California agency invests $4 million in stem cell treatment for Parkinson’s Disease

The California Institute for Regenerative Medicine (CIRM) is investing $4 million in a late-stage preclinical project by Ryne Bio aiming to improve treatment for Idiopathic Parkinson’s disease (PD).

PD is characterized by a loss of dopamine producing neurons that result in motor symptoms, such as dyskinesias (involuntary, erratic, writhing movements of the face, arms, legs or trunk) and non-motor effects such as dementia, depression and sleep disorders.

PD is the second-most common neurodegenerative disease after Alzheimer’s disease affecting approximately 1 million people in the U.S. In California, it is estimated that 116,900 people live with PD, representing the highest number of people with the disease in the country.

At its early stages, PD can be treated with medication such as Levodopa to treat symptoms but these become less effective as the disease progresses.

The proposed stem cell therapy in this project offers the potential to restore dopamine neurons, which play a role in many important body functions, including movement and memory.

Investigators at Ryne Bio are aiming to deliver dopamine producing cells to replace the lost neurons to the brain of Parkinson’s disease patients to restore/improve motor function.

The current grant is being funded to conduct Investigational New Drug (IND) enabling, nonclinical safety studies per the US Food and Drug Administration (FDA) Guidance. The IND is the authorization needed to begin a clinical trial in Parkinson’s patients.

CIRM has a vested interest in seeing this therapy succeed. To date, CIRM has invested more than $59 million in helping research for Parkinson’s disease progress from a basic or Discovery level through clinical trials.

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Replacement brain cells offer hope for Parkinson’s treatment

A colony of iPSCs from a Parkinson’s patient (left) and dopaminergic neurons made from these iPSCs (right) to model PD. (Image credit: Jeanne Loring)

A new study that used adult blood stem cells to create replacement brain nerve cells appears to help rats with Parkinson’s.

In Parkinson’s, the disease attacks brain nerve cells that produce a chemical called dopamine. The lack of dopamine produces a variety of symptoms including physical tremors, depression, anxiety, insomnia and memory problems. There is no cure and while there are some effective treatments they tend to wear off over time.

In this study, researchers at Arizona State University took blood cells from humans and, using the iPSC method, changed those into dopamine-producing neurons. They then cultured those cells in the lab before implanting them in the brains of rats which had Parkinson’s-like symptoms.

They found that rats given cells that had been cultured in the lab for 17 days survived in greater numbers and seemed to be better at growing new connections in their brains, compared to rats given cells that had been cultured for 24 or 37 days.

In addition, those rats given larger doses of the cells experienced a complete reversal of their symptoms, compared to rats given smaller doses.

In a news release, study co-author Dr. Jeffrey Kordower, said: “We cannot be more excited by the opportunity to help individuals who suffer from [a] genetic form of Parkinson’s disease, but the lessons learned from this trial will also directly impact patients who suffer from sporadic, or non-genetic forms of this disease.”

The study, published in the journal npj Regenerative Medicine, says this approach might also help people suffering from other neurological diseases like Alzheimer’s or Huntington’s disease.

Stem cell treatment improves motor function in monkeys modeling Parkinson’s Disease

Neurodegenerative diseases impact millions of people worldwide with the risk of being affected by one of these diseases increasing as you get older. For many of these diseases, there are very few treatments available to patients. As life expectancy increases and the population continues to age, it is crucial to try and find treatments that can potentially slow the progression of these diseases or cure them entirely. This is one of the reasons why CIRM has committed directing around $1.5 billion in funding over the next few years to research related to neurological disorders.

One of the most common neurodegenerative diseases is Parkinson’s Disease (PD), a movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, insomnia, fatigue, and problems with walking, balance, and coordination.  It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.

A recent study published in Nature Medicine has shown improved motor function and growth of neurons over a two year period in monkeys modeling PD. The study was conducted by Su-Chun Zhang, M.D., Ph.D. and his team at the University of Wisconsin using induced pluripotent stem cells (iPSCs), a kind of stem cell that can become virtually any type of cell that can be made from skin cells. The hope is that these results can pave the way for starting human clinical trials.

In order to replicate PD in humans, the team injected 10 adult monkeys with a neurotoxin that produces PD like symptoms. As a result of this, all 10 monkeys developed slow movements, imbalances, tremors, and impaired coordination in the hand on the opposite side of the injection. Additionally, scans revealed that on the injected side, monkeys lost most brain activity involving dopamine in two key brain areas. The team then waited three years after injecting the neurotoxin before administering the therapy, during which time the monkeys’ symptoms persisted.

