Facebook Live: Ask the Stem Cell Team

On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.

What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state. Paul Hartman.  San Leandro, California

Dr. Kelly Shepard

Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1)  our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism.  Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer.  There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.

************************************

STROKE

What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold

Dr. Lila Collins

Dr. Lila Collins: Hi Elvis, this is an evolving story.  I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized.  As you note, some of the treated subjects had promising motor recoveries. 

SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release.  While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI).  In this trial, SanBio saw positive results on motor recovery with their product.  In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well.  SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds. 

Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke.  The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.

*****************************

I am a stroke survivor will stem cell treatment able to restore my motor skills? Ruperto

Dr. Lila Collins:

Hi Ruperto. Restoring motor loss after stroke is a very active area of research.  I’ll touch upon a few ongoing stem cell trials.  I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.

Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier.  UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic).  Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.

There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours.  After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery.  Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.

Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke).  The trial has an accelerated FDA designation, called RMAT and a special protocol assessment.  This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing.  Results from this trial should be available in about two years. 

********************************

Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?

Dr. Lila Collins:

Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.

That said, hemorrhagic strokes are not rare and tend to be more deadly.  These strokes are caused by bleeding into or around the brain which damages neurons.  They can even increase pressure in the skull causing further damage.  Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.

While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.

We are aware of a clinical trial targeting acute hemorrhagic stroke that is being run by the Mayo clinic in Jacksonville Florida.

****************************

I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell

Dr. Lila Collins:

Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision).  The results could be:

  1. Visual loss from damage to the retina
  2. You could have a normal eye with damage to the area of the brain that controls the eye’s movement
  3. You could have damage to the part of the brain that interprets vision.

You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged. 

Replacing lost neurons is an active effort that at the moment is still in the research stages.  As you can imagine, this is complex because the neurons have to make just the right connections to be useful. 

*****************************

VISION

Is there any stem cell therapy for optical nerve damage? Deanna Rice

Dr. Ingrid Caras

Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments.  However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma

****************************

I read an article about ReNeuron’s retinitis pigmentosa clinical trial update.  In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors? Leonard

Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.

****************************

My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen

Dr. Ingrid Caras: The results will be available sometime in 2020.

*****************************

I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors.  My questions are: Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving? Leonard Furber, an RP Patient

Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.

Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye.   The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.

**********************************

DIABETES

What advances have been made using stem cells for the treatment of Type 2 Diabetes? Mary Rizzo

Dr. Ross Okamura

Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells.  The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations. 

Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases.  Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients.  Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns.  However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.

To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin.  While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.

It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.

***********************************

SPINAL CORD INJURY

Is there any news on clinical trials for spinal cord injury? Le Ly

Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.

“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”

Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.

In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.

*********************************

ALS

Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson

Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed.  So we will not expect to see the results probably for another year or two.

***********************************

AUTISM

Are there treatments for autism or fragile x using stem cells? Magda Sedarous

Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail.  CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.

**********************************

PARKINSON’S DISEASE

What is happening with Parkinson’s research? Hanifa Gaphoor

Dr. Kent Fitzgerald

Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research. 

The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.  

This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc.  Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix. 

Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease. 

Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients.   As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced.  The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient. 

One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s.  This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).

Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should. 

The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.   

********************************

HUNTINGTON’S DISEASE

Any plans for Huntington’s? Nikhat Kuchiki

Dr. Lisa Kadyk

Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded.   One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells.   When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons.  Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease.   Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.   

There are other, non-cell-based therapies also being tested in clinical trials now, using  anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein.  Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure, Voyager)

******************************

TRAUMATIC BRAIN INJURY (TBI)

My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:

  • Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
  •  
  • I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
  • Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?

Dr. Kelly Shepard:  TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred  previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.

********************************

We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?

Dr. Stephen Lin

Dr. Stephen Lin:  Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors.  Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes.  At present no regulatory approved clinical therapy has been developed using this approach. 

************************************

PREDATORY STEM CELL CLINICS

What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult? Kathy Jean Schultz

Dr. Geoff Lomax

Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”

In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.

  • First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
  • We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
  • Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.

*****************************************

I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial? Cheri Hicks

Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.

I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:

 1) I wonder on where the typical injection cells are coming from?

  2) I wonder what is the actual cost of the cells?

3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?

