Dr. Chou is the President, CEO and a member of the Board of Directors of AltruBio, Inc. a clinical stage biotech company that is focused on developing novel antibody therapeutics for the treatment of immune inflammatory diseases.
“I am excited to join the ICOC leveraging my experience both as a scientist in the the biopharmaceutical industry and as a corporate executive to support the research and funding of life changing medicines for patients in need,” said Dr. Chou.
Dr. Chou has more than 20 years experience in drug development and biomanufacturing. Before joining AltruBio she headed the global Biotech organization at Bayer Pharmaceuticals. At Bayer she oversaw the development, manufacturing and distribution of the company’s more than $3 billion product portfolio. She also oversaw more than 2,000 employees and led the drug development and launch activities for the biologics pipeline. In addition, she also served as the site head for Bayer’s facility in Berkeley, California, the company’s largest manufacturing site in the U.S.
“We are honored and delighted to have Dr. Chou take a seat on the Board,” says Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board. “She has a remarkable career in academia, industry and in promoting diversity, equity and inclusion and will be an invaluable addition to the ICOC. We are very much looking forward to working with her.”
Dr. Chou also has had leadership roles at Pfizer, Medivation Inc., Genentech and Wyeth Biopharma. She has won several awards and in 2018 was the recipient of the Most Influential Women in Business award by the San Francisco Business Times. She is currently an advisor at the UC Berkeley Engineering School and is working to promote diversity and inclusion through her advisory board position at Silicon Valley Women in Engineering.
Dr. Chou obtained her Ph.D., at Yale, her post-doctoral training at the Max-Planck Institute in Germany and was a research faculty member at Harvard University Medical School focusing on cell biology and neuroscience.
Dr. Chou was appointed to the CIRM Board by State Treasurer Fiona Ma, as the Executive Officer of a Commercial Life Science entity. She replaces Dave Martin.
CIRM Bridges students 2022. The CIRM Board approved funding for a program to help even more students advance a career in science.
The governing Board of the California Institute for Regenerative Medicine (CIRM) has approved $46,076,430 to invest in its newest education pillar- the COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem cell Science) training program.
Education is at the core of CIRM’s mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. And funding these additional programs is an important step in ensuring that California has a well-trained stem cell workforce.
The objective of COMPASS is to prepare a diverse cadre of undergraduate students for careers in regenerative medicine through combining hands-on research opportunities with strategic and structured mentorship experiences.
“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials,” says Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board. “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”
Most undergraduate research training programs, including those targeting students from underserved communities, target individuals with predefined academic credentials as well as a stated commitment towards graduate school, medical school, or faculty positions in academia. COMPASS will support the development and implementation of novel strategies to recognize and foster untapped talent that can lead to new and valuable perspectives that are specific to the challenges of regenerative medicine, and that will create new paths to a spectrum of careers that are not always apparent to students in the academic, undergraduate environment.
COMPASS will complement but not compete with CIRM’s Bridges program, a subset of which serve a different, but equally important population of undergraduate trainees; similarly, the program is unlikely to compete for the same pools of students that would be most likely to receive support through the major NIH Training Programs such as MARC and RISE.
Here are the 16 successful applicants.
