Engaging the patient to create a culture of health citizenship

P4C

Health Citizenship panel discussion at Partnering for Cures: L to R: Lucia Savage, Roni Zeiger,  Claudia Williams, Jennifer Mills, Kathy Hudson, Beth Meagher

One of the buzz phrases in healthcare today is “patient engagement”. It seems that you can’t go to a medical or scientific conference without coming across a panel discussion on the topic. A recent Partnering For Cures* event in San Francisco was no exception. But here the conversation took on a very different tone, one that challenged what the term meant and then said that if we are really serious about engaging patients, then doctors and drug companies need to change the way they think and operate.

That tone was set from the start of the discussion when moderator Claudia Williams said even the term “patient engagement” suggests that it is something “being imposed, or at least allowed, from the outside; by experts and doctors and those in charge.”

Williams quoted Erin Moore, the mother of a young boy with cystic fibrosis saying “No one is more engaged than the patient. I want the experts, the doctors, the pharmaceutical companies to be engaged.”

Need to train doctors

Dr. Roni Zeiger, the former Chief Health Strategist at Google, said doctors aren’t trained to truly listen to and engage with patients, and that has to change:

“I sometimes think of myself as a recovering paternal physician. When I listen to and learn from patients and families I am surprised, every time, at the breadth and depth of the conversations. All of the things that we, in the medical field, do from designing a waiting room to designing a clinical trial to deciding when and how to have a conversation, we bring a tremendous amount of assumptions to those. And those assumptions are often wrong. I think that on a daily basis we should be looking at the key work we do and ask are there assumptions here I should throw away and talk to those I serve and get their help in redesigning things in a way that makes more sense.”

Jennifer Mills, the Director of Patient Engagement (that phrase again) at biotech giant Genentech, said those mistakes are made by everyone in the field:

“The biggest assumption for me is thinking about patients with a capital P, as a homogeneous group, instead of realizing they are also individuals. We need to address them as a group and as individuals depending on the circumstances.”

Caregivers count too

For example as people get older and rely on a partner or spouse to take care of them it may be important to not just engage with the patient but also with the caregiver. And the needs for each of them may not be the same.

At that point the conversation turned to the use of data. Lucia Savage, the Chief Privacy and Regulatory Officer at Omada Health, said it is going to be increasingly important to give people control over their own medical data, and sometimes the medical data of others.

“Caregivers need access to healthcare records. For example, I can check my mom’s labs. If I message her doctors they can share that information with me. It’s great because it helps us help her lead an independent life as an 80 year old.”

Savage also pointed out that we need to be careful how we interpret data. She said she could go shopping and buy three extra-large bags of potato chips. On the face of it that doesn’t look good. But did she buy those chips for herself or her daughter’s soccer team. The data is the same. The implications are very different.

Partnership not patronizing

The discussion ended with an attempt to outline what being a good health citizen means. Just as citizenship involves both rights and responsibilities on the part of the individual and society, health citizenship too involves rights and responsibilities on the part of the individual and the biomedical research and health care world. Patients deserve to be treated as individuals who have a vested interest in their own health. They don’t need “experts” to talk down or patronize them or assume they know best.

Mills says she is seeing progress in this area:

“Companies are moving from assuming what patients need to asking what they need. We once assumed that if we were in the therapeutic area long enough we didn’t need to ask what patients need. I’m seeing that change.”

Deloitte Consulting’s Beth Meagher said we need to look beyond technology and focus on the people:

“Humility is going to be the killer app. The true innovators are really being humble and realizing that to have the kind of impact they are looking for, there is a need to work in a way they haven’t before. “

*Partnering for Cures is a project of Michael Milken’s FasterCures, whose goal is to save lives by speeding up and improving the medical research system.

 

Advertisements

Stories that caught our eye: How dying cells could help save lives; could modified blood stem cells reverse diabetes?; and FDA has good news for patients, bad news for rogue clinics

Gunsmoke

Growing up I loved watching old cowboy movies. Invariably the hero, even though mortally wounded, would manage to save the day and rescue the heroine and/or the town.

Now it seems some stem cells perform the same function, dying in order to save the lives of others.

Researchers at Kings College in London were trying to better understand Graft vs Host Disease (GvHD), a potentially fatal complication that can occur when a patient receives a blood stem cell transplant. In cases of GvHD, the transplanted donor cells turn on the patient and attack their healthy cells and tissues.