*********************************

Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:

  • There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
  • Most of the evidence presented is case reports that individuals have benefited
  • The challenge we face is not know the exact type of injury and cell treatments used.
  • Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
  • Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
  • You are correct that there have not been reports of serious injury for knee injections
  • However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.

*************************************

Do stem cells have benefits for patients going through chemotherapy and radiation therapy? Ruperto

Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.

Dr. Ingrid Caras: That’s an interesting and valid question.  There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries.  In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.

There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”).  It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain.  In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.

*****************************************

Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia?  Don Reed.

Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease.   In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves.  This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system.  For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”.   To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes.   Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.  

A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells.  The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells. 

*****************************************

Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason

Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.

********************************

What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas

Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment.  Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach.  CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations.  Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed.  It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.

CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.

While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or  metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.

**********************************

Explain the differences between gene therapy and stem cell therapy? Renee Konkol

Dr. Stephen Lin:  Gene therapy is the direct modification of cells in a patient to treat a disease.  Most gene therapies use modified, harmless viruses to deliver the gene into the patient.  Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis. 

Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease.  Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy.  Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells.  The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).

Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients.  Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.

***********************************

Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known? James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC

Dr. Stephen Lin:  Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting.  Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial.  CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials.  The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect.   Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.

*****************************************

Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs. Sajid

Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture.  These are quite different than MSCs and offer a new path to be explored for repairing and generating bone. 

Media matters in spreading the word

Cover of New Yorker article on “The Birth Tissue Profiteers”. Illustration by Ben Jones

When you have a great story to tell the best and most effective way to get it out to the widest audience is still the media, both traditional mainstream and new social media. Recently we have seen three great examples of how that can be done and, hopefully, the benefits that can come from it.

First, let’s go old school. Earlier this month Caroline Chen wrote a wonderful in-depth article about clinics that are cashing in on a gray area in stem cell research. The piece, a collaboration between the New Yorker magazine and ProPublica, focused on the use of amniotic stem cell treatments and the gap between what the clinics who offer it are claiming it can do, and the reality.

Here’s one paragraph profiling a Dr. David Greene, who runs a company providing amniotic fluid to clinics. It’s a fine piece of writing showing how the people behind these therapies blur the lines between fact and reality, not just about the cells but also about themselves:

“Greene said that amniotic stem cells derive their healing power from an ability to develop into any kind of tissue, but he failed to mention that mainstream science does not support his claims. He also did not disclose that he lost his license to practice medicine in 2009, after surgeries he botched resulted in several deaths. Instead, he offered glowing statistics: amniotic stem cells could help the heart beat better, “on average by twenty per cent,” he said. “Over eighty-five per cent of patients benefit exceptionally from the treatment.”

Greene later backpedals on that claim, saying:

“I don’t claim that this is a treatment. I don’t claim that it cures anything. I don’t claim that it’s a permanent fix. All I discuss is maybe, potentially, people can get some improvements from stem-cell care.”

CBS2 TV Chicago

This week CBS2 TV in Chicago did their own investigative story about how the number of local clinics offering unproven and unapproved therapies is on the rise. Reporter Pam Zekman showed how misleading newspaper ads brought in people desperate for something, anything, to ease their arthritis pain.

She interviewed two patients who went to one of those clinics, and ended up out of pocket, and out of luck.

“They said they would regenerate the cartilage,” Patricia Korona recalled. She paid $4500 for injections in her knee, but the pain continued. Later X-rays were ordered by her orthopedic surgeon.

He found bone on bone,” Korona said. “No cartilage grew, which tells me it failed; didn’t work.”

John Zapfel paid $14,000 for stem cell injections on each side of his neck and his shoulder. But an MRI taken by his current doctor showed no improvement.

“They ripped me off, and I was mad.” Zapfel said.      

TV and print reports like this are a great way to highlight the bogus claims made by many of these clinics, and to shine a light on how they use hype to sell hope to people who are in pain and looking for help.

At a time when journalism seems to be increasingly under attack with accusations of “fake news” it’s encouraging to see reporters like these taking the time and news outlets devoting the resources to uncover shady practices and protect vulnerable patients.

But the news isn’t all bad, and the use of social media can help highlight the good news.

That’s what happened yesterday in our latest CIRM Facebook Live “Ask the Stem Cell Team” event. The event focused on the future of stem cell research but also included a really thoughtful look at the progress that’s been made over the last 10-15 years.

