Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

Using 3D printer to develop treatment for spinal cord injury

3d-printed-device

3D printed device

Spinal cord injuries (SCIs) affect approximately 300,000 Americans, with about 18,000 new cases occurring per year. One of these patients, Jake Javier, who we have written about many times over the past several years, received ten million stem cells as part of a CIRM-funded clinical trial and a video about his first year at Cal Poly depicts how these injuries can impact someone’s life.

Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.

Scientists at UC San Diego’s School of Medicine and Institute of Engineering in Medicine have made critical progress in providing SCI patients with hope towards a more comprehensive and longer lasting treatment option.

shaochen chen

Prof. Shaochen Chen and his 3D printer

In a study partially funded by CIRM and published in Nature Medicine, Dr. Mark Tuszynski’s and Dr. Shaochen Chen’s groups used a novel 3D printing method to grow a spinal cord in the lab.

Previous studies have seen some success in lab grown neurons or nerve cells, improving SCI in animal models. This new study, however, is innovative both for the speed at which the neurons are printed, and the extent of the neuronal network that is produced.

To achieve this goal, the scientists used a biological scaffold that directs the growth of the neurons so they grow to the correct length and generate a complete neuronal network. Excitingly, their 3D printing technology was so efficient that they were able to grow implants for an animal model in 1.6 seconds, and a human-sized implant in just ten minutes, showing that their technology is scalable for injuries of different sizes.

When they tested the spinal cord implants in rats, they found that not only did the implant repair the damaged spinal cord tissue, but it also provided sustained improvement in motor function up to six months after implantation.

Just as importantly, they also observed that blood vessels had infiltrated the implanted tissue. The absence of vascularized tissue is one of the main reasons engineered implants do not last long in the host, because blood vessels are necessary to provide nutrients and support tissue growth. In this case, the animal’s body solved the problem on its own.

In a press release, one of the co-first authors of the paper, Dr. Kobi Koffler, states the importance and novelty of this work:

“This marks another key step toward conducting clinical trials to repair spinal cord injuries in people. The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

In order to make this technology viable for human clinical trials, the scientists are testing their technology in larger animal models before moving into humans, as well as investigating how to improve the longevity of the neuronal network by introducing proteins into the scaffolds.

 

 

Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.

 

 

 

 

 

 

The power of one voice: David Higgins’ role in advancing stem cell research

CIRM-2018_28-

David Higgins: Photo courtesy Nancy Ramos @ Silver Eye Photography

As we start a new year, we are fine tuning our soon-to-be-published 2018 Annual Report, summarizing our work over the past 12 months. The report is far more than just a collection of statistics about how many clinical trials we are funding (50 – not too shabby eh!) or that our support has generated an additional $3.2 billion in leveraged funding. It’s also a look at the people who have made this year so memorable – from patients and researchers to patient advocates. We start with our Board member David Higgins, Ph.D.  David is the patient advocate on our Board for Parkinson’s disease. He has a family history of Parkinson’s and has also been diagnosed with the disease himself.

How he sees his role

As a patient advocate my role is not to support any Parkinson’s program that comes in the door and get it funded. We have to judge the science at the same level for every disease and if you bring me a good Parkinson’s project, I will fight tooth and nail to support it. But if you bring me a bad one, I will not support it. I see my role as more of a consultant for the staff and Board, to help advise but not to impose my views on them.

I think what CIRM has done is to create a new way of funding the best science in the world. The involvement of the community in making these decisions is critical in making sure there is an abundance of oversight, that there is not a political decision made about funding. It’s all about the science. This is the most science-based organization that you could imagine.

The Board plays a big role in all this. We don’t do research or come up with the ideas, but we nurture the research and support the scientists, giving them the elements they need to succeed.

And, of course the taxpayers play a huge role in this, creating us in the first place and approving all the money to help support and even drive this research. Because of that we should be as conservative as possible in using this money. Being trustees of this funding is a privilege and we have to be mindful of how to best use it.

On the science

I love, love, love having access to the latest, most interesting, cutting edge research in the world, talking to scientists about what they are doing, how we can support them and help them to do it better, how it will change the world. You don’t have access to anything else like this anywhere else.

It’s like ice cream, you just enjoy every morsel of it and there’s no way you can find that level of satisfaction anywhere else. I really feel, as do other Board members, that we are helping people, that we are changing people’s lives.