Some previous research had found that using bone marrow cells called mesenchymal stem cells (MSCs) had some success in combating GvHD. But it was unpredictable who it helped and why.

Working with mice, the Kings College team found that the MSCs were only effective if they died after being transplanted. It appears that it is only as they are dying that the MSCs engage with the individual’s immune system, telling it to stop attacking healthy tissues. The team also found that if they kill the MSCs just before transplanting them into mice, they were just as effective.

In a news article on HealthCanal, lead researcher Professor Francesco Dazzi, said the next step is to see if this will apply to, and help, people:

“The side effects of a stem cell transplant can be fatal and this factor is a serious consideration in deciding whether some people are suitable to undergo one. If we can be more confident that we can control these lethal complications in all patients, more people will be able to receive this life saving procedure. The next step will be to introduce clinical trials for patients with GvHD, either using the procedure only in patients with immune systems capable of killing mesenchymal stem cells, or killing these cells before they are infused into the patient, to see if this does indeed improve the success of treatment.”

The study is published in Science Translational Medicine.

Genetically modified blood stem cells reverse diabetes in mice

When functioning properly, the T cells of our immune system keep us healthy by detecting and killing off infected, damaged or cancerous cells in our body. But in the case of type 1 diabetes, a person’s own T cells turn against the body by mistakenly targeting and destroying perfectly normal islet cells in the pancreas, which are responsible for producing insulin. As a result, the insulin-dependent delivery of blood sugar to the energy-hungry organs is disrupted leading to many serious complications. Blood stem cell transplants have been performed to treat the disease by attempting to restart the immune system. The results have failed to provide a cure.

Now a new study, published in Science Translational Medicine, appears to explain why those previous attempts failed and how some genetic rejiggering could lead to a successful treatment for type 1 diabetes.

An analysis of the gene activity inside the blood stem cells of diabetic mice and humans reveals that these cells lack a protein called PD-L1. This protein is known to play an important role in putting the brakes on T cell activity. Because T cells are potent cell killers, it’s important for proteins like PD-L1 to keep the activated T cells in check.

Cell based image for t 1 diabetes

Credit: Andrea Panigada/Nancy Fliesler

Researchers from Boston Children’s Hospital hypothesized that adding back PD-L1 may prevent T cells from the indiscriminate killing of the body’s own insulin-producing cells. To test this idea, the research team genetically engineered mouse blood stem cells to produce the PD-L1 protein. Experiments with the cells in a petri dish showed that the addition of PD-L1 did indeed block the attack-on-self activity. And when these blood stem cells were transplanted into a diabetic mouse strain, the disease was reversed in most of the animals over the short term while a third of the mice had long-lasting benefits.

The researchers hope this targeting of PD-L1 production – which the researchers could also stimulate with pharmacological drugs – will contribute to a cure for type 1 diabetes.

FDA’s new guidelines for stem cell treatments

Gottlieb

FDA Commissioner Scott Gottlieb

Yesterday Scott Gottlieb, the Commissioner at the US Food and Drug Administration (FDA), laid out some new guidelines for the way the agency regulates stem cells and regenerative medicine. The news was good for patients, not so good for clinics offering unproven treatments.

First the good. Gottlieb announced new guidelines encouraging innovation in the development of stem cell therapies, and faster pathways for therapies, that show they are both safe and effective, to reach the patient.

At the same time, he detailed new rules that provide greater clarity about what clinics can do with stem cells without incurring the wrath of the FDA. Those guidelines detail the limits on the kinds of procedures clinics can offer and what ways they can “manipulate” those cells. Clinics that go beyond those limits could be in trouble.

In making the announcement Gottlieb said:

“To be clear, we remain committed to ensuring that patients have access to safe and effective regenerative medicine products as efficiently as possible. We are also committed to making sure we take action against products being unlawfully marketed that pose a potential significant risk to their safety. The framework we’re announcing today gives us the solid platform we need to continue to take enforcement action against a small number of clearly unscrupulous actors.”

Many of the details in the announcement match what CIRM has been pushing for some years. Randy Mills, our previous President and CEO, called for many of these changes in an Op Ed he co-wrote with former US Senator Bill Frist.

Our hope now is that the FDA continues to follow this promising path and turns these draft proposals into hard policy.