We had two great guests, UC Davis stem cell researcher and one of the leading bloggers on the field, Paul Knoepfler PhD; and David Higgins, PhD, a scientist, member of the CIRM Board and a Patient Advocate for Huntington’s Disease. They were able to highlight the challenges of the early years of stem cell research, both globally and here at CIRM, and show how the field has evolved at a remarkable rate in recent years.

Paul Knoepfler

Naturally the subject of the “bogus clinics” came up – Paul has become a national expert on these clinics and is quoted in the New Yorker article – as did the subject of the frustration some people feel at what they consider to be the too-slow pace of progress. As David Higgins noted, we all think it’s too slow, but we are not going to race recklessly ahead in search of something that might heal if we might also end up doing something that might kill.

David Higgins

A portion of the discussion focused on funding and, in particular, what happens if CIRM is no longer around to fund the most promising research in California. We are due to run out of funding for new projects by the end of this year, and without a re-infusion of funds we will be pretty much closing our doors by the end of 2020. Both Paul and David felt that could be disastrous for the field here in California, depriving the most promising projects of support at a time when they needed it most.

It’s probably not too surprising that three people so closely connected to CIRM (Paul has received funding from us in the past) would conclude that CIRM is needed for stem cell research to not just survive but thrive in California.

A word of caution before you watch: fashion conscious people may be appalled at how my pocket handkerchief took on a life of its own.

Stem Cell Roundup: better model of schizophrenia, fasting boosts stem cells, and why does our hair gray.

Stem cell photo of the week:
Recreating brain cell interactions for studying schizophrenia

169585_web

Salk researchers used stem cells to derive CA3 pyramidal neurons (green), including a rare subtype of the cells (red). Image: Salk Institute

Our pick for the stem cell image of the week is from the laboratory of Rusty Gage at the Salk Institute. The team generated multiple types of nerve cells from stem cells to more closely represent the interactions that occur in the brain. They’re using this system to show how the communication between these nerve cells becomes faulty in people with schizophrenia. A Salk Institute press release provides more details about their study which was published in Cell Stem Cell.

Regenerative power of intestinal stem cells maintained via fasting
For many decades, researchers have known that restricting food intake in mice can extend life span. Why it happens hasn’t been well understood. This week, a team at MIT uncovered a possible explanation: fasting increases the regenerative power of stem cells.

May3_2018_MIT_StemCellDiet2247912117

Intestinal stem cells from mice that fasted for 24 hours, at right, produced much more substantial intestinal organoids than stem cells from mice that did not fast, at left.
Image: Maria Mihaylova and Chia-Wei Cheng, MIT

The report, published in Cell Stem Cell, focused on the well-studied intestinal stem cell, which renews the intestinal lining every five days. As we age, the intestinal stem cell’s regenerative abilities wane and damage to the intestinal lining takes longer to repair.

Mice were fasted for 24 hours and then their intestinal stem cells were retrieved and grown into mini-intestine organoids in petri dishes. According to Maria Mihaylova, PhD, one of the lead authors, the results of the experiment were very clear:

“It was very obvious that fasting had this really immense effect on the ability of intestinal crypts to form more organoids, which is stem-cell-driven,” Mihaylova said in a press release. “This was something that we saw in both the young mice and the aged mice, and we really wanted to understand the molecular mechanisms driving this.”

Mihaylova and the team went on to show that fasting caused the stem cells to burn fat instead of carbohydrates for their energy needs. Inhibiting the gene pathways that flip this metabolic switch also blocks the regenerative capacity of fasting. On the other hand, molecules that boost the gene pathways mimic the effects of fasting without changing food intake. This intriguing finding could potentially have clinical applications for cancer patients who suffer intestinal injury from the toxic effects of chemotherapy drugs but who certainly aren’t in a condition to fast.

Premature graying, our immune system and stem cells: a surprising link. (Kevin McCormack)
As someone whose hair went gray at a relatively young age – well, it seemed young to me! – this next story naturally caught my eye. It highlights how our immune systems may play a key role in determining our hair color and, in particular, when that hair turns gray.

Our bodies are constantly shedding hairs and replacing them with new ones. Normally stem cells called melanocytes help ensure the new hairs have your original color, be it black, blonde, brunette or red.

Researchers at the National Institutes of Health and the University of Alabama, Birmingham, found that when the body is attacked by a virus, our immune system kicks in and respond by producing interferon to fight off the infection. However, when a protein called MITF, that is involved in regulating how cells use interferon, fails to work properly it can also affect melanocytes causing them to lose their pigmentation. Without that pigmentation the new hairs are gray.