I also love the learning curve. The amount I have learned about the field that I didn’t know before is amazing. Every meeting is a chance to learn something new and meeting the scientists who have spent years working on a project is so fascinating and rewarding.

 Unexpected pleasure

The other joy, and I hadn’t anticipated this, is the personal interaction I have with other Board members and staff members. They have become friends, people I really like and admire because of what they do and how committed they are.

When I talk about CIRM I tell people if you live in California you should be proud of how your money is being spent and how it’s making a difference in people’s lives. When I give a talk or presentation, I always end with a slide of the California flag and tell people you should be proud to be here.

 

 

The most popular Stem Cellar posts of 2018

The blog

You never know when you write something if people are going to read it. Sometimes you wonder if anyone is going to read it. So, it’s always fun, and educational, to look back at the end of the year and see which pieces got the most eyeballs.

It isn’t always the ones you think will draw the biggest audiences. Sometimes it is diseases that are considered “rare” (those affecting fewer than 200,000 people) that get the most attention.

Maybe it’s because those diseases have such a powerful online community which shares news, any news, about their condition of interest with everyone they know. Whatever the reason, we are always delighted to share encouraging news about research we are funding or encouraging research that someone else is funding.

That was certainly the case with the top two stories this year. Both were related to ALS or Lou Gehrig’s disease.  It’s a particularly nasty condition. People diagnosed with ALS have a life expectancy of just 2 to 5 years. So it’s probably not a big surprise that stories suggesting stem cells could expand that life span got a big reception.

Whatever the reason, we’re just happy to share hopeful news with everyone who comes to our blog.

And so, without further ado, here is the list of the most popular Stem Cellar Blog Posts for 2018.

All of us in the Communications team at CIRM consider it an honor and privilege to be able to work here and to meet many of the people behind these stories; the researchers and the patients and patient advocates. They are an extraordinary group of individuals who help remind us why we do this work and why it is important. We love our work and we hope you enjoy it too. We plan to be every bit as active and engaged in 2019.

It’s not goodbye to Dr. Bert Lubin, it’s au revoir

DrB Lubin-098

Dr. Bert Lubin has been a fixture at UCSF Benioff Children’s Hospital Oakland long before it was even called that. When he started there 43 years ago it was just a small community hospital and through his commitment to helping those in need he has helped build it into a remarkable institution.

Over the years he started one of the first newborn screening programs for sickle cell disease, created the world’s first non-profit sibling cord blood donor program and along the way boosted the research budget from $500,000 to $60 million without ever losing sight of the hospital’s primary goal, serving the community.

But with someone like Bert, nothing is ever enough. He became a national leader in the fight to develop better treatments and even a cure for sickle cell disease and then joined the CIRM Board to help us find better treatments and even cures for a wide variety of diseases and disorders.

“I got a sense of the opportunities that stem cell therapies would have for a variety of things, certainly including Sickle Cell Disease and I thought if there’s a chance to be on the Board as an advocate for that population I think I’d be a good spokesperson.  I just thought this was an exciting opportunity.”

He says the Stem Cell Agency has done a great job in advancing the field, and establishing California as a global leader.

“I think we are seeing advances in stem cell therapies. I’m proud of the progress we are making and I’m proud of the cures we are providing and I think it’s wonderful that the state had the vision to do something as big as this and to be a leader in the world in that regard.”

Now, after almost eight years Bert is stepping down from the CIRM Board. But he’s not stepping away from CIRM.

I feel committed to CIRM, I don’t need to be on the Board to be committed to CIRM. I don’t see myself leaving, I’m just re-purposing what is my role in my CIRM. I’m recycling and reinventing.

To mark this transition to the next phase of his career, the staff at Children’s put together this video tribute for Bert. It’s a sweet, glowing and heart warming thank you to someone who has done so much for so many people. And plans on doing even more in the years to come.

Midwest universities are making important tools to advance stem cell research

580b4-ipscell

iPSCs are not just pretty, they’re also pretty remarkable

Two Midwest universities are making headlines for their contributions to stem cell research. Both are developing important tools to advance this field of study, but in two unique ways.

