Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

Advertisements

The Alpha Stem Cell Clinics: Innovation for Breakthrough Stem Cell Treatments

During this third week of the Month of CIRM, we are focusing on CIRM’s Infrastructure programs which are all focused on helping to accelerate stem cell treatments to patients with unmet medical needs.

So here is the question of the day: What is the world’s largest network of medical centers dedicated to providing stem cell treatments to patients?

The answer is the CIRM Alpha Stem Cell Clinics Network.

The CIRM Alpha Stem Cell Clinics Network consists of leading medical institutions throughout California.

The ASCC Network consists of six leading medical centers throughout California. In 2015, the Network was launched in southern California at the City of Hope, UC Irvine, UC Los Angeles, and UC San Diego. In September 2017, CIRM awarded funding to UC Davis and UC San Francisco to enable the Network to better serve patients throughout the state. Forty stem cell clinical trials have been conducted within the Network with hundreds of patients being treat for a variety of conditions, including:

  • Cancers of the blood, brain, lung and other sites
  • Organ diseases of the heart and kidney
  • Pediatric diseases
  • Traumatic injury to the brain and spine

A complete list of clinical trials may be found on our website.

The Alpha Clinics at UC Los Angeles and San Francisco are working collaboratively on breakthrough treatments for serious childhood diseases. This video highlights a CIRM-funded clinical trial at the UCLA Alpha Clinic that is designed to restore the immune system of patients with life-threatening immune deficiencies. A similar breakthrough treatment is also being used at the UCLA Alpha Clinic to treat sickle cell disease. A video describing this treatment is below.

Why do we need a specialized Network for stem cell clinical trials?

Stem cell treatments are unique in many ways. First, they consist of cells or cell products that frequently require specialized processing. For example, the breakthrough treatments for children, described above, requires the bone marrow to be genetically modified to correct defects. This “gene therapy” is performed in the Alpha Clinic laboratories, which are specifically designed to implement cutting edge gene therapy techniques on the patient’s stem cells.

Many of the cancer clinical trials also take the patient’s own cells and then process them in a laboratory. This processing is designed to enhance the patient’s ability to fight cancer using their own immune cells. Each Alpha Clinic has specialized laboratories to process cells, and the sites at City of Hope and UC Davis have world-class facilities for stem cell manufacturing. The City of Hope and Davis facilities produce high quality therapeutic products for commercial and academic clinical trial sponsors. Because of this ability, the Network has become a prime location internationally for clinical trials requiring processing and manufacturing services.

Another unique feature of the Network is its partnership with CIRM, whose mission is to accelerate stem cell treatments for patients with unmet medical needs. Often, this means developing treatments for rare diseases in which the patient population is comparatively small. For example, there about 40-100 immune deficient children born each year in the United States. We are funding clinical trials to help treat those children. The Network is also treating rare brain and blood cancers.

To find patients that may benefit from these treatments, the Network has developed the capacity to confidentially query over 20 million California patient records. If a good match is found, there is a procedure in place, that is reviewed by an ethics committee, where the patient’s doctor can be notified of the trial and pass that information to the patient. For patients that are interested in learning more, each Alpha Clinic has a Patient Care Coordinator with the job of coordinating the process of educating patients about the trial and assisting them if they choose to participate.

How Can I Learn More?

If you are a patient or a family member and would like to learn more about the CIRM Alpha Clinics, click here. There is contact information for each clinic so you can learn more about specific trials, or you can visit our Alpha Clinics Trials page for a complete list of trials ongoing in the Network.

If you are a patient or a trial sponsor interested in learning more about the services offered through our Alpha Clinics Network, visit our website.

Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links:

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

4 things to know about stem cell clinical trials [Video]

Every day, we receive phone calls and emails from people who are desperately seeking our help. Sometimes they reach out on their own behalf, though often it’s for a family member or close friend. In every case, someone is suffering or dying from a disorder that has no available cure or effective treatment and they look to stem cell treatments as their only hope.

It’s heartbreaking to hear these personal stories that are unfolding in real time. Though they contact us from a wide range of places about a wide range of disorders, their initial set of questions are often similar and go something like this:

  • “Where can I find stem cell clinical trial for my condition?”
  • “What are my chances of being cured?”
  • “How much does it cost to be in a clinical trial?”
  • “How can I be sure it’s safe?”