The study, which appears in the journal PLOS Biology, is too late to help me and my gray hair – particularly as it was done in mice – but it could pave the way for further research that identifies how genes that control pigment in our hair and skin also control our immune system.

Researchers find connection between aging muscles and mutations in stem cells

It’s a humbling fact of life that our muscles decline as we age which is why you didn’t see any 50-year-olds competing for Olympic Gold in figure skating at the 2018 Winter Games.

You can blame your muscle stem cells for this. Also called satellite cells, these adult stem cells lie mostly dormant in muscle tissue until, in response to exercise or injury, they begin to divide, specialize and replenish damaged muscle cells. But, this restorative function declines over time diminishing the ability of aging muscle stem cells to grow new muscle, and in turn, leading to a gradual deterioration in strength and agility.

muscle stem cell

Muscle stem cell (pink with green outline) sits along a muscle fiber. Image: Michael Rudnicki/OIRM

While this connection between aging muscle and stem cells has been well-known, the underlying reasons are less well understood. However, a recent Nature Communications study by researchers at the Karolinska Institute in Sweden makes an important inroad: muscle stem cells from healthy, older individuals have a surprising number of genetic mutations compared to their younger counterparts.

To carry out the comparison, the researchers isolated muscle stem cells from muscle biopsies taken from groups of young (21-24 yrs) and more senior (68-75 yrs) healthy adults. Single cell DNA sequencing (which creates a genetic blueprint for individual cells) showed that the older stem cells had accumulated 2 to 3 times more mutations in genes that are active in the muscle stem cells. This higher “burden” of mutations also appeared to impair cell function: in the older group, those stem cells with higher numbers of mutations had a lower capacity to divide and specialize into certain types of muscle cells. The younger stem cells did not show this behavior suggesting they are better protected from these mutations, as team lead, Professor Maria Eriksson, explained in a press release:

maria_eriksson_webb_sir

Maria Eriksson. Photo: Ulf Sirborn

“We can demonstrate that this protection diminishes the older you become, indicating an impairment in the cell’s capacity to repair their DNA. And this is something we should be able to influence with new drugs.”

 

 

In addition to possible drug interventions, Dr. Eriksson is also interested in evaluating the role of exercise to counteract the effects of these mutations:

“We aim to discover whether it is possible to individually influence the burden of mutations. Our results may be beneficial for the development of exercise programs, particularly those designed for an aging population.”

Stem Cell Roundup: New understanding of Huntington’s; how stem cells can double your DNA; and using “the Gary Oldman of cell types” to reverse aging

This week’s roundup highlights how we are constantly finding out new and exciting ways that stem cells could help change the way we treat disease.

Our Cool Stem Cell Image of the Week comes from our first story, about unlocking some of the secrets of Huntington’s disease. It comes from the Laboratory of Stem Cell Biology and Molecular Embryology at The Rockefeller University

Huntington's neurons

A new approach to studying and developing therapies for Huntington’s disease

Researchers at Rockefeller University report new findings that may upend the way scientists study and ultimately develop therapies for Huntington’s disease, a devastating, inherited neurodegenerative disorder that has no cure. Though mouse models of the disease are well-established, the team wanted to focus on human biology since our brains are more complex than those of mice. So, they used CRISPR gene editing technology in human embryonic stem cells to introduce the genetic mutations that cause HD.

Though symptoms typically do not appear until adulthood, the researchers were surprised to find that in their human cell-based model of HD, abnormalities in nerve cells occur at the earliest steps in brain development. These results suggest that HD therapies should focus on treatments much earlier in life.

The researchers observed another unexpected twist: cells that lack Huntingtin, the gene responsible for HD, are very similar to cells found in HD. This suggests that too little Huntingtin may be causing the disease. Up until now, the prevailing idea has been that Huntington’s symptoms are caused by the toxicity of too much mutant Huntingtin activity.

We’ll certainly be keeping an eye on how further studies using this new model affect our understanding of and therapy development for HD.

This study was published in Development and was picked by Science Daily.

How you can double your DNA

dna

As you can imagine we get lots of questions about stem cell research here at CIRM. Last week we got an email asking if a stem cell transplant could alter your DNA? The answer is, under certain circumstances, yes it could.

A fascinating article in the Herald Review explains how this can happen. In a bone marrow transplant bad blood stem cells are killed and replaced with healthy ones from a donor. As those cells multiply, creating a new blood supply, they also carry the DNA for the donor.