Scientists at the University of Michigan (UM), have compiled an impressive repository of disease-specific stem cell lines. Cell lines are crucial tools for scientists to study the mechanics of different diseases and allows them to do so without animal models. While animal models have important benefits, such as the ability to study a disease within the context of a living mammal, insights gained from such models can be difficult to translate to humans and many diseases do not even have good models to use.

The stem cell lines generated at the Reproductive Sciences Program at UM, are thanks to numerous individuals who donated extra embryos they did not use for in vitro fertilization (IVF). Researchers at UM then screened these embryos for abnormalities associated with different types of disease and generated some 36 different stem cell lines. These have been donated to the National Institute of Health’s (NIH) Human Embryonic Stem Cell Registry, and include cell lines for diseases such as cystic fibrosis, Huntington’s Disease and hemophilia.

Using one such cell line, Dr. Peter Todd at UM, found that the genetic abnormality associated with Fragile X Syndrome, a genetic mutation that results in developmental delays and learning disabilities, can be corrected by using a novel biological tool. Because Fragile X Syndrome does not have a good animal model, this stem cell line was critical for improving our understanding of this disease.

In the next state over, at the University of Wisconsin-Madison (UWM), researchers are doing similar work but using induced pluripotent stem cells (iPSCs) for their work.

The Human Stem Cell Gene Editing Service has proved to be an important resource in expediting research projects across campus. They use CRISPR-Cas9 technology (an efficient method to mutate or edit the DNA of any organism), to generate human stem cell lines that contain disease specific mutations. Researchers use these cell lines to determine how the mutation affects cells and/or how to correct the cellular abnormality the mutation causes. Unlike the work at UM, these stem cell lines are derived from iPSCs  which can be generated from easy to obtain human samples, such as skin cells.

The gene editing services at UWM have already proved to be so popular in their short existence that they are considering expanding to be able to accommodate off-campus requests. This highlights the extent to which both CRISPR technology and stem cell research are being used to answer important scientific questions to advance our understanding of disease.

CIRM also created an iPSC bank that researchers can use to study different diseases. The  Induced Pluripotent Stem Cell (iPSC) Repository is  the largest repository of its kind in the world and is used by researchers across the globe.

The iPSC Repository was created by CIRM to house a collection of stem cells from thousands of individuals, some healthy, but some with diseases such as heart, lung or liver disease, or disorders such as autism. The goal is for scientists to use these cells to better understand diseases and develop and test new therapies to combat them. This provides an unprecedented opportunity to study the cell types from patients that are affected in disease, but for which cells cannot otherwise be easily obtained in large quantities.

71 for Proposition 71

Proposition 71 is the state ballot initiative that created California’s Stem Cell Agency. This month, the Agency reached another milestone when the 71st clinical trial was initiated in the CIRM Alpha Stem Cell Clinics (ASCC) Network. The ASCC Network deploys specialized teams of doctors, nurses and laboratory technicians to conduct stem cell clinical trials at leading California Medical Centers.

StateClinics_Image_CMYK

These teams work with academic and industry partners to support patient-centered for over 40 distinct diseases including:

  • Amyotrophic Lateral Sclerosis (ALS)
  • Brain Injury & Stroke
  • Cancer at Multiple Sites
  • Diabetes Type 1
  • Eye Disease / Blindness Heart Failure
  • HIV / AIDS
  • Kidney Failure
  • Severe Combined Immunodeficiency (SCID)
  • Sickle Cell Anemia
  • Spinal Cord Injury

These clinical trials have treated over 400 patients and counting. The Alpha Stem Cell Clinics are part of CIRM’s Strategic Infrastructure. The Strategic Infrastructure program which was developed to support the growth of stem cell / regenerative medicine in California. A comprehensive update of CIRM’s Infrastructure Program was provided to our Board, the ICOC.

CIRM’s infrastructure catalyzes stem cell / regenerative medicine by providing resources to all qualified researchers and organizations requiring specialized expertise. For example, the Alpha Clinics Network is supporting clinical trials from around the world.

Many of these trials are sponsored by commercial companies that have no CIRM funding. To date, the ASCC Network has over $27 million in contracts with outside sponsors. These contracts serve to leverage CIRMs investment and provide the Network’s medical centers with a diverse portfolio of clinical trials to address patients’’ unmet medical needs.