We think anyone thinking about taking part in a clinical trial should consider these important questions. So, in addition to providing answers as we receive them through phone calls and emails, we wanted to find a way to reach out to as many people as possible. The result? The four-minute animation video you can watch below:

As mentioned in the video, the answers to these questions are only the tip of the iceberg for finding out if a particular clinical trial is right for you. The website, A Closer Look at Stem Cells, produced by the International Society for Stem Cell Research (ISSCR), is an excellent source for more advice on what things you should know before participating in a stem cell clinical trial or any experimental stem cell treatment.

And visit the Patient Resources section of our website for even more practical information including our growing list of CIRM-funded clinical trials as well as trials supported by our Alpha Stem Cell Clinic Network.

CIRM Alpha Clinics Network charts a new course for delivering stem cell treatments

Sometimes it feels like finding a cure is the easy part; getting it past all the hurdles it must overcome to be able to reach patients is just as big a challenge. Fortunately, a lot of rather brilliant minds are hard at work to find the most effective ways of doing just that.

Last week, at the grandly titled Second Annual Symposium of the CIRM Alpha Stem Cell Clinics Network, some of those minds gathered to talk about the issues around bringing stem cell therapies to the people who need them, the patients.

The goal of the Alpha Clinics Network is to accelerate the development and delivery of stem cell treatments to patients. In doing that one of the big issues that has to be addressed is cost; how much do you charge for a treatment that can change someone’s life, even save their life? For example, medications that can cure Hepatitis C cost more than $80,000. So how much would a treatment cost that can cure a disease like Severe Combined Immunodeficiency (SCID)? CIRM-funded researchers have come up with a cure for SCID, but this is a rare disease that affects between 40 – 100 newborns every year, so the huge cost of developing this would fall on a small number of patients.

The same approach that is curing SCID could also lead to a cure for sickle cell disease, something that affects around 100,000 people in the US, most of them African Americans. Because we are adding more people to the pool that can be treated by a therapy does that mean the cost of the treatment should go down, or will it stay the same to increase profits?

Jennifer Malin, United Healthcare

Jennifer Malin from United Healthcare did a terrific job of walking us through the questions that have to be answered when trying to decide how much to charge for a drug. She also explored the thorny issue of who should pay; patients, insurance companies, the state? As she pointed out, it’s no use having a cure if it’s priced so high that no one can afford it.

Joseph Alvarnas, the Director of Value-based Analytics at City of Hope – where the conference was held – said that in every decision we make about stem cell therapies we “must be mindful of economic reality and inequality” to ensure that these treatments are available to all, and not just the rich.

“Remember, the decisions we make now will influence not just the lives of those with us today but also the lives of all those to come.”

Of course long before you even have to face the question of who will pay for it, you must have a treatment to pay for. Getting a therapy through the regulatory process is challenging at the best of times. Add to that the fact that many researchers have little experience navigating those tricky waters and you can understand why it takes more than eight years on average for a cell therapy to go from a good idea to a clinical trial (in contrast it takes just 3.2 years for a more traditional medication to get into a clinical trial).

Sunil Kadim, QuintilesIMS

Sunil Kadam from QuintilesIMS talked about the skills and expertise needed to navigate the regulatory pathway. QuintilesIMS partners with CIRM to run the Stem Cell Center, which helps researchers apply for and then run a clinical trial, providing the guidance that is essential to keeping even the most promising research on track.

But, as always, at the heart of every conference, are the patients and patient advocates. They provided the inspiration and a powerful reminder of why we all do what we do; to help find treatments and cures for patients in need.

The Alpha Clinic Network is only a few years old but is already running 35 different clinical trials involving hundreds of patients. The goal of the conference was to discuss lessons learned and share best practices so that number of trials and patients can continue to increase.

The CIRM Board is also doing its part to pick up the pace, approving funding for up to two more Alpha Clinic sites.  The deadline to apply to be one of our new Alpha Clinics sites is May 15th, and you can learn more about how to apply on our funding page.

Since joining CIRM I have been to many conferences but this was, in my opinion, the best one I have ever intended. It brought together people from every part of the field to give the most complete vision for where we are, and where we are headed. The talks were engaging, and inspiring.