But that’s not the only way that people may end up with dual DNA. And the really fascinating part of the article is how this can cause all sorts of legal and criminal problems.

One researcher’s efforts to reverse aging

gary-oldman

Gary Oldman: Photo courtesy Variety

“Stem cells are the Gary Oldman of cell types.” As a fan of Gary Oldman (terrific as Winston Churchill in the movie “Darkest Hour”) that one line made me want to read on in a profile of Stanford University researcher Vittorio Sebastiano.

Sebastiano’s goal is, to say the least, rather ambitious. He wants to reverse aging in people. He believes that if you can induce a person’s stem cells to revert to a younger state, without changing their function, you can effectively turn back the clock.

Sebastiano says if you want to achieve big things you have to think big:

“Yes, the ambition is huge, the potential applications could be dramatic, but that doesn’t mean that we are going to become immortal in some problematic way. After all, one way or the other, we have to die. We will just understand aging in a better way, and develop better drugs, and keep people happier and healthier for a few more years.”

The profile is in the journal Nautilus.

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

Stem cell stories that caught our eye: developing the nervous system, aging stem cells and identical twins not so identical

Here are the stem cell stories that caught our eye this week. Enjoy!

New theory for how the nervous system develops.

There’s a new theory on the block for how the nervous system is formed thanks to a study published yesterday by UCLA stem cell scientists in the journal Neuron.

The theory centers around axons, thin extensions projecting from nerve cells that transmit electrical signals to other cells in the body. In the developing nervous system, nerve cells extend axons into the brain and spinal cord and into our muscles (a process called innervation). Axons are guided to their final destinations by different chemicals that tell axons when to grow, when to not grow, and where to go.

Previously, scientists believed that one of these important chemical signals, a protein called netrin 1, exerted its influence over long distances in a gradient-like fashion from a structure in the developing nervous system called the floor plate. You can think of it like a like a cell phone tower where the signal is strongest the closer you are to the tower but you can still get some signal even when you’re miles away.

The UCLA team, led by senior author and UCLA professor Dr. Samantha Butler, questioned this theory because they knew that neural progenitor cells, which are the precursors to nerve cells, produce netrin1 in the developing spinal cord. They believed that the netrin1 secreted from these progenitor cells also played a role in guiding axon growth in a localized manner.

To test their hypothesis, they studied neural progenitor cells in the developing spines of mouse embryos. When they eliminated netrin1 from the neural progenitor cells, the axons went haywire and there was no rhyme or reason to their growth patterns.

Left: axons (green, pink, blue) form organized patterns in the normal developing mouse spinal cord. Right: removing netrin1 results in highly disorganized axon growth. (UCLA Broad Stem Cell Research Center/Neuron)

A UCLA press release explained what the scientists discovered next,

“They found that neural progenitors organize axon growth by producing a pathway of netrin1 that directs axons only in their local environment and not over long distances. This pathway of netrin1 acts as a sticky surface that encourages axon growth in the directions that form a normal, functioning nervous system.”

Like how ants leave chemical trails for other ants in their colony to follow, neural progenitor cells leave trails of netrin1 in the spinal cord to direct where axons go. The UCLA team believes they can leverage this newfound knowledge about netrin1 to make more effective treatments for patients with nerve damage or severed nerves.

In future studies, the team will tease apart the finer details of how netrin1 impacts axon growth and how it can be potentially translated into the clinic as a new therapeutic for patients. And from the sounds of it, they already have an idea in mind:

“One promising approach is to implant artificial nerve channels into a person with a nerve injury to give regenerating axons a conduit to grow through. Coating such nerve channels with netrin1 could further encourage axon regrowth.”

Age could be written in our stem cells.

The Harvard Gazette is running an interesting series on how Harvard scientists are tackling issues of aging with research. This week, their story focused on stem cells and how they’re partly to blame for aging in humans.

Stem cells are well known for their regenerative properties. Adult stem cells can rejuvenate tissues and organs as we age and in response to damage or injury. However, like most house hold appliances, adult stem cells lose their regenerative abilities or effectiveness over time.

Dr. David Scadden, co-director of the Harvard Stem Cell Institute, explained,

“We do think that stem cells are a key player in at least some of the manifestations of age. The hypothesis is that stem cell function deteriorates with age, driving events we know occur with aging, like our limited ability to fully repair or regenerate healthy tissue following injury.”

