Gene therapy is life-changing for children with a life-threatening brain disorder

If you have never heard of AADC deficiency count yourself lucky. It’s a rare, incurable condition that affects only around 135 children worldwide but it’s impact on those children and their families is devastating. The children can’t speak, can’t feed themselves or hold up their head, they have severe mood swings and often suffer from insomnia.

But Dr. Krystof Bankiewicz, a doctor and researcher at the University of California San Francisco (UCSF), is using techniques he developed treating Parkinson’s disease to help those children. Full disclosure here, CIRM is funding Dr. Bankiewicz’s Parkinson’s clinical trial.

In AADC deficiency the children lack a critical enzyme that helps the brain make serotonin and dopamine, so called “chemical messengers” that help the cells in the brain communicate with each other. In his AADC clinical trial Dr. Bankiewicz and his team created a tiny opening in the skull and then inserted a functional copy of the AADC gene into two regions of the brain thought to have most benefit – the substantia nigra and ventral tegmental area of the brainstem.

Image showing target areas for AADC gene insertion: Courtesy UCSF

When the clinical trial began none of the seven children were able to sit up on their own, only two had any ability to control their head movement and just one could grasp an object in their hands. Six of the seven were described as moody or irritable and six suffered from insomnia.

In a news release Dr. Bankiewicz says the impact of the gene therapy was quite impressive: “Remarkably, these episodes were the first to disappear and they never returned. In the months that followed, many patients experienced life-changing improvements. Not only did they begin laughing and have improved mood, but some were able to start speaking and even walking.”

Those weren’t the only improvements, at the end of one year:

  • All seven children had better control of their head and body.
  • Four of the children were able to sit up by themselves.
  • Three patients could grasp and hold objects.
  • Two were able to walk with some support.

Two and a half years after the surgery:

  • One child was able to walk without any support.
  • One child could speak with a vocabulary of 50 words.
  • One child could communicate using an assistive device.

The parents also reported big improvements in mood and ability to sleep.

UCSF posted some videos of the children before and after the surgery and you can see for yourself the big difference in the children. It’s not a cure, but for families that had nothing in the past, it is a true gift.

The study is published in the journal Nature Communications.

CIRM funded trial may pave way for gene therapy to treat different diseases

Image Description: Jordan Janz (left) and Dr. Stephanie Cherqui (right)

According to the  National Organization for Rare Disorders (NORD), a disease is consider rare if it affects fewer than 200,000 people. If you combine the over 7,000 known rare diseases, about 30 million people in the U.S. are affected by one of these conditions. A majority of these conditions have no cure or have very few treatment options, but a CIRM funded trial (approximately $12 million) for a rare pediatric disease has showed promising results in one patient using a gene therapy approach. The hope for the field as a whole is that this proof of concept might pave the way to use gene therapy to treat other diseases.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene that results in abnormal accumulation of cystine (hence the name cystinosis) in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular problems.  There is currently a drug treatment for cystinosis, but it only delays the progression of the disease, has severe side effects, and is expensive.

Dr. Stephane Cherqui at UC San Diego (UCSD), in partnership with AVROBIO, is conducting a clinical trial that uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective gene. The corrected stem cells are then reintroduced into the patient with the hope that they will give rise to blood cells that will reduce cystine buildup in the body.  

22 year old Jordan Janz was born with cystinosis and was taking anywhere from 40 to 60 pills a day as part of his treatment. Unfortunately the medication affected his body odor, leaving him smelling like rotten eggs or stinky cheese. In 2019, Jordan was the first of three patients to participate in Dr. Cherqui’s trial and the results have been remarkable. Tests have shown that the cystine in his eyes, skin and muscle have greatly decreased. Instead of the 40-60 pills a day, he just takes vitamins and specific nutrients his body needs. What’s more is that he no longer has a problem with body odor caused by the pills he once had to take. Although it will take much more time know if Jordan was cured of the disease, he says that he feels “essentially cured”.