Application number
Title
Principal Investigator
Amount
EDUC5-13840
The COMPASS Scholars Program – Developing Today’s Untapped Talent into Tomorrow’s STEM Cell Researchers
John Matsui, University of California, Berkeley
$2,908,950
EDUC5-13634
COMPASS Undergraduate Program
Alice F Tarantal, University of California, Davis
$2,909,950
EDUC5-13637
Research Mentorship Program in Regenerative Medicine Careers for a Diverse Undergraduate Student Body
Brian J. Cummings, University of California, Irvine
$2,729,900
EDUC5-13665
CIRM COMPASS Training Program (N-COMPASS)
Cindy S Malone, The University Corporation at California State University, Northridge
$2,909,700
EDUC5-13817
COMPASS: Accelerating Stem Cell Research by Educating and Empowering New Stem Cell Researchers
Tracy L Johnson, University of California, Los Angeles
$2,910,000
EDUC5-13744
Training and mentorship program in stem cell biology and engineering: A COMPASS for the future
Dennis Clegg, University of California, Santa Barbara
$2,746,000
EDUC5-13636
Research Training and Mentorship Program to Inspire Diverse Undergraduates toward Regenerative Medicine Careers (RAMP)
Huinan Hannah Liu, The Regents of the University of California on behalf of its Riverside Campus
$2,910,000
EDUC5-13679
Inclusive Pathways for a Stem Cell Scholar (iPSCs) Undergraduate Training Program
Lily Chen, San Francisco State University
$2,894,500
EDUC5-13733
A COMPASS to guide the growth of a diverse regenerative medicine workforce that represents California and benefits the world
Kristen OHalloran Cardinal, Cal Poly Corporation, an Auxiliary of California Polytechnic State University, San Luis Obispo
$2,887,939
EDUC5-13619
Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences (IDEA-CBMS)
Michael Fino, MiraCosta College
$2,894,500
EDUC5-13667
COMPASS Program for Southern California Hispanic Serving Institution
Bianca Romina Mothé, California State University San Marcos Corporation
$2,877,200
EDUC5-13653
Student Pluripotency: Realizing Untapped Undergraduate Potential in Regenerative Medicine
Daniel Nickerson, California State University, San Bernardino
$2,909,853
EDUC5-13647
COMPASS: an inclusive Pipeline for Research and Other Stem cell-based Professions in Regenerative medicine (iPROSPR)
Students in CIRM’s Bridges program showing posters of their work
If you have read the headlines lately, you’ll know that the COVID-19 pandemic is having a huge impact on the shipping industry. Container vessels are forced to sit out at anchor for a week or more because there just aren’t enough dock workers to unload the boats. It’s a simple rule of economics, you can have all the demand you want but if you don’t have the people to help deliver on the supply side, you are in trouble.
The same is true in regenerative medicine. The field is expanding rapidly and that’s creating a rising demand for skilled workers to help keep up. That doesn’t just mean scientists, but also technicians and other skilled individuals who can ensure that our ability to manufacture and deliver these new therapies is not slowed down.
That’s one of the reasons why CIRM has been a big supporter of training programs ever since we were created by the voters of California when they approved Proposition 71. And now we are kick-starting those programs again to ensure the field has all the talented workers it needs.
Last week the CIRM Board approved 18 programs, investing more than $86 million, as part of the Agency’s Research Training Grants program. The goal of the program is to create a diverse group of scientists with the knowledge and skill to lead effective stem cell research programs.
The awards provide up to $5 million per institution, for a maximum of 20 institutions, over five years, to support the training of predoctoral graduate students, postdoctoral trainees, and/or clinical trainees.
This is a revival of an earlier Research Training program that ran from 2006-2016 and trained 940 “CIRM Scholars” including:
• 321 PhD students • 453 Postdocs • 166 MDs
These grants went to academic institutions from UC Davis in Sacramento to UC San Diego down south and everywhere in-between. A 2013 survey of the students found that most went on to careers in the industry.
56% continued to further training
14% advanced to an academic research faculty position
10.5% advanced to a biotech/industry position
12% advanced to a non-research position such as teaching, medical practice, or foundation/government work
The Research Training Grants go to:
AWARD
INSTITUTION
TITLE
AMOUNT
EDUC4-12751
Cedars-Sinai
CIRM Training Program in Translational Regenerative Medicine
$4,999,333
EDUC4-12752
UC Riverside
TRANSCEND – Training Program to Advance Interdisciplinary Stem Cell Research, Education, and Workforce Diversity
$4,993,115
EDUC4-12753
UC Los Angeles
UCLA Training Program in Stem Cell Biology
$5 million
EDUC4-12756
University of Southern California
Training Program Bridging Stem Cell Research with Clinical Applications in Regenerative Medicine
$5 million
EDUC4-12759
UC Santa Cruz
CIRM Training Program in Systems Biology of Stem Cells
$4,913,271
EDUC4-12766
Gladstone Inst.