Kristin Macdonald was left legally blind by retinitis pigmentosa, a rare vision-destroying disease. A few years ago she became the first person to be treated with a CIRM-funded therapy aimed to restoring some vision. She says it is helping, that for years she lived in a world of darkness and, while she still can’t see clearly, now she can see light. She says coming out of the darkness and into the light has changed her world.

Kristin Macdonald

In the years to come the Alpha Clinics Network hopes to be able to do the same, and much more, for many more people in need.

To read more about the Alpha Clinics Meeting, check out our Twitter Moments.

A Clinical Trial Network Focused on Stem Cell Treatments is Expanding

Geoff Lomax is a Senior Officer of CIRM’s Strategic Initiatives.

California is one of the world-leaders in advancing stem cell research towards treatments and cures for patients with unmet medical needs. California has scientists at top universities and companies conducting cutting edge research in regenerative medicine. It also has CIRM, California’s Stem Cell Agency, which funds promising stem cell research and is advancing stem cell therapies into clinical trials. But the real clincher is that California has something that no one else has: a network of medical centers dedicated to stem cell-based clinical trials for patients. This first-of-its-kind system is called the CIRM Alpha Stem Cell Clinics Network.

Get to Know Our Alpha Clinics

In 2014, CIRM launched its Alpha Stem Cell Clinics Network to accelerate the development and delivery of stem cell treatments to patients. The network consists of three Alpha Clinic sites at UC San Diego, City of Hope in Duarte, and a joint clinic between UC Los Angeles and UC Irvine. Less than three years since its inception, the Alpha Clinics are conducting 34 stem cell clinical trials for a diverse range of diseases such as cancer, heart disease and sickle cell anemia. You can find a complete list of these clinical trials on our Alpha Clinics website. Below is an informational video about our Alpha Clinics Network.

So far, hundreds of patients have been treated at our Alpha Clinics. These top-notch medical centers use CIRM-funding to build teams specialized in overseeing stem cell trials. These teams include patient navigators who provided in-depth information about clinical trials to prospective patients and support them during their treatment. They also include pharmacists who work with patients’ cells or manufactured stem cell-products before the therapies are given to patients. And lastly, let’s not forget the doctors and nurses that are specially trained in the delivery of stem cell therapies to patients.

The Alpha Clinics Network also offers resources and tools for clinical trial sponsors, the people responsible for conducting the trials. These include patient education and recruitment tools and access to over 20 million patients in California to support successful recruitment. And because the different clinical trial sites are in the same network, sponsors can benefit from sharing the same approval measures for a single trial at multiple sites.

Looking at the big picture, our Alpha Clinics Network provides a platform where patients can access the latest stem cell treatments, and sponsors can access expert teams at multiple medical centers to increase the likelihood that their trial succeeds.

The Alpha Clinics Network is expanding

This collective expertise has resulted in a 3-fold (from 12 to 36 – two trials are being conducted at two sites) increase in the number of stem cell clinical trials at the Alpha Clinic sites since the Network’s inception. And the number continues to rise every quarter. Given this impressive track record, CIRM’s Board voted in February to expand our Alpha Clinics Network. The Board approved up to $16 million to be awarded to two additional medical centers ($8 million each) to create new Alpha Clinic sites and work with the current Network to accelerate patient access to stem cell treatments.

CIRM’s Chairman Jonathan Thomas explained,

Jonathan Thomas

“We laid down the foundation for conducting high quality stem cell trials when we started this network in 2014. The success of these clinics in less than three years has prompted the CIRM Board to expand the Network to include two new trial sites. With this expansion, CIRM is building on the current network’s momentum to establish new and better ways of treating patients with stem cell-based therapies.”

The Alpha Clinics Network plays a vital role in CIRM’s five-year strategic plan to fund 50 new clinical trials by 2020. In fact, the Alpha Clinic Network supports clinical trials funded by CIRM, industry sponsors and other sources. Thus, the Network is on track to becoming a sustainable resource to deliver stem cell treatments indefinitely.

In addition to expanding CIRM’s Network, the new sites will develop specialized programs to train doctors in the design and conduct of stem cell clinical trials. This training will help drive the development of new stem cell therapies at California medical centers.