 

 

 

 

Progress to a Cure for Bubble Baby Disease

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. Today we’re featuring stories about the progress of CIRM-funded clinical trials for the treatment of a devastating, usually fatal, primary immune disease that strikes newborn babies.

evangelina in a bubble

Evie, a former “bubble baby” enjoying life by playing inside a giant plastic bubble

‘Bubble baby disease’ will one day be a thing of the past. That’s a bold statement, but I say it with confidence because of the recent advancements in stem cell gene therapies that are curing infants of this life-threatening immune disease.

The scientific name for ‘bubble baby disease’ is severe combined immunodeficiency (SCID). It prevents the proper development of important immune cells called B and T cells, leaving newborns without a functioning immune system. Because of this, SCID babies are highly susceptible to deadly infections, and without treatment, most of these babies do not live past their first year. Even a simple cold virus can be fatal.

Scientists are working hard to develop stem cell-based gene therapies that will cure SCID babies in their first months of life before they succumb to infections. The technology involves taking blood stem cells from a patient’s bone marrow and genetically correcting the SCID mutation in the DNA of these cells. The corrected stem cells are then transplanted back into the patient where they can grow and regenerate a healthy immune system. Early-stage clinical trials testing these stem cell gene therapies are showing very encouraging results. We’ll share a few of these stories with you below.

CIRM-funded trials for SCID

CIRM is funding three clinical trials, one from UCLA, one at Stanford and one from UCSF & St. Jude Children’s Research Hospital, that are treating different forms of SCID using stem cell gene therapies.

Adenosine Deaminase-Deficient SCID

The first trial is targeting a form of the disease called adenosine deaminase-deficient SCID or ADA-SCID. Patients with ADA-SCID are unable to make an enzyme that is essential for the function of infection-fighting immune cells called lymphocytes. Without working lymphocytes, infants eventually are diagnosed with SCID at 6 months. ADA-SCID occurs in approximately 1 in 200,000 newborns and makes up 15% of SCID cases.

CIRM is funding a Phase 2 trial for ADA-SCID that is testing a stem cell gene therapy called OTL-101 developed by Dr. Don Kohn and his team at UCLA and a company called Orchard Therapeutics. 10 patients were treated in the trial, and amazingly, nine of these patients were cured of their disease. The 10th patient was a teenager who received the treatment knowing that it might not work as it does in infants. You can read more about this trial in our blog from earlier this year.

In a recent news release, Orchard Therapeutics announced that the US Food and Drug Administration (FDA) has awarded Rare Pediatric Disease Designation to OTL-101, meaning that the company will qualify for priority review for drug approval by the FDA. You can read more about what this designation means in this blog.

X-linked SCID

The second SCID trial CIRM is funding is treating patients with X-linked SCID. These patients have a genetic mutation on a gene located on the X-chromosome that causes the disease. Because of this, the disease usually affects boys who have inherited the mutation from their mothers. X-linked SCID is the most common form of SCID and appears in 1 in 60,000 infants.

UCSF and St. Jude Children’s Research Hospital are conducting a Phase 1/2 trial for X-linked SCID. The trial, led by Dr. Brian Sorrentino, is transplanting a patient’s own genetically modified blood stem cells back into their body to give them a healthy new immune system. Patients do receive chemotherapy to remove their diseased bone marrow, but doctors at UCSF are optimizing low doses of chemotherapy for each patient to minimize any long-term effects. According to a UCSF news release, the trial is planning to treat 15 children over the next five years. Some of these patients have already been treated and we will likely get updates on their progress next year.

CIRM is also funding a third clinical trial out of Stanford University that is hoping to make bone marrow transplants safer for X-linked SCID patients. The team, led by Dr. Judy Shizuru, is developing a therapy that will remove unhealthy blood stem cells from SCID patients to improve the survival and engraftment of healthy bone marrow transplants. You can read more about this trial on our clinical trials page.

SCID Patients Cured by Stem Cells

These clinical trial results are definitely exciting, but what is more exciting are the patient stories that we have to share. We’ve spoken with a few of the families whose children participated in the UCLA and UCSF/St. Jude trials, and we asked them to share their stories so that other families can know that there is hope. They are truly inspiring stories of heartbreak and joyful celebration.