Harvard scientists have evidence suggesting that certain tissues, such as nerve cells in the brain, age sooner than others, and they trigger other tissues to start the aging process in a domino-like effect. Instead of treating each tissue individually, the scientists believe that targeting these early-onset tissues and the stem cells within them is a better anti-aging strategy.

David Sadden, co-director of the Harvard Stem Cell Institute.
(Jon Chase/Harvard Staff Photographer)

Dr. Scadden is particularly interested in studying adult stem cell populations in aging tissues and has found that “instead of armies of similarly plastic stem cells, it appears there is diversity within populations, with different stem cells having different capabilities.”

If you lose the stem cell that’s the best at regenerating, that tissue might age more rapidly.  Dr. Scadden compares it to a game of chess, “If we’re graced and happen to have a queen and couple of bishops, we’re doing OK. But if we are left with pawns, we may lose resilience as we age.”

The Harvard Gazette piece also touches on a changing mindset around the potential of stem cells. When stem cell research took off two decades ago, scientists believed stem cells would grow replacement organs. But those days are still far off. In the immediate future, the potential of stem cells seems to be in disease modeling and drug screening.

“Much of stem cell medicine is ultimately going to be ‘medicine,’” Scadden said. “Even here, we thought stem cells would provide mostly replacement parts.  I think that’s clearly changed very dramatically. Now we think of them as contributing to our ability to make disease models for drug discovery.”

I encourage you to read the full feature as I only mentioned a few of the highlights. It’s a nice overview of the current state of aging research and how stem cells play an important role in understanding the biology of aging and in developing treatments for diseases of aging.

Identical twins not so identical (Todd Dubnicoff)

Ever since Takahashi and Yamanaka showed that adult cells could be reprogrammed into an embryonic stem cell-like state, researchers have been wrestling with a key question: exactly how alike are these induced pluripotent stem cells (iPSCs) to embryonic stem cells (ESCs)?

It’s an important question to settle because iPSCs have several advantages over ESCs. Unlike ESCs, iPSCs don’t require the destruction of an embryo so they’re mostly free from ethical concerns. And because they can be derived from a patient’s cells, if iPSC-derived cell therapies were given back to the same patient, they should be less likely to cause immune rejection. Despite these advantages, the fact that iPSCs are artificially generated by the forced activation of specific genes create lingering concerns that for treatments in humans, delivering iPSC-derived therapies may not be as safe as their ESC counterparts.

Careful comparisons of DNA between iPSCs and ESCs have shown that they are indeed differences in chemical tags found on specific spots on the cell’s DNA. These tags, called epigenetic (“epi”, meaning “in addition”) modifications can affect the activity of genes independent of the underlying genetic sequence. These variations in epigenetic tags also show up when you compare two different preparations, or cell lines, of iPSCs. So, it’s been difficult for researchers to tease out the source of these differences. Are these differences due to the small variations in DNA sequence that are naturally seen from one cell line to the other? Or is there some non-genetic reason for the differences in the iPSCs’ epigenetic modifications?

Marian and Vivian Brown, were San Francisco’s most famous identical twins. Photo: Christopher Michel

A recent CIRM-funded study by a Salk Institute team took a clever approach to tackle this question. They compared epigenetic modifications between iPSCs derived from three sets of identical twins. They still found several epigenetic variations between each set of twins. And since the twins have identical DNA sequences, the researchers could conclude that not all differences seen between iPSC cell lines are due to genetics. Athanasia Panopoulos, a co-first author on the Cell Stem Cell article, summed up the results in a press release:

“In the past, researchers had found lots of sites with variations in methylation status [specific term for the epigenetic tag], but it was hard to figure out which of those sites had variation due to genetics. Here, we could focus more specifically on the sites we know have nothing to do with genetics. The twins enabled us to ask questions we couldn’t ask before. You’re able to see what happens when you reprogram cells with identical genomes but divergent epigenomes, and figure out what is happening because of genetics, and what is happening due to other mechanisms.”

With these new insights in hand, the researchers will have a better handle on interpreting differences between individual iPSC cell lines as well as their differences with ESC cell lines. This knowledge will be important for understanding how these variations may affect the development of future iPSC-based cell therapies.

Could revving up stem cells help senior citizens heal as fast as high school seniors?