In an article from the Associated Press, Jordan is optimistic about his future.

“I have more of a life now. I’m going to school. I’m hoping to open up my own business one day.”

You can learn more about Jordan by watching the video below:

Although gene therapy approaches still need to be closely studied, they have enormous potential for treating patients. CIRM has funded other clinical trials that use gene therapy approaches for different genetic diseases including X-SCID, ADA-SCID, ART-SCID, X-CGD, and sickle cell disease.

Saying thanks and farewell to a friend

Tom Howing

In this job you get to meet a lot of remarkable people, none more so than the patients who volunteer to take part in what are giant experiments. They are courageous pioneers, willing to be among the first people to ever try a new therapy, knowing that it may not help them and, potentially, might even harm them.

Tom Howing was one such person. I got to know Tom when we were putting together our 2017 Annual Report. Back in 2015 Tom was diagnosed with Stage 4 cancer that had spread throughout his body. He underwent surgery and chemotherapy. That worked for a while, but then the cancer returned. So, Tom had more surgery and chemotherapy. Again, it worked for a while but when the cancer returned again Tom was running out of options.

That’s when he learned about a clinical trial with a company called Forty Seven Inc. that was testing a new anti-cancer therapy that CIRM was supporting. Tom says he didn’t hesitate.

“When I was diagnosed with cancer I knew I had battle ahead of me. After the cancer came back again they recommended I try this CD47 clinical trial. I said absolutely, let’s give it a spin. I guess one is always a bit concerned whenever you put the adjective “experimental” in front of anything. But I’ve always been a very optimistic and positive person and have great trust and faith in my caregivers.”

Optimistic and positive are great ways to describe Tom. Happily, his optimism was rewarded. The therapy worked.

“Scans and blood tests came back showing that the cancer appears to be held in check. My energy level is fantastic. The treatment that I had is so much less aggressive than chemo, my quality of life is just outstanding.”

But after a year or so Tom had to drop out of the trial. He tried other therapies and they kept the cancer at bay. For a while. But it kept coming back. And eventually Tom ran out of options. And last week, he ran out of time.

Tom was a truly fine man. He was kind, caring, funny, gracious and always grateful for what he had. He talked often about his family and how the stem cell therapy helped him spend not just more time with them, but quality time.

He knew when he signed up for the therapy that there were no guarantees, but he wanted to try, saying that even if it didn’t help him that the researchers might learn something to help others down the line.

“The most important thing I would say is, I want people to know there is always hope and to stay positive.”

Tom ultimately lost his battle with cancer. But he never lost his spirit, his delight in his family and his desire to keep going as long as he could. In typical Tom fashion he preferred to put his concerns aside and cheer others along.

“To all those people who are putting in all the hours at the bench and microscope, it’s important for them to know that they are making a huge impact on the lives of real people and they should celebrate it and revel in it and take great pride in it.”

We consider ourselves fortunate to have known Tom and to have been with him on part of his journey. He touched our lives, as he touched the lives of so many others. Our thoughts and wishes go out to his family and friends. He will be remembered, because we never forget our friends.

A few years ago Tom came and talked to the CIRM Board. Here is the video of that event.

Stem cell gene therapy for Fabry disease shows positive results in patients

Darren Bidulka rests after his modified blood stem cells were transplanted into him at the Foothills Medical Centre in Calgary in 2017, allowing him to stop his enzyme therapy. (From left): Dr. Jeffrey Medin, Medical College of Wisconsin, Dr. Aneal Khan, the experimental trial lead in Calgary, and Darren Bidulka. Image Credit: Darren Bidulka

Fabry disease is an X-linked genetic disorder that can damage major organs and shorten lifespan. Without a functional version of a gene called GLA, our bodies are unable to make the correct version of an enzyme that breaks down a fat, and that in turn can lead to problems in the kidneys, heart and brain. It is estimated that one person in 40,000 to 60,000 has the disease and it affects men more severely than women since men only have one copy of the X chromosome. Current treatment consists of enzyme therapy infusions every two weeks but there is currently no cure for Fabry disease. 