Evie is a now six-year-old girl who was diagnosed with ADA-SCID when she was just a few months old. She is now cured thanks to Don Kohn and the UCLA trial. Her mom gave a very moving presentation about Evie’s journey at the CIRM Bridges Trainee Annual Meeting this past July.  You can watch the 20-minute talk below:

Ronnie’s story

Ronnie SCID kid

Ronnie: Photo courtesy Pawash Priyank

Ronnie, who is still less than a year old, was diagnosed with X-linked SCID just days after he was born. Luckily doctors told his parents about the UCSF/St. Jude trial and Ronnie was given the life-saving stem cell gene therapy before he was six months old. Now Ronnie is building a healthy immune system and is doing well back at home with his family. Ronnie’s dad Pawash shared his families moving story at our September Board meeting and you can watch it here.

Our mission at CIRM is to accelerate stem cell treatments to patients with unmet medical needs. We hope that by funding promising clinical trials like the ones mentioned in this blog, that one day soon there will be approved stem cell therapies for patients with SCID and other life-threatening diseases.

Using heart stem cells to help boys battling a deadly disorder

 

Caleb_Thumbnail3

Caleb Sizemore, a young man with DMD, speaks to the CIRM Board about his treatment in the Capricor clinical trial.

It’s hard to imagine how missing just one tiny protein can have such a devastating impact on a person. But with Duchenne Muscular Dystrophy (DMD) the lack of a single protein called dystrophin has deadly consequences. Now a new study is offering hope we may be able to help people with this rare genetic disorder.

DMD is a muscle wasting condition that steadily destroys the muscles in the arms and legs, heart and respiratory system. It affects mostly boys and it starts early in life, sometimes as young as 3 years old, and never lets up. By early teens many boys are unable to walk and are in a wheelchair. Their heart and breathing are also affected. In the past most people with DMD didn’t survive their teens. Now it’s more common for them to live into their 20’s and 30’s, but not much beyond that.

Results from a clinical trial being run by Capricor Therapeutics – and funded by CIRM – suggest we may be able to halt, and even reverse, some of the impacts of DMD.

Capricor has developed a therapy called CAP-1002 using cells derived from heart stem cells, called cardiospheres. Boys and young men with DMD who were treated with CAP-1002 experienced what Capricor calls “significant and sustained improvements in cardiac structure and function, as well as skeletal muscle function.”

In a news release Dr. Ronald Victor, a researcher at Cedars-Sinai Heart Institute and the lead investigator for the trial, said they followed these patients for 12 months after treatment and the results are encouraging:

“Because Duchenne muscular dystrophy is a devastating, muscle-wasting disease that causes physical debilitation and eventually heart failure, the improvements in heart and skeletal muscle in those treated with a single dose of CAP-1002 are very promising and show that a subsequent trial is warranted. These early results provide hope for the Duchenne community, which is in urgent need of a major therapeutic breakthrough.”

According to the 12-month results:

  • 89 percent of patients treated with CAP-1002 showed sustained or improved muscle function compared to untreated patients
  • The CAP-1002 group had improved heart muscle function compared to the untreated group
  • The CAP-1002 group had reduced scarring on their heart compared to the untreated group.

Now, these results are still very early stage and there’s a danger in reading too much into them. However, the fact that they are sustained over one year is a promising sign. Also, none of the treated patients experienced any serious side effects from the therapy.

The team at Capricor now plans to go back to the US Food and Drug Administration (FDA) to get clearance to launch an even larger study in 2018.

For a condition like DMD, that has no cure and where treatments can simply slow down the progression of the disorder, this is a hopeful start.

Caleb Sizemore is one of the people treated in this trial. You can read his story and listen to him describing the impact of the treatment on his life.

The life of a sleeping muscle stem cell is very busy

For biological processes, knowing when to slow down is as important as knowing when to step on the accelerator. Take for example muscle stem cells. In a healthy state, these cells mostly lay quiet and rarely divide but upon injury, they bolt into action by dividing and specializing into new muscle cells to help repair damaged muscle tissue. Once that mission is accomplished, the small pool of muscle stem cells is replenished through self-renewal before going back into a dormant, or quiescent, state.

muscle stem cell

Muscle stem cell (pink with green outline) sits along a muscle fiber. Image: Michael Rudnicki/OIRM

“Dormant” may not be the best way to describe it because a lot of activity is going on within the cells to maintain its sleepy state. And a better understanding of the processes at play in a dormant state could reveal insights about treating aging or diseased muscles which often suffer from a depletion of muscle stem cells. One way to analyze cellular activity is by examining RNA transcripts which are created when a gene is turned “on”. These transcripts are the messenger molecules that provide a gene’s instructions for making a particular protein.