CIRM Regenerative Medicine Research Training Program
$5 million
EDUC4-12772
City of Hope
Research Training Program in Stem Cell Biology and Regenerative Medicine
$4,860,989
EDUC4-12782
Stanford
CIRM Scholar Training Program
$4,974,073
EDUC4-12790
UC Berkeley
Training the Next Generation of Biologists and Engineers for Regenerative Medicine
$4,954,238
EDUC4-12792
UC Davis
CIRM Cell and Gene Therapy Training Program 2.0
$4,966,300
EDUC4-12802
Children’s Hospital of Los Angeles
CIRM Training Program for Stem Cell and Regenerative Medicine Research
$4,999,500
EDUC4-12804
UC San Diego
Interdisciplinary Stem Cell Training Grant at UCSD III
$4,992,446
EDUC4-12811
Scripps
Training Scholars in Regenerative Medicine and Stem Cell Research
$4,931,353
EDUC4-12812
UC San Francisco
Scholars Research Training Program in Regenerative Medicine, Gene Therapy, and Stem Cell Research
$5 million
EDUC4-12813
Sanford Burnham
A Multidisciplinary Stem Cell Training Program at Sanford Burnham Prebys Institute, A Critical Component of the La Jolla Mesa Educational Network
$4,915,671
EDUC4-12821
UC Santa Barbara
CIRM Training Program in Stem Cell Biology and Engineering
$1,924,497
EDUC4-12822
UC Irvine
CIRM Scholars Comprehensive Research Training Program
$5 million
EDUC4-12837
Lundquist Institute for Biomedical Innovation
Stem Cell Training Program at the Lundquist Institute
$4,999,999
These are not the only awards we make to support training the next generation of scientists. We also have our SPARK and Bridges to Stem Cell Research programs. The SPARK awards are for high school students, and the Bridges program for graduate or Master’s level students.
When Proposition 14 was approved by voters in November we were given a chance to carry on the work we have been doing for more than 16 years. What we hadn’t anticipated was that we would also get a chance to do that with some of the team that helped us make CIRM what it is, but who had since moved on to other jobs.
We are delighted to say that as we build up our team again we are welcoming back a couple of dear friends, and welcoming in some new ones too. They’re a talented bunch and, if they don’t mind me saying so, a darned good looking group too.
Rosa Canet-Aviles, PhD., has been named as the new Vice President Scientific Programs. Rosa is a familiar face at the agency, serving as a Science Officer with CIRM from 2008 to 2014. During that time she helped oversee the development of our Translational program, managed a broad portfolio of projects and organized workshops on Parkinson’s and autism.
After leaving CIRM she joined the Foundation for the National Institutes of Health (FINH) where she served as the Director of Neuroscience Research Partnerships. In that role she led the successful development and management of 5 new large partnerships including the Biomarkers Consortium Neuroscience Steering Committee, the Accelerating Medicines Partnership (AMP) for Alzheimer’s disease 1.0 and 2.0, AMP Parkinson’s disease and AMP Schizophrenia.
Rosa has more than 15 years of experience working in industry, academia and government and her experience in developing and managing neuroscience programs will be invaluable as CIRM looks to invest some $1.5 billion in neuroscience under Proposition 14.
“I am very excited to be back,” says Rosa. ”It is a dream come true being able to translate all the skills, learning and networks gathered over the past 7 years towards the development and implementation of CIRM’s new phase and accelerate stem cell therapies for patients in need.”