All physicians, especially surgeons, sport medicine doctors, and military medical corps share a similar wish: to able to speed up the healing process for their patients’ incisions and injuries. Data published this week in Cell Reports may one day fulfill that wish. The study – reported by a Stanford University research team – pinpoints a single protein that revs up stem cells in the body, enabling them to repair tissue at a quicker rate.

Screen Shot 2017-04-19 at 5.37.38 PM

Muscle fibers (dark areas surrounding by green circles) are larger in mice injected with HGFA protein (right panel) compared to untreated mice (left panel), an indication of faster healing after muscle injury.
(Image: Cell Reports 19 (3) p. 479-486, fig 3C)

Most of the time, adult stem cells in the body keep to themselves and rarely divide. This calmness helps preserve this important, small pool of cells and avoids unnecessary mutations that may happen whenever DNA is copied during cell division.

To respond to injury, stem cells must be primed by dividing one time, which is a very slow process and can take several days. Once in this “alert” state, the stem cells are poised to start dividing much faster and help repair damaged tissue. The Stanford team, led by Dr. Thomas Rando, aimed to track down the signals that are responsible for this priming process with the hope of developing drugs that could help jump-start the healing process.

Super healing serum: it’s not just in video games
The team collected blood serum from mice two days after the animals had been subjected to a muscle injury (the mice were placed under anesthesia during the procedure and given pain medication afterwards). When that “injured” blood was injected into a different set of mice, their muscle stem cells became primed much faster than mice injected with “uninjured” blood.

“Clearly, blood from the injured animal contains a factor that alerts the stem cells,” said Rando in a press release. “We wanted to know, what is it in the blood that is doing this?”

 

A deeper examination of the priming process zeroed in on a muscle stem cell signal that is turned on by a protein in the blood called hepatocyte growth factor (HGF). So, it seemed likely that HGF was the protein that they had been looking for. But, to their surprise, there were no differences in the amount of HGF found in blood from injured and uninjured mice.

HGFA: the holy grail of healing?
It turns out, though, that HGF must first be chopped in two by an enzyme called HGFA to become active. When the team went back and examined the injured and uninjured blood, they found that it was HGFA which showed a difference: it was more active in the injured blood.

To show that HGFA was directly involved in stimulating tissue repair, the team injected mice with the enzyme two days before the muscle injury procedure. Twenty days post injury, the mice injected with HGFA had regenerated larger muscle fibers compared to untreated mice. Even more telling, nine days after the HGFA treatment, the mice had better recovery in terms of their wheel running activity compared to untreated mice.

To mimic tissue repair after a surgery incision, the team also looked at the impact of HGFA on skin wound healing. Like the muscle injury results, injecting animals with HGFA two days before creating a skin injury led to better wound healing compared to untreated mice. Even the hair that had been shaved at the surgical site grew back faster. First author Dr. Joseph Rodgers, now at USC, summed up the clinical implications of these results :

“Our research shows that by priming the body before an injury you can speed the process of tissue repair and recovery, similar to how a vaccine prepares the body to fight infection. We believe this could be a therapeutic approach to improve recovery in situations where injuries can be anticipated, such as surgery, combat or sports.”

Could we help senior citizens heal as fast as high school seniors?
Another application for this therapeutic approach may be for the elderly. Lots of things slow down when you get older including your body’s ability to heal itself. This observation sparks an intriguing question for Rando:

“Stem cell activity diminishes with advancing age, and older people heal more slowly and less effectively than younger people. Might it be possible to restore youthful healing by activating this [HGFA] pathway? We’d love to find out.”

I bet a lot of people would love for you to find out, too.

Stem Cell Stories that caught our eye: a womb with a view, reversing aging and stabilizing stem cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Today we bring you a trifecta of stem cell stories that were partially funded by grants from CIRM.

A womb with a view: using 3D imaging to observe embryo implantation. Scientists have a good understanding of how the beginning stages of pregnancy happen. An egg cell from a woman is fertilized by a sperm cell from a man and the result is a single cell called a zygote. Over the next week, the zygote divides into multiple cells that form the developing embryo. At the end of that period, the embryo hatches out of its protective membrane and begins implanting itself into the lining of the mother’s uterus.

It’s possible to visualize the early stages of embryo development in culture dishes, which has helped scientists understand the biological steps required for an embryo to survive and develop into a healthy fetus. However, something that is not easy to observe is the implantation stage of the embryo in the uterus. This process is complex and involves a restructuring of the uterine wall to accommodate the developing embryo. As you can imagine, replicating these events would be extremely complicated and difficult to do in a culture dish, and current imaging techniques aren’t adequate either.