By observing something, you change it
In order to carry out the RNA transcript analyses in animal studies, researchers must isolate and purify the stem cells from muscle tissue. The worry here is that all of the necessary poking of prodding of the cells during the isolation method will alter the RNA transcripts leading to a misinterpretation of what is actually happening in the native muscle tissue. To overcome this challenge, Dr. Thomas Rando and his team at Stanford University applied a recently developed technique that allowed them to tag and track the RNA transcripts within living mice.

The CIRM-funded study reported today in Cell Reports found that there are indeed significant differences in results when comparing the standard in vitro lab method to the newer in vivo method. As science writer Krista Conger summarized in a Stanford Medical School press release, those differences led to some unexpected results that hadn’t been observed previously:

“The researchers were particularly surprised to learn that many of the RNAs made by the muscle stem cells in vivo are either degraded before they are made into proteins, or they are made into proteins that are then rapidly destroyed — a seemingly shocking waste of energy for cells that spend most of their lives just cooling their heels along the muscle fiber.”

It takes a lot of energy to stay ready
Dr. Rando thinks that these curious observations do not point to an inefficient use of a cell’s resources but instead, “it’s possible that this is one way the cells stay ready to undergo a rapid transformation, either by blocking degradation of RNA or proteins or by swiftly initiating translation of already existing RNA transcripts.”

The new method provides Rando’s team a whole new perceptive on understanding what’s happening behind the scenes during a muscle stem cell’s “dormant” state. And Rando thinks the technique has applications well beyond this study:

Rando

Thomas Rando

“It’s so important to know what we are and are not modeling about the state of these cells in vivo. This study will have a big impact on how researchers in the field think about understanding the characteristics of stem cells as they exist in their native state in the tissue.”

 

 

Using stem cells to take an inside approach to fixing damaged livers

Often on the Stem Cellar we write about work that is in a clinical trial. But getting research to that stage takes years and years of dedicated work. Over the next few months we are going to profile some of the scientists we fund who are doing Discovery, or early stage research, to highlight the importance of this work in developing the treatments that could ultimately save lives.

 This first profile is by Pat Olson, Ph.D., CIRM’s Vice President of Discovery & Translation

liver

Most of us take our liver for granted.  We don’t think about the fact that our liver carries out more than 500 functions in our bodies such as modifying and removing toxins, contributing to digestion and energy production, and making substances that help our blood to clot.  Without a liver we probably wouldn’t live more than a few days.

Our liver typically functions well but certain toxins, viral infections, long-term excess alcohol consumption and metabolic diseases such as obesity and type 2 diabetes can have devastating effects on it.  Under these conditions, functional liver cells, called hepatocytes, die and are replaced with cells called myofibroblasts.  Myofibroblasts are cells that secrete excess collagen leading to fibrosis, a form of scarring, throughout the liver.  Eventually, a liver transplant is required but the number of donor livers available for transplant is small and the number of persons needing a functional liver is large.  Every year in the United States,  around 6,000 patients receive a new liver and more than 35,000 patients die of liver disease.

Searching for options

willenbring photo

Dr. Holger Willenbring

Dr. Holger Willenbring, a physician scientist at UCSF, is one of the CIRM-funded researchers pursuing a stem cell/regenerative medicine approach to discover a treatment for patients with severe liver disease.  There are significant challenges to treating liver disease including getting fully multi-functional hepatocytes and getting them to engraft and/or grow sufficiently to achieve adequate mass for necessary liver functions.

In previous CIRM–funded discovery research, Dr. Willenbring and his team showed that they could partially reprogram human fibroblasts (the most common cell found in connective tissue) and then turn them into immature hepatocytes.  (see our Spotlight on Liver Disease video from 2012 featuring Dr. Willenbring.) These immature hepatocytes, when transplanted into an immune-deficient mouse model of human liver failure, were shown to mature over time into hepatocytes that were comparable to normal human hepatocytes both in their gene expression and their function.