“We are thrilled to announce the timely return of Rosa to CIRM as we build our new strategic plan under Prop 14,” says Dr. Maria T. Millan, CIRM’s President & CEO. “Rosa has demonstrated time and again the unique ability to bring together often seemingly disparate stakeholders to successfully drive toward a common goal of advancing the science on behalf of patients with diseases of the brain and neuropsychiatric disorders. At CIRM, she assembled key international leaders who went on to form an international Parkinson’s Disease consortium. At the Foundation for NIH (FNIH), she directed the development of five prominent public-private partnerships. A neuroscientist by training, she is held in high regard and has been called a “quick study” in her ability to lead in new areas such as in genomics and data science, key components of her role at FNIH and at Eisai’s Center for Genetics Guided Dementia Discovery.“
In addition, CIRM is pleased to announce the following new team members:
Uta Grieshammer, PhD. is also returning to CIRM as the Senior Science Officer for our Discovery program. Uta was at CIRM from 2007 to 2015 and led the programs that created both our Genomics Initiative and our iPSC bank. She also organized several scientific conferences and workshops involving hundreds of CIRM-funded researchers.
After leaving CIRM she became the Scientific Director of the California Initiative to Advance Precision Medicine at the University of California San Francisco where she created and managed the application and peer review process. Most recently she was the Program Officer at the University of California Office of the President’s (UCOP) Tobacco Related Disease Research Program where she focused on the neuroscience of nicotine addiction. She also helped develop a scholarship program to attract students from diverse backgrounds to pursue a career in science.
Michael Bunch joins CIRM as a Business Service Officer. Michael is a decorated veteran who has been working as the Chief Business Officer at the Veterans Home in Yountville, California. In that role he implemented new contract and reviewing processes and oversaw the income and insurance tracking for some 1,000 residents. With his extensive background in acquisition management, contingency contracting, and his deep knowledge of state regulations and guidelines Michael was able to increase funding, streamline processes and assist Veterans and their families to obtain the benefits and services that they qualified for.
Michael spent 25 years in the US Army including serving as part of the NATO peacekeeping force in Kosovo. During that deployment he was awarded the Joint Service Commendation Medal (JSCM) for managing the fuel needs of 4 Multinational Task Forces and 33 Nations, an essential element in helping the mission succeed.
A Senior Drill Sergeant, Infantry Instructor and Financial and Resource Manager Michael has been awarded the Army Commendation Medal with 4 Oak Leaves, Army Achievement Medal with 4 Oak Leaves, Global War on Terrorism Service Medal, KOSOVO Campaign Medal, Military Outstanding Volunteer Service Medal, NATO Medal, Expert Infantryman Badge, Honorary Kentucky Colonel and Honorary Kentucky Admiral.
Nellie Almazan joins CIRM as a Grants Management Specialist. Nellie comes to us from the California Department of Transportation (Caltrans) where she has worked for 16 years, most recently as the Associate Transportation Planner with the Low Carbon Transit Operations program. Nellie managed more than 150 projects, reviewing grants to help reduce greenhouse gas emissions in the state and overseeing programs that had an emphasis on serving Disadvantaged Communities.
She is currently enrolled at Sacramento City College where her focus is on Sociology and Deaf Culture.
Alexandra Caraballo joins CIRM as a Grants Management Specialist. Alex has more than 15 years of grant administration experience with a focus on incorporating equity, diversity, and inclusion into grantmaking practices and decision-making. She comes to CIRM from the Kaiser Foundation Health Plan where she was the National Manager of Philanthropy. There she was responsible for the administration of approximately 200 grants in the national community health portfolio. Before Kaiser she was the Program Assistant and Associate Program Officer at the East Bay Community Foundation, where she partnered with donors and community-based organizations to advance racial equity and transform political, social and economic outcomes for East Bay Communities.
Alex currently serves on the Board of Directors for the Lindsay Wildlife Experience and was a former Advisory Board member for Oakland Head Start.
Image Description: Alex Marson is part of a team of researchers who developed a new technique to map the specialized diversity and spatial location of individual cells within a tissue or tumor. Photo Credit: Anastasiia Sapon
All the cells in your body work together and each can have a different role. Their individual function not only depends on cell type, but can also depend on their specific location and surroundings.
A CIRM supported and collaborative study at the Gladstone Institutes, UC San Francisco (UCSF), and UC Berkeley has developed a more efficient method than ever before to simultaneously map the specialized diversity and spatial location of individual cells within a tissue or a tumor.