To generate iPSC lines, the team obtained skin cells from five of the monkeys. The iPSCs were then turned into dopamine neural progenitor cells, which have the ability to create dopamine. These newly created cells were then administered into the brains of the five monkeys, with each monkey receiving a treatment derived from their own skin cells. A sixth iPSC line from a donor monkey was used for the remaining five monkeys to see how the treatment would work if it was not derived from their own skin cells.

The results showed that the monkeys that received the treatment derived from their own skin cells recovered. These animals moved more, moved faster, and were nimbler than before the treatment. They gained the ability to grasp treats, use all four limbs for walking, and climb their cages with ease and increased agility. However, the monkeys that received iPSCs derived from a donor did not recover. Their symptoms remained unchanged or worsened compared to before the treatment.

In a news article, Zhang emphasizes how he and his team are proceeding with a treatment derived from one’s own cells (autologous) vs. one from a donor (allogeneic).

“I initially wanted to do allogeneic transplants in patients because the autologous approach is too expensive. However, after seeing [our] data, I changed my mind. I want to go with the autologous first… because I feel the chance of success is really, really high.”

CIRM is currently funding a human clinical trial ($5.5 million) that is using a gene therapy approach for PD.

Hollywood and Patient Advocacy – two people who are on our Board but never boring

At first glance Lauren Miller Rogen and Dr. David Higgins seem an unlikely pair. She’s an actor, writer, director and has worked with some of the biggest names in Hollywood. He has a doctorate in molecular biology and genetics and has worked at some of the most well-known companies in biotech. But together they make a great team.

Lauren and David are both on the CIRM Board. She’s a patient advocate for Alzheimer’s and the driving force (with her husband Seth) of HFC (Hilarity for Charity), which has raised millions of dollars to help families battling the disease and to educate young people about the condition. It’s also made a lot of people laugh along the way. David is a patient advocate for Parkinson’s and has been instrumental is creating support groups that help patients and families cope with the disease.

Together they are a force for good. And they’re also really funny. And that’s why we invited them to be guests on the CIRM Podcast, Talking ‘Bout (re)Generation. They are smart, engaging, witty, and they don’t pull punches.

I know you are going to enjoy the show.

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

Creating an on-off switch to test stem cell therapy for Parkinson’s Disease

Sometimes you read about a new study where the researchers did something that just leaves you gob smacked. That’s how I felt when I read a study in the journal Cell Stem Cell about a possible new approach to helping people with Parkinson’s Disease (PD).

More on the gob smacking later. But first the reason for the study.

We know that one of the causes of Parkinson’s disease is the death of dopamine-producing neurons, brain cells that help plan and control body movement. Over the years, researchers have tried different ways to try and replace those cells but getting the cells where they need to be and getting them to integrate into the brain has proved challenging.

A team at the University of Wisconsin-Madison think they may have found a way to fix that. In an article in Drug Target Review  lead researcher Dr. Su-Chun Zhang, explained their approach:

“Our brain is wired in such an accurate way by very specialized nerve cells in particular locations so we can engage in all our complex behaviors. This all depends on circuits that are wired by specific cell types. Neurological injuries usually affect specific brain regions or specific cell types, disrupting circuits. In order to treat those diseases, we have to restore these circuits.”

The researchers took human embryonic stem cells and transformed them into dopamine-producing neurons, then they transplanted those cells into mice specially bred to display PD symptoms. After several months the team were able to show that not only had the mice improved motor skills but that the transplanted neurons were able to connect to the motor-control regions of the brain and also establish connections with regulatory regions of the brain, which prevented over stimulation. In other words, the transplanted cells looked and behaved the way they would in a healthy human brain.

Now here comes the gob smack part. The team wanted to make sure the cells they transplanted were the reason for the improved motor control in the mice. So, they had inserted a genetic on-and-off switch into the stem cells. By using specially designed drugs the researchers were able to switch the cells on or off.

When the cells were switched off the mice’s motor improvements stopped. When they were switched back on, they were restored.

Brilliant right! Well, I thought it was.

Next step is to test this approach in larger animals and, if all continues to look promising, to move into human clinical trials.

CIRM is already funding one clinical trial in Parkinson’s disease. You can read about it here.