This was an important finding in that it suggested that the liver environment in a living animal (in vivo), rather than in a test tube (in vitro) in the laboratory, is important for full multi-functional maturation of hepatocytes.  The study also showed that these transplanted immature human hepatocytes could proliferate and improve the survival of this mouse model of chronic human liver disease.  But, even though this model was designed to emphasizes the growth of functional human hepatocytes, the number of cells generated was not great enough to suggest that transplantation could be avoided

A new approach

Dr. Willenbring and his team are now taking the novel approach of direct reprogramming inside the mouse.  With this approach, he seeks to avoid the challenge of low engraftment and proliferation of transplanted hepatocytes generated in the lab and transplanted. Instead, they aim to take advantage of the large number of myofibroblasts in the patient’s scarred liver by turning them directly into hepatocytes.

Recently, he and his team have shown proof-of principle that they can deliver genes to myofibroblasts and turn them into hepatocytes in a mouse. In addition these in vivo myofibroblasts-derived hepatocytes are multi-functional, and can multiply in number, and can even reverse fibrosis in a mouse with liver fibrosis.

From mice to men (women too)

Our latest round of funding for Dr. Willenbring has the goal of moving and extending these studies into human cells by improving the specificity and effectiveness of reprogramming of human myofibroblasts into hepatocytes inside the animal, rather than the lab.

He and his team will then conduct studies to test the therapeutic effectiveness and initial safety of this approach in preclinical models. The ultimate goal is to generate a potential therapy that could eventually provide hope for the 35,000 patients who die of liver disease each year in the US.

 

 

How a tiny patch of skin helped researchers save the life of a young boy battling a deadly disease

 

EB boy

After receiving his new skin, the boy plays on the grounds of the hospital in Bochum, Germany. Credit: RUB

By any standards epidermolysis bullosa (EB) is a nasty disease. It’s a genetic condition that causes the skin to blister, break and tear off. At best, it’s painful and disfiguring. At worst, it can be fatal. Now researchers in Italy have come up with an approach that could offer hope for people battling the condition.

EB is caused by genetic mutations that leave the top layer of skin unable to anchor to inner layers. People born with EB are often called “Butterfly Children” because, as the analogy goes, their skin is as fragile as the wings of a butterfly. There are no cures and the only treatment involves constantly dressing the skin, sometimes several times a day. With each change of dressing, layers of skin can be peeled away, causing pain.

epidermolysis-bullosa-29502

Hands of a person with EB

Life and death for one boy

For Hassan, a seven-year old boy admitted to the Burn Unit of the Children’s Hospital in Bochum, Germany, the condition was particularly severe. Since birth Hassan had repeatedly developed blisters all over his body, but several weeks before being admitted to the hospital his condition took an even more serious turn. He had lost skin on around 80 percent of his body and he was battling severe infections. His life hung in the balance.

Hassan’s form of EB was caused by a mutation in a single gene, called LAMB3. Fortunately, a team of researchers at the University of Modena and Reggio Emilia in Italy had been doing work in this area and had a potential treatment.

To repair the damage the researchers took a leaf out of the way severe burns are treated, using layers of skin to replace the damaged surface. In this case the team took a tiny piece of skin, about half an inch square, from Hassan and, in the laboratory, used a retrovirus to deliver a corrected version of the defective gene into the skin cells.

 

They then used the stem cells in the skin to grow sizable sheets of new skin, ranging in size from about 20 to 60 square inches, and used that to replace the damaged skin.

skin-gene-therapy-graphic-ap-ps-171108_3x5_992

In the study, published in the journal Nature, the researchers say the technique worked quickly:

“Upon removal of the non-adhering gauze (ten days after grafting) epidermal engraftment was evident. One month after grafting, epidermal regeneration was stable and complete. Thus approximately 80% of the patient’s TBSA (total body surface area) was restored by the transgenic epidermis.”

The engrafted skin not only covered all the damaged areas, it also proved remarkably durable. In the two years since the surgery the skin has remained, in the words of the researchers, “stable and robust, and does not blister, itch, or require ointment or medications.”

In an interview in Science, Jakub Tolar, an expert on EB at the University of Minnesota, talked about the significance of this study:

“It is very unusual that we would see a publication with a single case study anymore, but this one is a little different. This is one of these [studies] that can determine where the future of the field is going to go.”

Because the treatment focused on one particular genetic mutation it won’t be a cure for all EB patients, but it could provide vital information to help many people with the disease. The researchers identified a particular category of cells that seemed to play a key role in helping repair the skin. These cells, called holoclones, could be an important target for future research.