The technique is named XYZeq and involves segmenting a tissue into microscopic regions. Within each of these microscopic grids, each cell’s genetic information is analyzed in order to better understand how each particular cell functions relative to its spacial location.
For this study, the team obtained tissue from mice with liver and spleen tumors. A slice of tissue was then placed on a slide that divides the tissue into hundreds of “microwells” the size of a grain of salt. Each cell in the tissue gets tagged with a unique “molecular barcode” that represents the microwell it’s contained in, much like a zip code. The cells are then mixed up and assigned a second barcode to ensure that each cell within a given square can be individually identified, similar to a street address within a zip code. Finally, the genetic information in the form of RNA from each cell is analyzed. Once the results are obtained, both barcodes tell the researchers exactly where in the tissue it came from.
The team found that some cell types located near the liver tumor were not evenly spaced out. They also found immune cells and specific types of stem cells clustered in certain regions of the tumor. Additionally, certain stem cells had different levels of some RNA molecules depending on how far they resided from the tumor.
The researchers aren’t entirely sure what this pattern means, but they believe that it’s possible that signals generated by or near the tumor affect what nearby cells do.
In a press release, Alex Marson, M.D., Ph.D., a senior author of the study, elaborates on what the XYZeq technology could mean for disease modeling.
“I think we’re actually taking a step toward this being the way tissues are analyzed to diagnose, characterize, or study disease; this is the pathology of the future.”
The full results of the study were published in Science Advances.
The University of California, San Francisco (UCSF), in collaboration with UC Berkeley (UCB) and UC Los Angeles (UCLA), have been given permission by the US Food and Drug Administration (FDA) to launch a first-in-human clinical trial using CRISPR technology as a gene-editing technique to cure Sickle Cell Disease.
This research has been funded by CIRM from the early stages and, in a co-funding partnership with theNational Heart, Lung, and Blood Institute under the Cure Sickle Cell initiatve, CIRM supported the work that allowed this program to gain FDA permission to proceed into clinical trials.
Sickle Cell Disease is a blood disorder that affects around 100,000 people, mostly Black and Latinx people in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells. Normal red blood cells are round and smooth and flow easily through blood vessels. But the sickle-shaped ones are rigid and brittle and clump together, clogging vessels and causing painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.
The three UC’s have combined their respective expertise to bring this program forward.
The CRISPR-Cas9 technology was developed by UC Berkeley’s Nobel laureate Jennifer Doudna, PhD. UCLA is a collaborating site, with expertise in genetic analysis and cell manufacturing and UCSF Benioff Children’s Hospital Oakland is the lead clinical center, leveraging its renowned expertise in cord blood and marrow transplantation and in gene therapy for sickle cell disease.
The approach involves retrieving blood stem cells from the patient and, using a technique involving electrical pulses, these cells are treated to correct the mutation using CRISPR technology. The corrected cells will then be transplanted back into the patient.
Dr. Mark Walters
In a news release, UCSF’s Dr. Mark Walters, the principal investigator of the project, says using this new gene-editing approach could be a game-changer. “This therapy has the potential to transform sickle cell disease care by producing an accessible, curative treatment that is safer than the current therapy of stem cell transplant from a healthy bone marrow donor. If this is successfully applied in young patients, it has the potential to prevent irreversible complications of the disease. Based on our experience with bone marrow transplants, we predict that correcting 20% of the genes should be sufficient to out-compete the native sickle cells and have a strong clinical benefit.”
Dr. Maria T. Millan, President & CEO of CIRM, said this collaborative approach can be a model for tackling other diseases. “When we entered into our partnership with the NHLBI we hoped that combining our resources and expertise could accelerate the development of cell and gene therapies for SCD. And now to see these three UC institutions collaborating on bringing this therapy to patients is truly exciting and highlights how working together we can achieve far more than just operating individually.”
The 4-year study will include six adults and three adolescents with severe sickle cell disease. It is planned to begin this summer in Oakland and Los Angeles.
The three UCs combined to produce a video to accompany news about the trial. Here it is:
The problem with trying to write about something like Women’s History Month is where do you start? Even if you narrow it down to women in science the list is vast.