However, a Canadian research team is conducting the world’s first pilot study to treat Fabry disease using a stem cell gene therapy approach. The researchers collected the patient’s own blood stem cells and used gene therapy to insert copies of the fully functional gene into the stem cells, allowing them to make the correct version of the enzyme. The newly modified stem cells were then transplanted back into each patient.

Five men participated in this trial and the results so far have been very encouraging. After treatment with the stem cell gene therapy, all patients began producing the corrected version of the enzyme to near normal levels within one week. With these initial results, all five patients were allowed to stop their biweekly enzyme therapy infusions. So far, only three patients decided to do so and are stable.

In a news release, Darren Bidulka, the first patient to be treated in the study, talked about how life changing this stem cell gene therapy has been for him.

“I’m really happy that this worked. What an amazing result in an utterly fascinating experience. I consider this a great success. I can lead a more normal life now without scheduling enzyme therapy every two weeks. This research is also incredibly important for many patients all over the world, who will benefit from these findings.”

CIRM is no stranger to stem cell gene therapy and its potential having funded clinical trials in various areas such as severe combined immunodeficiency (bubble baby disease), cystinosis, sickle cell disease, and various others. The broad range of genetic diseases it has been used in to treat patients further highlights its importance in scientific research.

The full results of this study were published in Nature Communications.

Everything you wanted to know about COVID vaccines but never got a chance to ask

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a rare treat, an interview with Moderna’s Dr. Derrick Rossi.

Moderna co-founder Dr. Derrick Rossi

It’s not often you get a chance to sit down with one of the key figures in the fight against the coronavirus and get to pick his brain about the best ways to beat it. We were fortunate enough to do that on Wednesday, talking to Dr. Derrick Rossi, the co-founder of Moderna, about the vaccine his company has developed.

CIRM’s President and CEO, Dr. Maria Millan, was able to chat to Dr. Rossi for one hour about his background (he got support from CIRM in his early post-doctoral research at Stanford) and how he and his colleagues were able to develop the COVID-19 vaccine, how the vaccine works, how effective it is, how it performs against new variations of the virus.

He also told us what he would have become if this science job hadn’t worked out.

All in all it was a fascinating conversation with someone whose work is offering a sense of hope for millions of people around the world.

If you missed it first time around you can watch it here.

Month of CIRM: Making sure stem cell therapies don’t get lost in Translation

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a blog written by two of our fabulous Discovery and Translation team Science Officers, Dr. Kent Fitzgerald and Dr. Ross Okamura.

Dr. Ross Okamura

If you believe that you can know a person by their deeds, the partnership opportunities offered by CIRM illustrate what we, as an agency, believe is the most effective way to deliver on our mission statement, accelerating regenerative medicine treatments to patients with unmet medical needs.

Dr. Kent Fitzgerald

 In our past, we have offered awards covering basic biology projects which in turn provided the foundation to produce promising therapies  to ease human suffering.  But those are only the first steps in an elaborate process.

In order to bring these potential therapies to the clinic, selected drug candidates must next go through a set of activities designed to prepare them for review by the Food and Drug Administration (FDA). For cell therapies, the first formal review is often the Pre- Investigational New Drug Application Consultation or pre-IND.  This stage of drug development is commonly referred to as Translational, bridging the gap between our Discovery or early stage research and Clinical Trial programs.

One of our goals at CIRM is to prepare Translational projects we fund for that  pre-IND meeting with the FDA, to help them gather data that support the hope this approach will be both safe and effective in patients.  Holding this meeting with the FDA is the first step in the often lengthy process of conducting FDA regulated clinical trials and hopefully bringing an approved therapy to patients.