Apply to be one our new Alpha Clinics!

For the medical centers interested in joining the CIRM Alpha Stem Cell Clinics Network, the deadline for applications is May 15th, 2017. Details on this funding opportunity can be found on our funding page.

The CIRM Team looks forward to working with prospective applicants to address any questions. The Alpha Stem Cell Clinics Network will also be showcasing it achievement at its Second Annual Symposium, details may be found on the City of Hope Alpha Clinics website.

City of Hope Medical Center and Alpha Stem Cell Clinic


Related Links:

Your Guide to Awesome Stem Cell Conferences in 2017

Welcome to 2017, a year that will likely be full of change and new surprises. I’m hoping that some of these surprises will be in regenerative medicine with new stem cell therapies showing promise or effectiveness in clinical trials.

A great way to stay on top of new advances in stem cell research is to attend scientific conferences and meetings. Some of them are well known and highly attended like the International Society for Stem Cell Research (ISSCR) conference, which this year will be in Boston in June. There are also a few smaller, more intimate conferences focusing on specific topics from discovery research to clinical therapies.

There are loads of stem cell meetings this year, but a few that I would like to highlight. Here’s my abbreviated stem cell research conference and meeting guide for 2017. Some are heavy duty research-focused events and probably not suitable for someone without a science background; they’re also expensive to sign up for. I’ve marked those with an * asterix.


January 8-12th, Keystone Symposium (Fee to register)*

Keystone will be hosting two concurrent stem cell meetings in Tahoe next week, which are geared for researchers in the field. One will be on neurogenesis during development and in the adult brain and the other will be on transcriptional and epigenetic control in stem cells. CIRM is one of the co-funders of this meeting and will be hosting a panel focused on translating basic research into clinical trials. Keystone symposiums are small, intimate meetings rich with scientific content and great for networking. Be on the look out for blog coverage about this meeting in the coming weeks.


February 3rd, Stanford Center for Definitive and Curative Medicine Symposium (Free to the public)

This free symposium at Stanford University in Palo Alto, CA will present first-in-human cell and gene therapies for a number of disorders including bone marrow, skin, cardiac, neural, uterine, pancreatic and neoplastic disorders. Speakers include scientists, translational biologists and clinicians. Irv Weissman, a Stanford professor and CIRM grantee focused on translational cancer research, will be the keynote speaker. Space is limited so sign up ASAP!


March 23rd, CIRM Alpha Stem Cell Clinics Symposium (Free to the public)

This free one-day meeting will bring together scientists, clinicians, patient advocates, and other partners to describe how the CIRM Alpha Stem Cell Clinics Network is making stem cell therapies a reality for patients. The City of Hope Alpha Clinic is part of a statewide effort funded by CIRM to develop a network of “Alpha Clinics” that has one unifying goal: to accelerate the development and delivery of stem cell treatments to patients.

City of Hope Medical Center and Alpha Stem Cell Clinic

City of Hope Medical Center and Alpha Stem Cell Clinic


June 14-17th, International Society for Stem Cell Research (Fee to register)*

The Annual ISSCR stem cell research conference will be hosted in Boston this year. This is an international conference focusing on new developments in stem cell science and technology. CIRM was one of the funders of the conference last year when ISSCR was in San Francisco. It’s one of my favorite research events to attend full of interesting scientific presentations and great for meeting future collaborators.


For a more comprehensive 2017 stem cell conference and meeting guide, check out Paul Knoepfler’s Niche blog.

Genetically engineered immune cells melt away deadly brain tumors

MRI scan of patient with glioblastoma tumor. (wikicommons)

MRI scan of patient with glioblastoma. (wikicommons)

Cancers come in many different forms. Some are treatable if caught early and other aren’t. One of the most deadly types of cancers are glioblastomas – a particularly aggressive form of brain tumor.  Patients diagnosed with glioblastoma have an average life expectancy of 12-15 months and there is no cure or effective treatment that extends life.

While a glioblastoma diagnosis has pretty much been a death sentence, now there could be a silver lining to this deadly, fast-paced disease. Last week, scientists from the City of Hope in southern California reported in the New England Journal of Medicine, a new cell-based therapy that melted away brain tumors in a patient with an advanced stage of glioblastoma.