Alpha Clinics – Key Performance Metrics

  • 70+ Clinical Trials
  • 400+ Patients Treated
  • 40+ Disease Indications
  • Over $27 million in contracts with commercial sponsors

The CIRM Alpha Stem Cell Clinics and broader Infrastructure Programs are supporting stem cell research and regenerative medicine at every level, from laboratory research to product manufacturing to delivery to patients. This infrastructure has emerged to make California the world leader in regenerative medicine. It all started because California’s residents supported a ballot measure and today we have 71 clinical trials for 71.

 

 

Stem Cell Agency celebrates 50 clinical trials with patient #1

Yesterday the CIRM Board approved funding for our 50th clinical trial (you can read about that here) It was an historic moment for us and to celebrate we decided to go back in history and hear from the very first person to be treated in a CIRM-funded clinical trial. Rich Lajara was treated in the Geron clinical trial after experiencing a spinal cord injury, thus he became CIRM’s patient #1. It’s a badge he says he is honored to wear. This is the speech Rich made to our Board.

Rich Lajara

Hello and good afternoon everyone. It’s an honor to be here today as the 50th clinical trial has been officially funded by CIRM. It was feels like it was just yesterday that I was enrolled into the first funded clinical trial by CIRM and in turn became California’s’ 1st embryonic stem cell patient.

I became paralyzed from the waist down in September 2011. It was Labor Day and I was at a river with some close friends. There was this natural granite rock slide feature next to a waterfall, it was about 60 feet long; all you had to do was get a bucket of water to get the rocks wet and slide down into a natural pool. I ended up slipping and went down head first backwards but was too far over and I slid off a 15’ ledge where the waterfall was. I was pulled from the water and banged up pretty bad. Someone said “look at that deformity on his back” and tapped my leg and asked if I could feel that. I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.

So, after a few days in the hospital of course everyone, as well as myself, wanted a cure. We quickly learned one didn’t exist. A close family friend had been making phone calls and was able to connect with the Christopher & Dana Reeve Foundation and learned about a clinical trial with “stem cells”. One of my biggest question was how any people have done this? “Close to none”, I was told.

I was also told I most likely would have no direct benefit as this was a safety trial? So why do it at all? Obviously at that time I was willing to overlook the “most likely” part because I was willing to do anything to try and get my normal life back.

Looking back the big picture was laying the ground work for others like Kris or Jake (two people enrolled in a later version of this trial). At the time I had no clue that what I was doing would be such a big deal. The data collected from me would end up being priceless. It’s stories like Jake’s and Kris’ that make me proud and reinforce my decision to have participated in California’s first stem cell clinical trial funded by prop 71.

Like I said earlier it was just the beginning for me. A couple of years later I became a patient advocate working with Americans for Cures. I have been able to meet many people in the stem cell industry and love to see the glow in their face when they learn I was California’s first embryonic stem cell patient.

I can’t even fathom all the year’s of hard work and countless hours of research that had lead up to my long anticipated surgery, but when I see their glowing smile I know they knew what it took.

I also enjoy sharing my story and bridging the gap between myths and facts about stem cells, or talking to students and helping inspire the next generation that will be in the stem cell industry.  As a matter of fact, I have 13 year old sister, Maddie, dead set on being a neurosurgeon.

Fast forward to today. Life in a wheelchair is not exactly a roll in the park (no pun intended) but I have grown accustomed to the new normal. Aside from some neuropathic pain, life is back on track.

Not once did I feel sorry for myself, I was excited to be alive. Sure I have bad days but don’t we all.

In the last 14 years CIRM has funded 50 human clinical trials, published around 2750 new peer-reviewed scientific discoveries, and they’ve transformed California into the world leader in stem cell research. As I look around the posters on the wall, of the people whose lives have been transformed by the agency, I can’t help but be struck by just how much has been achieved in such a short period of time.

While my journey might not yet be over, Evie and 40 other children like her, (children born with SCID) will never remember what it was like to live with the horrible condition they were born with because they have been cured thanks to CIRM. There are hundreds of others whose lives have been transformed because of work the agency has funded.

CIRM has proven how much can be achieved if we invest in cutting-edge medical research.