What type of work is required for a promising candidate to move from the Discovery stage into FDA regulated development?  To address the needs of Translational science, CIRM offers the Translational Research Project funding opportunity.  Activities that CIRM supports at the Translational stage include:

  • Process Development to allow manufacturing of the candidate therapy under Good Manufacturing Practices (GMP). This is to show that they can manufacture  at a large enough scale to treat patients.
  • Assay development and qualification of measurements to determine whether the drug is being manufactured safely while retaining its curative properties.
  • Studies to determine the optimal dose and the best way to deliver that dose.
  • Pilot safety studies looking how the patient might respond after treatment with the drug.
  • The development of a clinical plan indicating under what rules and conditions the drug might be prescribed to a patient. 

These, and other activities supported under our Translational funding program, all help to inform the FDA when they consider what pivotal studies they will require prior to approving an Investigational New Drug (IND) application, the next step in the regulatory approval process.

Since CIRM first offered programs specifically aimed at addressing the Translational stage of therapeutic candidates we have made 41 awards totaling approximately $150 million in funding.  To date, 13 have successfully completed and achieved their program goals, while 19 others are still actively working towards meeting their objective.  Additionally, three (treating Spina Bifida, Osteonecrosis, and Sickle Cell Disease) of the 13 programs have gone on to receive further CIRM support through our Clinical Stage programs.

During our time administering these awards, CIRM has actively partnered with our grantees to navigate what is required to bring a therapy from the bench to the bedside.  CIRM operationalizes this by setting milestones that provide clear definitions of success, specific goals the researchers have to meet to advance the project and also by providing resources for a dedicated project manager to help ensure the project can keep the big picture in mind while executing on their scientific progress. 

Throughout all this we partner with the researchers to support them in every possible way. For example, CIRM provides the project teams with Translational Advisory Panels (TAPs, modeled after the CIRM’s Clinical Advisory Panels) which bring in outside subject matter experts as well as patient advocates to help provide additional scientific, regulatory and clinical expertise to guide the development of the program at no additional cost to the grantees.  One of the enduring benefits that we hope to provide to researchers and organizations is a practical mastery of translational drug development so that they may continue to advance new and exciting therapies to all patients.

Through CIRM’s strong and continued support of this difficult stage of development, CIRM has developed an internal practical expertise in advancing projects through Translation.  We employ our experience to guide our awardees so they can avoid common pitfalls in the development of cell and gene therapies. The end goal is simple, helping to accelerate their path to the clinic and fulfilling the mission of CIRM that has been twice given to us by the voters of California, bringing treatments to patients suffering from unmet medical needs.

How a CIRM scholar helped create a life-saving COVID vaccine

Dr. Derrick Rossi might be the most famous man whose name you don’t recognize. Dr. Rossi is the co-founder of Moderna. Yes, that Moderna. The COVID-19 vaccine Moderna. The vaccine that in clinical trials proved to be around 95 percent effective against the coronavirus.

Dr. Rossi also has another claim to fame. He is a former CIRM scholar. He did some of his early research, with our support, in the lab of Stanford’s Dr. Irv Weissman.

So how do you go from a lowly post doc doing research in what, at the time, was considered a rather obscure scientific field, to creating a company that has become the focus of the hopes of millions of people around the world?  Well, join us on Wednesday, January 27th at 9am (PST) to find out.

CIRM’s President and CEO, Dr. Maria Millan, will hold a live conversation with Dr. Rossi and we want you to be part of it. You can join us to listen in, and even post questions for Dr. Rossi to answer. Think of the name dropping credentials you’ll get when say to your friends; “Well, I asked Dr. Rossi about that and he told me…..”

Being part of the conversation is as simple as clicking on this link:

After registering, you will receive a confirmation email containing information about joining the webinar.

We look forward to seeing you there.