Marie Curie
I suppose you could always start with Maria Salomea Skłodowska who is better known as Marie Curie. She not only discovered radium and polonium, but she was also the first woman to win a Nobel Prize (in Physics). When she later won another Nobel (in Chemistry) she became the first person ever to win two Nobels and is still the only person ever to win in two different fields. Not a bad place to start.
Agnes Pockels
Or how about Agnes Pockels (1862–1935). Even as a child Agnes was fascinated by science but, in Germany at the time, women were not allowed to attend university. So, she depended on her younger brother to send her his physics textbooks when he was finished with them. Agnes studied at home while taking care of her elderly parents. Doing the dishes Agnes noticed how oils and soaps could impact the surface tension of water. So, she invented a method of measuring that surface tension. She wrote a paper about her findings that was published in Nature, and went on to become a highly respected and honored pioneer in the field.
Jennifer Doudna (left) and Emmanuelle Charpentier: Photo courtesy Nature
Fast forward to today we could certainly do worse than profile the two women who won the 2020 Nobel Prize in Chemistry for their work with the gene-editing tool CRISPR-Cas9; Jennifer Doudna at the University of California, Berkeley, and Emmanuelle Charpentier at the Max Planck Unit for the Science of Pathogens in Berlin. Their pioneering work showed how you could use CRISPR to make precise edits in genes, creating the possibility of using it to edit human genes to eliminate or cure diseases. In fact, some CIRM-funded research is already using this approach to try and cure sickle cell disease.
In awarding the Nobel to Charpentier and Doudna, Pernilla Wittung Stafshede, a biophysical chemist and member of the Nobel chemistry committee, said: “The ability to cut DNA where you want has revolutionized the life sciences. The ‘genetic scissors’ were discovered just eight years ago but have already benefited humankind greatly.”
Barbara McClintock: Photo courtesy Brittanica
Appropriately enough none of that work would have been possible without the pioneering work of another woman, Barbara McClintock. She dedicated her career to studying the genetics of corn and developed a technique that enabled her to identify individual chromosomes in different strains of corn.
At the time it was thought that genes were stable and were arranged in a linear fashion on chromosomes, like beads on a string. McClintock’s work showed that genes could be mobile, changing position and altering the work of other genes. It took a long time before the scientific world caught up with her and realized she was right. But in 1983 she was awarded the Nobel Prize in Medicine for her work.
Katherine Johnson at her desk at Langley Research Center: Photo courtesy NASA /AFP
Katherine Johnson is another brilliant mind whose recognition came later in life. But when it did, it made her a movie star. Kind of. Johnson was a mathematician, a “computer” in the parlance of the time. She did calculations by hand, enabling NASA to safely launch and recover astronauts in the early years of the space race.
Johnson and the other Black “computers” were segregated from their white colleagues until the last 1950’s, when signs dictating which restrooms and drinking fountains they could use were removed. She was so highly regarded that when John Glenn was preparing for the flight that would make him the first American to orbit the earth he asked for her to manually check the calculations a computer had made. He trusted her far more than any machine.
Johnson and her co-workers were overlooked until the 2016 movie “Hidden Figures” brought their story to life. She was also awarded the Presidential Medal of Freedom, America’s highest civilian honor, by President Obama.
There are so many extraordinary women scientists we could talk about who have made history. But we should also remind ourselves that we are surrounded by remarkable women right now, women who are making history in their own way, even if we don’t recognized it at the moment. Researchers that CIRM funds, Dr. Catriona Jamieson at UC San Diego, Dr. Jan Nolta at UC Davis, Dr. Jane Lebkowski with Regenerative Patch technologies and so many others. They’re all helping to change the world. We just don’t know it yet.
If you would like to learn about other women who have made extraordinary contributions to science you can read about them here and here and here.
Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.
This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.
The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.
It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.
She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.
Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.
(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).
Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.
Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.
Then the ideas started coming really fast:
There’s a need for knowledge networks to share information in real-time not months later after results are published.