As most of you here probably know CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this. Everyone in this room knows how much CIRM has done in a little over a decade and how many lives have been changed because of its existence. We have the responsibility to make sure this work continues. We have a responsibility to make sure that the stories we’ve heard today are just the beginning.

I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California, and can’t wait to see what’s on the horizon.

 

Stem Cell Agency Board Approves 50th Clinical Trial

2018-12-13 01.18.50Rich Lajara

Rich Lajara, the first patient treated in a CIRM-funded clinical trial

May 4th, 2011 marked a landmark moment for the California Institute for Regenerative Medicine (CIRM). On that day the Stem Cell Agency’s Board voted to invest in its first ever clinical trial, which was also the first clinical trial to use cells derived from embryonic stem cells. Today the Stem Cell Agency reached another landmark, with the Board voting to approve its 50th clinical trial.

“We have come a long way in the past seven and a half years, helping advance the field from its early days to a much more mature space today, one capable of producing new treatments and even cures,” says Jonathan Thomas, JD, PhD, Chair of the CIRM Board. “But we feel that in many ways we are just getting started, and we intend funding as many additional clinical trials as we can for as long as we can.”

angiocrinelogo

The project approved today awards almost $6.2 million to Angiocrine Bioscience Inc. to see if genetically engineered cells, derived from cord blood, can help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people,” says Maria T. Millan, MD, President & CEO of CIRM. “Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

The first clinical trial CIRM funded was with Geron, targeting spinal cord injury. While Geron halted the trial for business reasons (and returned the money, with interest) the mantle was later picked up by Asterias Biotherapeutics, which has now treated 25 patients with no serious side effects and some encouraging results.

Rich Lajara was part of the Geron trial, the first patient ever treated in a CIRM-funded clinical trial. He came to the CIRM Board meeting to tell his story saying when he was injured “I knew immediately I was paralyzed. I thought this was the end, little did I know this was just the beginning. I call it being in the wrong place at the right time.”

When he learned about the Geron clinical trial he asked how many people had been treated with stem cells. “Close to none” he was told. Nonetheless he went ahead with it. He says he has never regretted that decision, knowing it helped inform the research that has since helped others.

Since that first trial the Stem Cell Agency has funded a wide range of projects targeting heart disease and stroke, cancer, diabetes, HIV/AIDS and several rare diseases. You can see the full list on the Clinical Trials Dashboard page on our website.

Rich ended by saying: “CIRM has proven how much can be achieved if we invest in cutting-edge medical research. As most of you here probably know, CIRM’s funding from Proposition 71 is about to run out. If I had just one message I wanted people to leave with today it would be this, I will do everything I can to make sure the agency gets refunded and I hope that all of you will join me in that fight. I’m excited for the world of stem cells, particularly in California and can’t wait to see what’s on the horizon.”

lubinbert-mug

The CIRM Board also took time today to honor Dr. Bert Lubin, who is stepping down after serving almost eight years on the Board.

When he joined the Board in February, 2011 Dr. Lubin said: “I hope to use my position on this committee to advocate for stem cell research that translates into benefits for children and adults, not only in California but throughout the world.”

Over the years he certainly lived up to that goal. As a CIRM Board member he has supported research for a broad range of unmet medical needs, and specifically for curative treatments for children born with a rare life-threatening conditions such as Sickle Cell Disease and Severe Combined Immunodeficiency (SCID) as well as  treatments to help people battling vision destroying diseases.

As the President & CEO of Children’s Hospital Oakland (now UCSF Benioff Children’s Hospital Oakland) Dr. Lubin was a leader in helping advance research into new treatments for sickle cell disease and addressing health disparities in diseases such as asthma, diabetes and obesity.

Senator Art Torres said he has known Dr. Lubin since the 1970’s and in all that time has been impressed by his devotion to patients, and his humility, and that all Californians should be grateful to him for his service, and his leadership.

Dr. Lubin said he was “Really grateful to be on the Board and I consider it an honor to be part of a group that benefits patients.”

He said he may be stepping down from the CIRM Board but that was all: “I am going to retire the word retirement. I think it’s a mistake to stop doing work that you find stimulating. I’m going to repurpose the rest of my life, and work to make sure the treatments we’ve helped develop are available to everyone. I am so proud to be part of this. I am stepping down, but I am devoted to doing all I can to ensure that you get the resources you need to sustain this work for the future.”