Progress in the fight against Sickle Cell Disease

Marissa Cors, sickle cell disease patient advocate

Last November Marissa Cors, a patient advocate in the fight against Sickle Cell Disease (SCD), told the Stem Cellar “A stem cell cure will end generations of guilt, suffering, pain and early death. It will give SCD families relief from the financial, emotional and spiritual burden of caring someone living with SCD. It will give all of us an opportunity to have a normal life. Go to school, go to work, live with confidence.” With each passing month it seems we are getting closer to that day.

CIRM is funding four clinical trials targeting SCD and another project we are supporting has just been given the green light by the Food and Drug Administration to start a clinical trial. Clearly progress is being made.

Yesterday we got a chance to see that progress. We held a Zoom event featuring Marissa Cors and other key figures in the fight against SCD, CIRM Science Officer Dr. Ingrid Caras and Evie Junior. Evie is a pioneer in this struggle, having lived with sickle cell all his life but now hoping to live his life free of the disease. He is five months past a treatment that holds out the hope of eradicating the distorted blood cells that cause such devastation to people with the disease.

You can listen to his story, and hear about the other progress being made. Here’s a recording of the Zoom event.

You can also join Marissa every week on her live event on Facebook, Sickle Cell Experience Live.

Month of CIRM – Our Therapeutics Team Goes Hunting

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we have a guest blog by CIRM Senior Science Officer Lisa Kadyk, outlining how she and her colleagues actively search for the best science to fund.

Lisa Kadyk, Ph.D.

Hi everyone,

This is Lisa Kadyk, a Science Officer from the CIRM Therapeutics team, here to tell you about some of the work our team does to support the CIRM mission of accelerating stem cell treatments to patients with unmet medical needs.  Our job involves seeking out and recruiting great scientists to apply to CIRM and supporting those we fund.

Therapeutics team members manage both the awards that fund the final preclinical studies required before testing a therapeutic in a clinical trial (CLIN1), and the awards that fund the clinical trials themselves (CLIN2). 

I mentioned above that we actively recruit new applicants for our CLIN1 and CLIN2 awards – which is not an activity that is typical of most funding agencies – so why and how do we do this?  

It all comes down to our mission of accelerating the development of therapies to help patients with unmet medical needs.  It turns out that there are many potential applicants developing cutting edge therapies who don’t know much or anything about CIRM, and the ways we can help them with getting those therapies to the clinic and through clinical trials.    So, to bridge this gap, we Science Officers attend scientific conferences, read the scientific literature and meet regularly with each other to stay abreast of new therapeutic approaches being developed in both academia and industry, with the goal of identifying and reaching out to potential applicants about what CIRM has to offer. 

What are some of the things we tell potential applicants about how partnering with CIRM can help accelerate their programs?   First of all, due to the efforts of a very efficient Review team, CIRM is probably the fastest in the business for the time between application and potential funding.  It can be as short as three months for a CLIN1 or CLIN2 application to be reviewed by the external Grants Working Group and approved by the CIRM Board, whereas the NIH (for example) estimates it takes seven to ten months to fund an application.   Second, we have frequent application deadlines (monthly for CLIN1 and CLIN2), so we are always available when the applicant is ready to apply.  Third, we have other accelerating mechanisms in place to help grantees once they’ve received funding, such as the CIRM Alpha Stem Cell Clinics network of six clinical sites throughout California (more efficient clinical trial processes and patient recruitment) and Clinical Advisory Panels (CAPs) – that provide technical, clinical or regulatory expertise as well as patient advocate guidance to the grantee.  Finally, we Science Officers do our best to help every step of the way, from application through grant closeout.

We now feel confident that our recruitment efforts, combined with CIRM’s more efficient funding pipeline and review processes, are accelerating development of new therapies.  Back in 2016, a new CIRM Strategic Plan included the goal of recruiting 50 successful (i.e., funded) clinical trial applicants within five years.  This goal seemed like quite a stretch, since CIRM had funded fewer than 20 clinical trials in the previous ten years.  Fast-forward to the end of 2020, and CIRM had funded 51 new trials in those five years, for a grand total of 68 trials.    