The researchers also said that if a child is diagnosed with EB at birth then skin cells can be taken and turned into a ready-made supply of the sheets that can be used to treat skin lesions when they develop. This would enable doctors to treat problems before they become serious, rather than have to try and repair the damage later.

As for Hassan, he is now back in school, leading a normal life and is even able to play soccer.

 

 

Stem cell-derived mini-intestines reveal bacteria’s key role in building up a newborn’s gut

The following factoid may induce an identity crisis for some people but it is true that our bodies carry more microbes than human cells. Some studies in 1970’s estimated the ratio at 10:1 though more recent calculations suggest we’re merely half microbe, half human.

Because microbes are much smaller than human cells they make up only about 1 or 2 percent of our total body mass. But that still amounts to trillions of micro-organisms, mostly bacteria, that live on and inside our bodies. The gut is one part of our body that is teeming with bacteria. Though that may sound gross, you’re very life depends on them. For example, these bacteria allow us to digest foods and take up nutrients that we wouldn’t be able to otherwise.

Intestines

E. coli bacteria, visible in this enhanced microscope image as tiny green rods, were injected into the center of a germ-free hollow ball of cells called a human intestinal organoid (inset image, top right). Within 48 hours, the cells formed much tighter connections with one another, visible as red in this image. Image courtesy of University of Michigan.

When we’re first born our intestines are germ-free but overtime helpful bacteria gain access to our gut and help it function, protecting it from infection by the continual exposure to harmful bacteria and viruses. New research out of the University of Michigan Medical School reported in eLife now shows that the initial bacterial infiltration is even more important than scientists previously thought. It appears to play a key role in stimulating human gut cells to shore up the intestine in preparation for the full wave of both micro-organisms and pathogens that are present throughout a person’s lifetime. The finding could help researchers discover methods to protect the gut from diseases like necrotizing enterocolitis, a rare but dangerous infection that strikes newborns.

To reach these conclusions, the research team grew human embryonic stem cells into miniature intestines in the lab. These so-called human intestinal organoids, or HIOs, are structures made up of a few thousand cells that form hollow tubes with many of the hallmarks of a bona fide intestine. The HIOs were first kept in a germ-free environment to mimic a newborn’s intestine. Then a form of helpful E. Coli bacteria, the same that’s often found in an infant’s diaper, was injected into the HIO and allowed to colonize the inside of the intestine.

155308_web

A single human intestinal organoid, or HIO — a hollow ball of cells grown from human embryonic stem cells and coaxed to become gut-lining cells. Scientists can use it to study basic gut development, and the effect of microbes on the cells, in a way that mimics the guts of newborn babies. Image courtesy of University of Michigan

The team observed several changes in gene activity shortly after the bacteria was introduced. Within a day or two, genes involved in producing proteins that fight off harmful microbes increased as well as genes that encode mucus production, a key part of protecting the cells that face the inside of the intestine. Other key features of a maturing intestine, such as tighter cell-to-cell connections and lowered oxygen levels were also stimulated by the presence of the bacteria. As co-senior author Vincent Young, M.D., Ph.D. explained in a press release, these results put the team in a position to uncover new insights about intestinal biology and disease:

VBY

Vincent Young

“We have developed a system that faithfully reproduces the physiology of the immature human intestine, and will now make it possible to study a range of host-microbe interactions in the intestine to understand their functional role in health and disease.”

 

The particular mix of microbes found in one person versus another can differ a lot. And the impact of these differences on an individual’s health has been a trending topic in the media. Lead author David Hill, Ph.D., a postdoctoral fellow in the lab of Jason Spence, Ph.D., thinks that’s one specific research path that they aim to investigate with their HIO system:

HillD_spence_website

David Hill

“We hope to examine whether different bacteria produce different types of responses in the gut. This type of work might help to explain why different types of gut bacteria seem to be associated with positive or negative health outcomes.”

 

Surprise findings about bone marrow transplants could lead to more effective stem cell therapies

Surgery_0

Bone marrow transplant: Photo courtesy FierceBiotech

Some medical therapies have been around for so long that we naturally assume we understand how they work. That’s not always the case. Take aspirin for example. It’s been used for more than 4,000 years to treat pain and inflammation but it was only in the 1970’s that we really learned how it works.

The same is now true for bone marrow transplants. Thanks to some skilled research at the Fred Hutchinson Cancer Research Center in Seattle.

