Brigitte Gomperts

Gomperts has spent years perfecting methods for creating stem cell–derived three-dimensional lung organoids. Now, she’s using those organoids to study how SARS-CoV-2, the virus that causes COVID-19, affects lung tissue and to rapidly screen thousands of prospective treatments. Because the organoids are grown from human cells and reflect the cell types and architecture of the lungs, they can offer unprecedented insights into how the virus infects and damages the organ.  

Gomperts is collaborating with UCLA colleagues Vaithilingaraja Arumugaswami, a virologist, and Robert Damoiseaux, an expert in molecular screening. Their goal is to find an existing therapy that could be used to reduce the spread of infection and associated damage in the lungs.

“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible,” Gomperts said. Read more.

Repurposing a cancer therapy

Dr. Vaithi Arumugaswami: Photo courtesy UCLA

Vaithilingaraja Arumugaswami, associate professor of molecular and medical pharmacology at the Geffen School of Medicine

In addition to collaborating with Gomperts, Arumugaswami and Damoiseaux identified the cancer drug Berzosertib as a possible treatment for COVID-19 after screening 430 drug candidates. The drug, which is currently being tested in clinical trials for cancer, works by blocking a DNA repair process that is exploited by solid cancers and the SARS-CoV-2 virus, and the UCLA scientists found that it is very effective at limiting viral replication and cell death. 

“Clinical trials have shown that Berzosertib blocks the DNA repair pathway in cancer cells, but has no effects on normal, healthy cells,” Arumugaswami said.

Now, Arumugaswami and Gustavo Garcia Jr., a staff research associate, are testing Berzosertib and additional drug combinations on lung organoids developed in Gomperts’ lab and stem cell–derived heart cells infected with SARS-CoV-2. They suspect that if the drug is administered soon after diagnosis, it could limit the spread of infection and prevent complications. Read more.

Studying the immune response to the virus

Dr. Gay Crooks

Dr. Gay Crooks, professor of pathology and laboratory medicine and of pediatrics at the Geffen School of Medicine, and co-director of the Broad Stem Cell Research Center; and Dr. Christopher Seet,  

assistant professor of hematology-oncology at the Geffen School of Medicine

Crooks and Seet are using stem cells to model how immune cells recognize and fight the virus in a lab dish. To do that, they’re infecting blood-forming stem cells — which can give rise to all blood and immune cells — from healthy donors with parts of the SARS-CoV-2 virus and then coaxing the stem cells to produce immune cells called dendritic cells. Dendritic cells devour viral proteins, chop them up into pieces and then present those pieces to other immune cells called T cells to provoke a response.

By studying that process, Crooks and Seet hope to identify which parts of the virus provoke the strongest T-cell responses. Developing an effective vaccine for SARS-CoV-2 will require a deep understanding of how the immune system responds to the virus, and this work could be an important step in that direction, giving researchers and clinicians a way to gauge the effectiveness of possible vaccines.

“When we started developing this project some years ago, we had no idea it would be so useful for studying a viral infection — any viral infection,” Crooks said. “It was only because we already had these tools in place that we could spring into action so fast.” Read more.

Developing a booster that could help a vaccine last longer

Song Li, chair and professor of bioengineering at the UCLA Samueli School of Engineering

A COVID-19 vaccine will need to provide long-term protection from infection. But how long a vaccine protects from infection isn’t solely dependent on the vaccine.

The human body relies on long-living immune cells called T memory stem cells that guard against pathogens such as viruses and bacteria that the body has encountered before. Unfortunately, the body’s capacity to form T memory stem cells decreases with age. So no matter how well designed a vaccine is, older adults who don’t have enough of a response from T memory stem cells will not be protected long-term.

To address that issue, Li is developing an injectable biomaterial vaccine booster that will stimulate the formation of T memory stem cells. The booster is made up of engineered materials that release chemical messengers to stimulate the production of T memory stem cells. When combined with an eventual SARS-CoV-2 vaccine, they would prompt the body to produce immune cells primed to recognize and eliminate the virus over the long term.

“I consider it my responsibility as a scientist and an engineer to translate scientific findings into applications to help people and the community,” Li said. Read more.

Creating an off-the-shelf cell therapy

Lili Yang, associate professor of microbiology, immunology and molecular genetics in the UCLA College

Invariant natural killer T cells, or iNKT cells, are the special forces of the immune system. They’re extremely powerful and can immediately recognize and respond to many different intruders, from infections to cancer.

Yang is testing whether iNKT cells would make a particularly effective treatment for COVID-19 because they have the capacity to kill virally infected cells, offer protection from reinfection and rein in the excessive inflammation caused by a hyperactive immune response to the virus, which is thought to be a major cause of tissue damage and death in people with the disease.

One catch, though, is that iNKT cells are incredibly scarce: One drop of human blood contains around 10 million blood cells but only around 10 iNKT cells. That’s where Yang’s research comes in. Over the past several years, she has developed a method for generating large numbers of iNKT cells from blood-forming stem cells. While that work was aimed at creating a treatment for cancer, Yang’s lab has adapted its work over the past few months to test how effective stem cell–derived iNKT cells could be in fighting COVID-19. With her colleagues, she has been studying how the cells work in fighting the disease in models of SARS-CoV-2 infection that are grown from human kidney and lung cells.

“My lab has been developing an iNKT cell therapy for cancer for years,” Yang said. “This means a big part of the work is already done. We are repurposing a potential therapy that is very far along in development to treat COVID-19.” Read more.

“Our center is proud to join CIRM in supporting these researchers as they adapt projects that have spent years in development to meet the urgent need for therapies and vaccines for COVID-19,” said Dr. Owen Witte, founding director of the UCLA Broad Stem Cell Research Center. “This moment highlights the importance of funding scientific research so that we may have the foundational knowledge to meet new challenges as they arise.” Crooks, Gomperts, Seet and Yang are all members of the UCLA Jonsson Comprehensive Cancer Center. Damoiseaux is a professor of molecular and medical pharmacology and director of the Molecular Shared Resource Center at the California NanoSystems Institute at UCLA