That’s where new CIRM-funded research from a team at UCSF comes to the rescue. They developed a 3D imaging technology and combined it with a previously developed “tissue clearing” method, which uses chemicals to turn tissues translucent, to provide clear images of the uterine wall during embryo implantation in mice. Their work was published this week in the journal Development.

According to a UCSF news release,

“Using their new approach, the team observed that the uterine lining becomes extensively folded as it approaches its window of receptivity for an embryo to implant. The geometry of the folds in which the incoming embryos dwell is important, the team found, as genetic mutants with defects in implantation have improper patterns of folding.”

Ultimately, the team aims to use their new imaging technology to get an inside scoop on how to prevent or treat pregnancy disorders and also how to improve the outcome of pregnancies by in vitro fertilization.

Senior author on the study, UCSF professor Diana Laird concluded:

“This new view of early pregnancy lets us ask fundamentally new questions about how the embryo finds its home within the uterus and what factors are needed for it to implant successfully. Once we can understand how these processes happen normally, we can also ask why certain genetic mutations cause pregnancies to fail, to study the potential dangers of environmental toxins such as the chemicals in common household products, and even why metabolic disease and obesity appears to compromise implantation.”

If you want to see this womb with a view, check out the video below.

Watch these two videos for more information:

Salk scientists reverse signs of aging in mice. For our next scintillating stem cell story, we’re turning back the clock – the aging clock that is. Scientists from the Salk Institute in La Jolla, reported an interesting method in the journal Cell  that reverses some signs of aging in mice. They found that periodic expression of embryonic stem cell genes in skin cells and mice could reverse some signs of aging.

The Salk team made use of cellular reprogramming tools developed by the Nobel Prize winning scientist Shinya Yamanaka. He found that four genes normally expressed in embryonic stem cells could revert adult cells back to a pluripotent stem cell state – a process called cellular reprogramming. Instead of turning adult cells back into stem cells, the Salk scientists asked whether the Yamanaka factors could instead turn back the clock on older, aging cells – making them healthier without turning them back into stem cells or cancer-forming cells.

The team found that they could rejuvenate skin cells from mice without turning them back into stem cells if they turned on the Yamanaka genes on for a short period of time. These skin cells were taken from mice that had progeria – a disease that causes them to age rapidly. Not only did their skin cells look and act younger after the treatment, but when the scientists used a similar technique to turn on the Yamanaka genes in progeria mice, they saw rejuvenating effects in the mice including a more rapid healing and regeneration of muscle and pancreas tissue.

(Left) impaired muscle repair in aged mice; (right) improved muscle regeneration in aged mice subjected to reprogramming. (Salk Institute)

(Left) impaired muscle repair in aged mice; (right) improved muscle regeneration in aged mice subjected to reprogramming. (Salk Institute)

The senior author on the study, Salk Professor Juan Carlos Izpisua Belmonte, acknowledged in a Salk news release that this is early stage work that focuses on animal models, not humans:

“Obviously, mice are not humans and we know it will be much more complex to rejuvenate a person. But this study shows that aging is a very dynamic and plastic process, and therefore will be more amenable to therapeutic interventions than what we previously thought.”

This story was very popular, which is not surprising as aging research is particularly fascinating to people who want to live longer lives. It was covered by many news outlets including STATnews, Scientific American and Science Magazine. I also recommend reading Paul Knoepfler’s journal club-style blog on the study for an objective take on the findings and implications of the study. Lastly, you can learn more about the science of this work by watching the movie below by the Salk.

Movie:

Stabilizing unstable stem cells. Our final stem cell story is brought to you by scientists from the UCLA Broad Stem Cell Research Center. They found that embryonic stem cells can harbor genetic instabilities that can be passed on to their offspring and cause complications, or even disease, later in life. Their work was published in two separate studies in Cell Stem Cell and Cell Reports.

The science behind the genetic instabilities is too complicated to explain in this blog, so I’ll refer you to the UCLA news release for more details. In brief, the UCLA team found a way to reverse the genetic instability in the stem cells such that the mature cells that they developed into turned out healthy.

As for the future impact of this research, “The research team, led by Kathrin Plath, found a way to correct the instability by resetting the stem cells from a later stage of development to an earlier stage of development. This fundamental discovery could have great impact on the creation of healthy tissues to cure disease.”

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”