Bone marrow transplants have been used for decades to help treat deadly blood cancers such as leukemia and lymphoma. The first successful bone marrow transplant was in the late 1950’s, involving identical twins, one of whom had leukemia. Because the twins shared the same genetic make-up the transplant avoided potentially fatal problems like graft-vs-host-disease, where the transplanted cells attack the person getting them. It wasn’t until the 1970’s that doctors were able to perform transplants involving people who were not related or who did not share the same genetic make-up.

In a bone marrow or blood stem cell transplant, doctors use radiation or chemotherapy to destroy the bone marrow in a patient with, say, leukemia. Then cancer-free donor blood stem cells are transplanted into the patient to help create a new blood system, and rebuild their immune system.

Surprise findings

In the study, published in the journal Science Translational Medicine, the researchers were able to isolate a specific kind of stem cell that helps repair and rebuild the blood and immune system.

The team found that a small subset of blood stem cells, characterized by having one of three different kinds of protein on their surface – CD34 positive, CD45RA negative and CD90 positive – did all the work.

In a news release Dr. Hans-Peter Kiem, a senior author on the study, says some of their initial assumptions about how bone marrow transplants work were wrong:

“These findings came as a surprise; we had thought that there were multiple types of blood stem cells that take on different roles in rebuilding a blood and immune system. This population does it all.”

Tracking the cells

The team performed bone-marrow transplants on monkeys and then followed those animals over the next seven years, observing what happened as the donor cells grew and multiplied.

They tracked hundreds of thousands of cells in the blood and found that, even though the cells with those three proteins on the surface made up just five percent of the total blood supply, they were responsible for rebuilding the entire blood and immune system.

Study co-author Dr. Jennifer Adair said they saw evidence of this rebuilding within 10 days of the transplant:

“Our ability to track individual blood cells that developed after transplant was critical to demonstrating that these really are stem cells.”

Hope for the future

It’s an important finding because it could help researchers develop new ways of delivering bone marrow transplants that are both safer and more effective. Every year some 3,000 people die because they cannot find a matching donor. Knowing which stem cells are specifically responsible for an effective transplant could help researchers come up with ways to get around that problem.

Although this work was done in monkeys, the scientists say humans have similar kinds of stem cells that appear to act in the same way. Proving that’s the case will obviously be the next step in this research.

 

Inspiring the next generation of stem cell scientists

SPARK2017-267_brighten

SPARK students at the 2017 Annual Meeting at the City of Hope.

“The technological breakthroughs that will be happening over the next few years – it’s your generation of scientists that will make this happen.”

zaia-john-300x300

John Zaia

Dr. John Zaia, the Director of City of Hope’s Center for Gene Therapy, directed these words to a group of 55 talented high school students attending the 2017 CIRM SPARK meeting.

SPARK stands for Summer Program to Accelerate Regenerative Medicine Knowledge. Students in the program spend their summer tackling difficult stem cell research projects in the lab, attending scientific workshops and lectures, and participated in patient engagement activities.

At the end of the summer, SPARK students from seven different programs at institutions and universities across California attend the annual SPARK meeting. At this gathering, students present their research to researchers and their families. They also hear about the progress in developing stem cell therapies from scientists and doctors and about exciting career paths in science and STEM fields from SPARK alumni.

The program is an excellent way for high school students to get their “research feet” wet. They are trained in basic lab and stem cell techniques and are assigned to a mentor who guides them through their research project.

Many of the students who participate in our SPARK programs go on to prestigious colleges to pursue degrees in science, medicine, and engineering. You can read some of these stories on our blog here and here.

At CIRM, we are invested in educating the next generation of stem cell scientists. Our Vice-Chair of the CIRM Board, Sen. Art Torres, said it perfectly at this year’s SPARK meeting:

“I just want to thank you for being part of this program. We are very proud of each and every one of you and we expect great things in the future.”

Check out this short video, produced by City of Hope, which features highlights from our 2017 SPARK meeting at the City of Hope. As you will see, this program is not only fun, but is a one-in-a-lifetime experience.

If you’re interested in learning more about our SPARK program or applying to be a SPARK intern, visit our website for more information. SPARK programs typically accept applications in December or early in the year. Each program has its own eligibility requirements and application process and you can find out that information on the individual SPARK program websites listed on our CIRM SPARK webpage.