An Immunotherapy Approach to Glioblastoma

The patient is a 50-year-old man named Richard Grady who was participating in an investigational clinical trial run out of the City of Hope’s CIRM Alpha Stem Cell Clinic. A brain scan revealed a brightly lit tumor on the right side of Richard’s brain. Doctors surgically removed the tumor and treated him with radiation in an attempt to staunch further growth. But after six months, the tumors came back with a vengeance, spreading to other parts of his brain, lighting up his MRI scan like a Christmas tree.

With few treatment options and little time left, Richard was enrolled in the City of Hope trial that was testing a cell-based immunotherapy that recognizes and attacks cancer cells. It’s called CAR T-cell therapy – a term that you probably have heard in the news as a promising and cutting-edge treatment for cancer. Scientists extract immune cells, called T-cells, from a patient’s blood and reengineer them in the laboratory to recognize unique surface markers on cancer cells. These specialized CAR T-cells are then put back into the patient to attack and kill off cancer cells.

In Richard’s case, CAR-T cells were first infused into his brain through a tube in an area where a tumor was recently removed. No new tumors grew in that location of his brain, but tumors in other areas continued to grow and spread to his spinal cord. At this point, the scientists decided to place a second tube into a cavity of the brain called the ventricles, which contain a clear liquid called cerebrospinal fluid. Directly infusing into the spinal fluid allowed the cancer fighting cells to travel to different parts of the brain and spinal cord to attack the tumors.

Behnam Badie, senior author on the study and neurosurgery chief at the City of Hope, explained in a news release,

Benham Badie, City of Hope

Benham Badie, City of Hope

“By injecting the reengineered CAR-T cells directly into the tumor site and the ventricles, where the spinal fluid is made, the treatment could be delivered throughout the patient’s brain and also to the spinal cord, where this particular patient had a large metastatic tumor.”

 

Bye Bye Brain Tumors? Almost…

Three infusions of the CAR T-cell treatment shrunk Richard’s tumors noticeably, and a total of ten infusions was enough to melt away Richard’s tumors completely. Amazingly, Richard was able to reduce his medications and go back to work.

TESt

CAR T-cell therapy reduces brain tumors when infused into the spinal fluid. (NEJM)

The effects of the immunotherapy lasted for seven-and-a-half months. Unfortunately, his glioblastoma did come back, and he is now undergoing radiation treatment. Instead of being discouraged by these results, we should be encouraged. Patients with advanced cases of glioblastoma like Richard often have only weeks left to live, and the prospect of another seven months of life with family and friends is a gift.

Following these promising results in a single patient, the City of Hope team has now treated a total of nine patients in their clinical trial. Their initial results indicate that the immunotherapy is relatively safe. Further studies will be done to determine whether this therapy will be effective at treating other types of cancers.

CIRM Alpha Clinics Advance Stem Cell Treatments

The findings in this study are particularly exciting to CIRM, not only because they offer a new treatment option for a deadly brain cancer, but also because the clinical trial testing this treatment is housed at one of our own Alpha Clinics. In 2014, CIRM funded three stem cell-focused clinics at the City of Hope, UC San Diego, and a joint clinic between UC Los Angeles and UC Irvine. These clinics are specialized to support high quality trials focused on stem cell treatments for various diseases. The CIRM team will be bringing a new Alpha Clinics concept plan to its governing Board for approval in February.

Geoff Lomax, Senior Officer of Strategic Infrastructure at CIRM who oversees the CIRM Alpha Clinics, commented on the importance of City of Hope’s glioblastoma trial,

“Treating this form of brain cancer is one of the most vexing challenges in medicine. With the support and expertise of the CIRM Alpha Stem Cell Clinic, City of Hope is harnessing the power of patients’ immune cells to treat this deadly disease.”

Neil Littman, CIRM Director of Business Development and Strategic Infrastructure added,

“This study provides important proof-of-concept that CAR-T cells can be used to target hard-to-treat solid tumors and is precisely the type of trial the CIRM Alpha Stem Cell Clinic Network is designed to support.”

For more details on this study, watch the video below from City of Hope: