Turning back the clock to make old skin cells young again

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Diljeet Gill, photo courtesy Babraham Institute, Cambridge UK

Sometimes when I am giving public presentations people ask if stem cells are good for the face. I always say that if stem cells could help improve people’s faces would I look like this. It’s a line that gets a laugh but it’s also true. The ads you see touting stem cells as being beneficial for skin are all using plant stem cells. But now some new research has managed to turn back the clock for skin cells, and it might do a lot more than just help skin look younger.

Back in 2007 Japanese scientist Shinya Yamanaka discovered a way to turn ordinary skin cells back into an embryonic-like state, meaning those cells could then be turned into any other cell in the body. He called these cells induced pluripotent stem cells or iPSCs. Dr. Yamanaka was later awarded the Nobel Prize for Medicine for this work.

Using this work as their starting point, a team at Cambridge University in the UK, have developed a technique that can rewind the clock on skin cells but stop it less than a third of the way through, so they have made the cells younger but didn’t erase their identity as skin cells.

The study, published in the journal ELifeSciences, showed the researchers were able to make older skin cells 30 years younger. This wasn’t about restoring a sense of youthful beauty to the skin, instead it was about something far more important, restoring youthful function to the skin.

In a news release, Dr Diljeet Gill, a lead author on the study, said: “Our understanding of ageing on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

The team proved the potential for their work using fibroblasts, the most common kind of cell found in connective tissues such as skin. Fibroblasts are important because they produce collagen which helps provide support and structure to tissues and also helps in healing wounds. When the researchers examined the rejuvenated skin cells they found they were producing more collagen than cells that had not been rejuvenated. They also saw signs that these rejuvenated cells could help heal wounds better than the old cells.

The researchers also noted that this approach had an effect on other genes linked to age-related conditions, such Alzheimer’s disease and the development of cataracts.

The researchers acknowledge that this is all very early on, but the fact that they were able to make the cells behave and act like younger cells, without losing their identity as skin cells, holds tremendous promise not just for conditions affecting the skin, but for regenerative medicine as a whole.

Dr. Diljeet concluded: “Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells. The fact that we also saw a reverse of ageing indicators in genes associated with diseases is particularly promising for the future of this work.”

One more good reason to exercise

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

As we start the New Year with a fervent hope that it’s better than the last two, many people are making a resolution to get more exercise. A new study suggests that might not just benefit the body, it could also help the brain. At least if you are a mouse.

Researchers at the University of Queensland Brain Institute found that 35 days of exercise could improve brain function and memory.

In an interview in Futurity, Dan Blackmore, one of the lead researchers on the study, says they not only showed the benefits of exercise, but also an explanation for why it helps.

“We tested the cognitive ability of elderly mice following defined periods of exercise and found an optimal period or ‘sweet spot’ that greatly improved their spatial learning. We found that growth hormone (GH) levels peaked during this time, and we’ve been able to demonstrate that artificially raising GH in sedentary mice also was also effective in improving their cognitive skills. We discovered GH stimulates the production of new neurons in the hippocampus—the region of the brain critically important to learning and memory.

The study was published in the journal iScience.

Obviously, this is great for mice, but they hope that future research could show similar benefits for people. But don’t wait for that study to come out, there’s already plenty of evidence that exercising has terrific benefits for the body. Here’s just seven ways it can give you a boost.

Researchers develop a stem cell-based implant for cartilage restoration and treating osteoarthritis

The Plurocart’s scaffold membrane seeded with stem cell-derived chondrocytes. Image courtesy of USC Photo/Denis Evseenko.

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Researchers at the Keck School of Medicine of USC have used a stem cell-based bio-implant to repair cartilage and delay joint degeneration in a large animal model. This paves the way to potentially treat humans with cartilage injuries and osteoarthritis, which occurs when the protective cartilage at the ends of the bones wears down over time. The disorder affects millions worldwide.

 The researchers are using this technology to manufacture the first 64 implants to be tested on humans with support from a $6 million grant from the California Institute for Regenerative Medicine (CIRM).

Researchers Dr. Denis Evseenko, and Dr. Frank Petrigliano led the development of the therapeutic bio-implant, called Plurocart. It’s composed of a scaffold membrane seeded with stem cell-derived chondrocytes, the cells responsible for producing and maintaining healthy articular cartilage tissue. 

In the study, the researchers implanted the Plurocart membrane into a pig model of osteoarthritis, resulting in the long-term repair of articular cartilage defects. Evseenko said the findings are significant because the implant fully integrated in the damaged articular cartilage tissue and survived for up to six months. “Previous studies have not been able to show survival of an implant for such a long time,” Evseenko added.

The researchers also found that the cartilage tissue generated was strong enough to withstand compression and elastic enough to accommodate movement without breaking.

Osteoarthritis, an often-painful disorder, can affect any joint, but most commonly affects those in our knees, hips, hands and spine. The USC researchers hope their implant will help prevent the development of arthritis and alleviate the need for invasive joint replacement surgeries.

“Many of the current options for cartilage injury are expensive, involve complex logistical planning, and often result in incomplete regeneration,” said Petrigliano. “Plurocart represents a practical, inexpensive, one-stage therapy that may be more effective in restoring damaged cartilage and improve the outcome of such procedures.”

Read the full study here and learn more about the CIRM grant here.

Raising awareness about mental health

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

World Mental Health Day is observed on 10 October every year. It’s a time to try and raise awareness about mental health issues and the impact they have not just on the individual but their family, their community and all of us. The theme for World Mental Health Day 2021 is ‘mental health in an unequal world.’

Dr. Le Ondra Clark Harvey: Photo courtesy CCCBHA

To highlight the issues raised on World Mental Health Day we talked to one of CIRM’s newest Board member, Dr. Le Ondra Clark Harvey. She’s a psychologist and the CEO of the California Council of Community Behavioral Health Agencies (CCCBHA) a statewide advocacy organization representing mental health and substance use disorder non-profit agencies that collectively serve over 750 thousand Californians annually.

What made you want to be on the CIRM Board?

I was recommended to apply for the CIRM Board by a member of CCCBHA, the organization I am privileged to lead and serve. I saw the position as an opportunity to shed light on cognitive disorders that many do not readily think of when they think about stem cell research. The appointment also has personal meaning to me as I have a grandfather who is a cancer survivor and  who has an Alzheimer’s diagnosis.  Breast cancer has also affected women in my family, including myself, and I know that the research that CIRM funds can assist with finding a cure and providing accessible treatment options for all Californians. 

A lot of people might not think that stem cells would have a role in addressing mental health issues, what role do you think they can play?

You are correct, most people do not immediately think of stem cell therapies as a remedy to brain health disorders. However, there are many cognitive disorders and symptoms that can be mitigated, and hopefully someday ameliorated, as a result of stem cell therapies. For example, autism and other developmental disabilities, dementia, Alzheimer’s, Tourette’s and tardive dyskinesia.  

What are the biggest challenges we face in addressing mental health issues in this country?

Stigma remains a significant barrier that impacts the ability to provide – particularly among racially and ethnically diverse communities. In my own practice, I’ve seen how stigma can prevent individuals from entering into care even when access issues have been mitigated. Public awareness campaigns, and culturally specific advocacy efforts and practices must be integrated into treatment models in order to provide individuals with the specific care they need. 

Do you think that the widespread media attention paid to Naomi Osaka and Simone Biles has helped raise awareness about mental health and perhaps also reduced some of the stigma surrounding it?

Yes, I do. Also, the pandemic has opened many individuals eyes, and engendered a sense of empathy, about the prevalence and impact that isolation and loneliness can have on a person. 

City of Hope scientists use stem cells to develop ‘mini-brains’ to study Alzheimer’s and to test drugs in development

Alzheimer’s is a progressive disease that destroys memory and other important mental functions. According to the non-profit HFC, co-founded by CIRM Board member Lauren Miller Rogen and her husband Seth Rogen, more than 5 million Americans are living with Alzheimer’s. It is the 6th leading cause of death in the U.S and it is estimated that by 2050 as many as 16 million Americans will have the disease. Alzheimer’s is the only cause of death among the top 10 in the U.S. without a way to prevent, cure, or even slow its progression, which is it is crucial to better understand the disease and to develop and test potential treatments.

It is precisely for this reason that researchers led by Yanhong Shi, Ph.D. at City of Hope have developed a ‘mini-brain’ model using stem cells in order to study Alzheimer’s and to test drugs in development.

The team was able to model sporadic Alzheimer’s, the most common form of the disease, by using human induced pluripotent stem cells (iPSCs), a kind of stem cell that can be created from skin or blood cells of people through reprogramming and has the ability to turn into virtually any other kind of cell. The researchers used these iPSCs to create ‘mini-brains’, also known as brain organoids, which are 3D models that can be used to analyze certain features of the human brain. Although they are far from perfect replicas, they can be used to study physical structure and other characteristics. 

The scientists exposed the ‘mini-brains’ to serum that mimics age-associated blood-brain barrier (BBB) breakdown. The BBB is a protective barrier that surrounds the brain and its breakdown has been associated with Alzheimer’s and other age-related neurodegenerative diseases . After exposure, the team tested the ‘mini-brains’ for various Alzheimer’s biomarkers. These markers included elevated levels of proteins known as amyloid and tau that are associated with the disease and synaptic breaks linked to cognitive decline.

Research using brain organoids has shown that exposure to serum from blood could induce multiple Alzheimer’s symptoms. This suggests that combination therapies targeting multiple areas would be more effective than single-target therapies currently in development.

The team found that attempting a single therapy, such as inhibiting only amyloid or tau proteins, did not reduce the levels of tau or amyloid, respectively. These findings suggest that amyloid and tau likely cause disease progression independently. Furthermore, exposure to serum from blood, which mimics BBB breakdown, could cause breaks in synaptic connections that help brains remember things and function properly.

Image Description: Yanhong Shi, Ph.D.

In a press release from the Associated Press, Dr. Shi elaborated on the importance of their model for studying Alzheimer’s.

“Drug development for Alzheimer’s disease has run into challenges due to incomplete understanding of the disease’s pathological mechanisms. Preclinical research in this arena predominantly uses animal models, but there is a huge difference between humans and animals such as rodents, especially when it comes to brain architecture. We, at City of Hope, have created a miniature brain model that uses human stem cell technology to study Alzheimer’s disease and, hopefully, to help find treatments for this devastating illness.”

The full results of this study were published in Advance Science.

Dr. Shi has previously worked on several CIRM-funded research projects, such as looking at a potential link between COVID-19 and a gene for Alzheimer’s as well as the development of a therapy for Canavan disease.

Scientists use stem cell ‘mini-brains’ to better understand signs of frontotemporal dementia

Dementia is a general term that describes a set of diseases that impair the ability to remember, think, or make decisions that interfere with doing everyday activities. According to the World Health Organization (WHO), around 50 million people worldwide have dementia with nearly 10 million new cases every year. Although it primarily affects older people it is not a normal part of aging. As our population ages its critical to better understand why this occurs.

Frontotemporal dementia is a rare form of dementia where people start to show signs between the ages of 40 and 60. It affects the front and side (temporal) areas of the brain, hence the name. It leads to behavior changes and difficulty with speaking and thinking. This form of the disease is caused by a genetic mutation called tau, which is known to be associated with Alzheimer’s disease and other dementias.

A CIRM supported study using induced pluripotent stem cells (iPSCs) led by Kathryn Bowles, Ph.D. and conducted by a team of researchers at Mount Sinai were able to recreate much of the damage seen in a widely studied form of the frontotemporal dementia by growing special types of ‘mini-brains’, also known as cerebral organoids.

iPSCs are a kind of stem cell that can be created from skin or blood cells through reprogramming and have the ability to turn into virtually any other kind of cell. The team used iPSCs to create thousands of tiny, 3D ‘mini-brains’, which mimic the early growth and development of the brain.

The researchers examined the growth and development of these ‘mini-brains’ using stem cells derived from three patients, all of whom carried a mutation in tau. They then compared their results with those observed in “normal” mini-brains which were derived from patient stem cells in which the disease-causing mutation was genetically corrected.

After six months, signs of neurodegeneration were seen in the patient ‘mini-brains’. The patient-derived ‘mini-brains’ had fewer excitatory neurons compared to the “normal” ones which demonstrates that the tau mutation was sufficient to cause higher levels of cell death of this specific class of neurons. Additionally, the patient-derived ‘mini-brains’ also had higher levels of harmful versions of tau protein and elevated levels of inflammation.

In a news release from Mount Sinai, Dr. Bowles elaborated on the results of this study.

“Our results suggest that the V337M mutant tau sets off a vicious cycle in the brain that puts excitatory neurons under great stress. It hastens the production of new proteins needed for maturation but prevents disposal of the proteins that are being replaced.”

The full results of this study were published in Cell.

A new way to evade immune rejection in transplanting cells

Immune fluorescence of HIP cardiomyocytes in a dish; Photo courtesy of UCSF

Transplanting cells or an entire organ from one person to another can be lifesaving but it comes with a cost. To avoid the recipient’s body rejecting the cells or organ the patient has to be given powerful immunosuppressive medications. Those medications weaken the immune system and increase the risk of infections. But now a team at the University of California San Francisco (UCSF) have used a new kind of stem cell to find a way around that problem.

The cells are called HIP cells and they are a specially engineered form of induced pluripotent stem cell (iPSC). Those are cells that can be turned into any kind of cell in the body. These have been gene edited to make them a kind of “universal stem cell” meaning they are not recognized by the immune system and so won’t be rejected by the body.

The UCSF team tested these cells by transplanting them into three different kinds of mice that had a major disease; peripheral artery disease; chronic obstructive pulmonary disease; and heart failure.

The results, published in the journal Proceedings of the National Academy of Science, showed that the cells could help reduce the incidence of peripheral artery disease in the mice’s back legs, prevent the development of a specific form of lung disease, and reduce the risk of heart failure after a heart attack.