Now, with the passage of Proposition 14 this past November, we are looking forward to bringing more cell and gene therapeutic candidates into clinical trials.   If you are developing one yourself, feel free to let us know… or don’t be surprised if you hear from us!  

Anticipating the Future of Regenerative Medicine: CIRM’s Alpha Stem Cell Clinics Network

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we take a deeper dive into CIRM’s Alpha Stem Cell Clinics Network.  The following is written by Dr. Geoff Lomax, Senior Officer of CIRM Therapeutics and Strategic Infrastructure.

The year 2014 has been described as the regenerative medicine renaissance: the European Union approved its first stem cell-based therapy and the FDA authorized ViaCyte’s CIRM funded clinical trial for diabetes. A path forward for stem cell treatments had emerged and there was a growing pipeline of products moving towards the clinic. At the time, many in the field came to recognize the need for clinical trial sites with the expertise to manage this growing pipeline. Anticipating this demand, CIRM’s provided funding for a network of medical centers capable of supporting all aspect of regenerative medicine clinical trials. In 2015, the Alpha Stem Cell Clinics Network was launched to for this purpose.

The Alpha Clinics Network is comprised of leading California medical centers with specific expertise in delivering patient-centered stem cell and gene therapy treatments. UC San Diego, City of Hope, UC Irvine and UC Los Angeles were included in the initial launch, and UC San Francisco and UC Davis entered the network in 2017. Between 2015 and 2020 these sites supported 105 regenerative medicine clinical trials. Twenty-three were CIRM-funded clinical trials and the remaining 82 were sponsored by commercial companies or the Alpha Clinic site. These trials are addressing unmet medical needs for almost every disease where regenerative medicine is showing promise including blindness, blood disorders (e.g. sickle cell disease) cancer, diabetes, HIV/AIDS, neurological diseases among others.

As of spring of 2020 the network had inked over $57 million in contracts with commercial sponsors. High demand for Alpha Clinics reflects the valuable human and technical resources they provide clinical trial sponsors. These resources include:

  • Skilled patient navigators to educate patients and their families about stem cell and gene therapy treatments and assist them through the clinical trial process.
  • Teams and facilities specialized in the manufacturing and/or processing of patients’ treatments. In some instances, multiple Alpha Clinic sites collaborate in manufacturing and delivery of a personalized treatment to the patient.
  • Nurses and clinicians with experience with regenerative medicine and research protocols to effectively deliver treatments and subsequently monitor the patients.

The multi- site collaborations are an example of how the network operates synergistically to accelerate the development of new treatments and clinical trials. For example, the UC San Francisco Alpha Clinic is collaborating with UC Berkeley and the UC Los Angeles Alpha Clinic to develop a CIRM-funded gene therapy for sickle cell disease. Each partner brings a unique expertise to the program that aims to correct a genetic mutilation in the patients’ blood stem cells to effectively cure the disease. Most recently, City of Hope has partnered with UC Irvine and UC San Diego as part of CIRM’s COVID-19 research program to study how certain immune system antibodies might be used as a treatment for respiratory disease in infected patients. In another COVID-19 study, UC Irvine and UC Davis are working with a commercial sponsor to evaluate a treatment for infected adults.

The examples above are a small sample of the variety of collaborations CIRM funding has enabled. As the Alpha Clinics track record grown, sponsors are increasingly coming to California to enable the success of their research programs. Sponsors with trials running across the country have noted a desire to expand their number of Alpha Clinic sties because they consistently perform at the highest level.

Back in 2014, it was hard to imagine over one hundred clinical trials would be served by the CIRM network in just five years. Fortunately, CIRM was able to draw on the knowledge of its internal team, external advisors and the ICOC to anticipate this need and provide California infrastructure to rise to the occasion.