We need standardization across the field to make it easier to compare study results.
We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
Do a better job of developing combination therapies – involving stem cells and more traditional medications.
One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).
The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality. Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.
Ian Blong, Ph.D., CIRM San Francisco State University Bridges to Stem Cell Research Alumnus
Recently, The New York Times released a powerful article that tells the stories of four different families navigating the challenges of having a family member with a rare disease. One of these stories focused on Matt Wilsey, a tech entrepreneur and investor in California’s Silicon Valley, and his daughter Grace, who was born with an extremely rare genetic disorder named NGLY1 deficiency. This genetic disorder causes developmental delay, intellectual disability, seizures, and other movement issues.
Matt and Kristen Wilsey with their 10-year-old daughter Grace, who has a rare genetic disorder, at the Grace Science headquarters in Menlo Park, Calif. Image Credit: James Tensuan for The New York Times
Matt decided to put his entrepreneurial and networking skills to good use in order to form Grace Science Foundation, an organization whose focus is to pioneer approaches to scientific discovery in order to develop a cure for NGLY1 deficiency. One researcher that Matt brought on board was Carolyn Bertozzi, Ph.D., a chemist from Stanford University. A graduate student in her laboratory, Ian Blong, Ph.D., decided to study NGLY1 and was able to complete his dissertation while working on this topic at Stanford University.
Ian’s journey towards obtaining his Ph.D. started after being accepted into the San Francisco State University (SFSU) CIRM Bridges to Stem Cell Research Master’s Program. CIRM funding for this program allowed students like Ian to take courses at SFSU while also working in labs at world renown institutions in the Bay Area such as UCSF, Stanford, and UC Berkeley.
Carolyn Bertozzi, Ph.D. Image Credit: L.A. Cicero
In exploring the various options afforded to him by the CIRM, Ian found Dr. Bertozzi’s lab at UC Berkeley, where he focused on early stage discovery research. His master’s thesis project focused on how to generate rare neuronal and and neural crest cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Both of these stem cell types can generate virtually any kind of cell, but iPSCs are unique in that they can be generated from the adult cells (such as skin) of a patient.
Ian decided to continue his studies in Dr. Bertozzi’s lab by continuing his research in a Ph.D. program at UC Berkeley. He credits the SFSU CIRM Bridges Program with giving him the opportunity to work under a prestigious PI and in her lab at UC Berkeley, which allowed him to continue his studies there.
“The CIRM Bridges Program gave me the confidence and resources to pursue my dreams. Being able to have the capability of going to Berkeley and do research with top tier scientists along with the support from CIRM. Without CIRM, I wouldn’t have had the courage to go to those universities to get my foot in the door.”
Eventually, Dr. Bertozzi move her operations to Stanford University and Ian continued his Ph.D. studies there. Stanford provided him the opportunity to focus more on the translational stage, which is an area of research aimed at developing a therapeutic candidate. Going into his Ph.D. work, Ian was able to build upon his previous “discovery stage” knowledge of generating neuronal and neural crest cells from iPSCS and hESCs.
An area of his work at Stanford focused on generating neural crest cells from iPSCs of those with NGLY1 deficiency. The goal was to identify a phenotype, which is an observable characteristic such as physical form. Identifying this would help better understand potential differentiation pathways that underlie NGLY1 deficiency, which could lead to the development a potential treatment for the condition.
Flash forward to present day and Ian is still using the knowledge he learned from his time in the SFSU CIRM Bridges to Stem Cell Research Program. He is currently a scientist at the healthcare company Roche, where his focus is on manufacturing future diagnostics and therapeutics on a much larger scale, a complex and extremely critical process necessary in widely distributing potential stem cell-based treatments.
Ian’s experience and opportunities provided to him is just one of the many examples of how the various CIRM Bridges Programs across California have given students the resources needed to become the next generation of scientists.
It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.
This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.
Dr. Catriona Jamieson, UC San Diego physician and researcher
It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.
Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma
There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.
Jordan Janz and Dr. Stephanie Cherqui
These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.
Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk
There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.