In a news release, Dr. Tobias Deuse, the first author of the study, says this has great potential for people. “We showed that immune-engineered HIP cells reliably evade immune rejection in mice with different tissue types, a situation similar to the transplantation between unrelated human individuals. This immune evasion was maintained in diseased tissue and tissue with poor blood supply without the use of any immunosuppressive drugs.”

Deuse says if this does work in people it may not only be of great medical value, it may also come with a decent price tag, which could be particularly important for diseases that affect millions worldwide.

“In order for a therapeutic to have a broad impact, it needs to be affordable. That’s why we focus so much on immune-engineering and the development of universal cells. Once the costs come down, the access for all patients in need increases.”

Sometimes a cold stare is a good thing

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in the elderly in the U.S. It’s estimated that some 11 million Americans could have some form of the disease, a number that is growing every year. So if you are going to develop a treatment for this condition, you need to make sure it can reach a lot of people easily. And that’s exactly what some CIRM-supported researchers are doing.

Let’s back up a little first. AMD is a degenerative condition where the macular, the small central portion of your retina, is slowly worn away. That’s crucial because the retina is the light-sensing nerve tissue at the back of your eye. At first you notice that your vision is getting blurry and it’s hard to read fine print or drive a car. As it progresses you develop dark, blurry areas in the center of your vision.

There are two kinds of AMD, a wet form and a dry form. The dry form is the most common, affecting 90% of patients. There is no cure and no effective treatment. But researchers at the University of Southern California (USC), the University of California Santa Barbara (UCSB) and a company called Regenerative Patch Technologies are developing a method that is looking promising.

They are using stem cells to grow retinal pigment epithelium (RPE) cells, the kind attacked by the disease, and putting them on a tiny synthetic scaffold which is then placed at the back of the eye. The hope is these RPE cells will help slow down the progression of the disease or even restore vision.

Early results from a CIRM-funded clinical trial are encouraging. Of the five patients enrolled in the Phase 1/2a trial, four maintained their vision in the treated eye, two showed improvement in the stability of their vision, and one patient had a 17-letter improvement in their vision on a reading chart. In addition, there were no serious side effects or unanticipated problems.

So now the team are taking this approach one step further. In a study published in Scientific Reports, they say they have developed a way to cryopreserve or freeze this cell and scaffold structure.

In a news release, Dr. Dennis Clegg of UCSB, says the frozen implants are comparable to the non-frozen ones and this technique will extend shelf life and enable on-demand distribution to distant clinical sites, increasing the number of patients able to benefit from such treatments.

“It’s a major advance in the development of cell therapies using a sheet of cells, or a monolayer of cells, because you can freeze them as the final product and ship them all over the world.”

Cool.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

Repairing damaged muscles

Close-up of the arm of a 70-year-old male patient with a torn biceps muscle as a result of a bowling injury; Photo courtesy Science Photo Library

In the time of coronavirus an awful lot of people are not just working from home they’re also working out at home. That’s a good thing; exercise is a great way to boost the immune system, stay healthy and deal with stress. But for people used to more structured workouts at the gym it can come with a downside. Trying new routines at home that look easy on YouTube, but are harder in practice could potentially increase the risk of injury.

A new study from Japan looks at what happens when you damage a muscle. It won’t help it heal faster, but it will at least let you understand what is happening inside your body as you sit there with ice on your arm and ibuprofen in your hand.

The researchers found that when you damage a muscle, for example by trying to lift too much weight or doing too many repetitions of one exercise, the damaged muscle fibers leak substances that activate nearby “satellite” stem cells. These satellite cells then flock to the site of the injury and help repair the muscle.

The team, from Kumamoto University and Nagasaki University in Japan, named the leaking substances “Damaged myofiber-derived factors” (DMDFs) – personally I think “Substances Leaked by Injured Muscles (SLIM) would be a much cooler acronym, but that’s just me. Gaining a deeper understanding of how DMDFs work might help lead to therapies for older people who have fewer satellite muscle cells, and also for conditions like muscular dystrophy and age-related muscular fragility (sarcopenia), where the number and function of satellite cells decreases.

In an article in Science Daily, Professor Yusuke Ono, the leader of the study, says it’s possible that DMDFs play an even greater role in the body:

“In this study, we proposed a new muscle injury-regeneration model. However, the detailed molecular mechanism of how DMDFs activate satellite cells remains an unclear issue for future research. In addition to satellite cell activation, DMDF moonlighting functions are expected to be diverse. Recent studies have shown that skeletal muscle secretes various factors that affect other organs and tissues, such as the brain and fat, into the bloodstream, so it may be possible that DMDFs are involved in the linkage between injured muscle and other organs via blood circulation. We believe that further elucidation of the functions of DMDFs could clarify the pathologies of some muscle diseases and help in the development of new drugs.”

The study appears in the journal Stem Cell Reports.