Sleep inducing hormone puts breast cancer cells to rest  

It’s pretty easy to connect the dots between a lack of sleep and an increased risk of a deadly car crash. But what about an increased risk of cancer? A 2012 study of 101 women newly diagnosed with breast cancer found that those with inadequate sleep were more likely to have more aggressive tumors. Though the results of this survey were statistically significant, the biological connection between sleep and breast cancer is not well understood.

melatonin

Melatonin, the sleep hormone, may help fight cancer. Image Credit

Now, a report in Genes and Cancer by a Michigan State University research team shows that the interplay between melatonin, a hormone involved in sleep-wake cycles, and breast cancer stem cells may provide an explanation. And, more importantly, the study points to melatonin’s potential use as a cancer therapeutic.

Mammospheres: cancer in a more natural environment
To carry out their lab experiments, the researchers grew breast cancer cells into three-dimensional aggregates, called mammospheres, that resemble the tumor cell composition seen in an actual tumor in the body. This cell mix includes breast cancer stem cells which are thought to drive the uncontrolled tumor growth and reccurrence. David Arnosti, a MSU professor and co-author on the study, used a helpful analogy in a university press release to explain the importance of using the mammosphere technique:

“You can watch bears in the zoo, but you only understand bear behavior by seeing them in the wild. Similarly, understanding the expression of genes in their natural environment reveals how they interact in disease settings. That’s what is so special about this work.”

 

Melatonin fighting cancer cells via their stem cell-like properties
The cancer cells used in this study are also categorized as so-called estrogen receptor (ER) -positive cells. This classification means that the cancer growth is largely stimulated by the hormone estrogen.  The first round of experiments analyzed melatonin’s effects on estrogen’s ability to increase the growth and size of the mammospheres. The team also tested Bisphenol A (BPA), a chemical used in the plastics industry that mimics estrogen’s effects. While estrogen or BPA alone caused a large increase in mammosphere size and number, addition of melatonin stunted these effects.

Next, the team went deeper and looked at melatonin’s impact from a genes and proteins perspective. Estrogen is a steroid hormone that acts by passing through the cell wall and binding to the estrogen receptor inside the cell. Once bound by estrogen, the receptor travels to a cell’s nucleus and binds particular regions of DNA which can activate genes. One of those activated genes is responsible for producing OCT4, a protein that plays a critical role in a stem cell’s ability to indefinitely makes copies of itself and to maintain its unspecialized, stem cell state. This cellular pathway is how estrogen helps drives the growth of ER-positive breast cancer cells. The researchers showed that estrogen- and BPA-stimulated binding of the estrogen receptor to the OCT4 gene in the mammospheres was inhibited when melatonin was added to the cells.

Melatonin: putting cancer stems to bed?
Putting these observations together, melatonin appears to suppress breast tumor growth by directing inhibiting genes responsible for driving the stem cell-like properties of the breast cancer stem cells within the mammosphere. Melatonin is produced by the brain’s pineal gland which is only active at night. Once released, melatonin helps induce sleep. So a disrupted sleep pattern, like insomnia, would reduce melatonin levels and as a consequence the block on estrogen driven cancer growth is removed. ­

James Trosko, whose MSU lab perfected the mammosphere technique, sees these breast cancer results in a larger perspective:

“This work establishes the principal by which cancer stem cell growth may be regulated by natural hormones, and provides an important new technique to screen chemicals for cancer-promoting effects, as well as identify potential new drugs for use in the clinic.”

Keep in mind that these are very preliminary studies and more work is need before a potential clinical application sees the light of day. In the meantime, have a good day and get a good night’s sleep.

 

 

New approach could help turn back the clock and reverse damage for stroke patients

stroke

Stroke: courtesy WebMD

Stroke is the leading cause of serious, long-term disability in the US. Every year almost 800,000 people suffer from a stroke. The impact on their lives, and the lives of those around them can be devastating.

Right now the only treatment approved by the US Food and Drug Administration (FDA) is tissue plasminogen activator or tPA. This helps dissolve the blood clot causing most strokes and restores blood flow to the brain. However, to be fully effective this has to be administered within about 3-4 hours after the stroke. Many people are unable to get to the hospital in time and as a result suffer long-term damage, damage that for most people has been permanent.

But now a new study in Nature Medicine shows that might not be the case, and that this damage could even be reversible.

The research, done by a team at the University of Southern California (USC) uses a one-two punch combination of stem cells and a protein that helps those cells turn into neurons, the cells in the brain damaged by a stroke.

First, the researchers induced a stroke in mice and then transplanted human neural stem cells alongside the damaged brain tissue. They then added in a dose of the protein 3K3A-APC or a placebo.

hey found that mice treated with 3K3A-APC had 16 times more human stem-cell derived neurons than the mice treated with the placebo. Those neurons weren’t just sitting around doing nothing. USC’s Berislav Zlokovic, senior author of the paper, says they were actively repairing the stroke-induced damage.

“We showed that 3K3A-APC helps the grafted stem cells convert into neurons and make structural and functional connections with the host’s nervous system. No one in the stroke field has ever shown this, so I believe this is going to be the gold standard for future studies. Functional deficits after five weeks of stroke were minimized, and the mice were almost back to normal in terms of motor and sensorimotor functions. Synapses formed between transplanted cells and host cells, so there is functional activation and cooperation of transplanted cells in the host circuitry.”

The researchers wanted to make sure the transplanted cell-3K3A-ACP combination was really the cause of the improvement in the mice so they then used what’s called an “assassin toxin” to kill the neurons they had created. That reversed the improvements in the treated mice, leaving them comparable to the untreated mice. All this suggests the neurons had become an integral part of the mouse’s brain.

So how might this benefit people? You may remember that earlier this summer Stanford researchers produced a paper showing they had helped some 18 stroke patients, by injecting stem cells from donor bone marrow into their brain. The improvements were significant, including in at least one case regaining the ability to walk. We blogged about that work here

In that study, however, the cells did not become neurons nor did they seem to remain in the brain for an extended period. It’s hoped this new work can build on that by giving researchers an additional tool, the 3K3A-ACP protein, to help the transplanted cells convert to neurons and become integrated into the brain.

One of the other advantages of using this protein is that it has already been approved by the FDA for use in people who have experienced an ischemic stroke, which accounts for about 87 percent of all strokes.

The USC team now hope to get approval from the FDA to see if they can replicate their experiences in mice in people, through a Phase 2 clinical trial.

 

 

 

 

 

 

 

Stem cell stories that caught our eye: Zika virus and adult brains, a step toward precision medicine and source of blood stem cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Zika virus and the adult brain.  While almost all the press attention for the Zika virus has centered on pregnant women and the devastating impact the virus can have on their developing babies, a few stories have noted that while most adults don’t know they have been infected, a few do. The one significant impact seen is a relatively rare incidence of Guillain-Barre Syndrome, which can cause temporary partial paralysis. That has triggered a few researchers to look for other impacts in adults infected with the mosquito-borne virus.

shutterstock_200494427

Researchers trying to understand why the virus leads to the underdeveloped brains known as microcephaly, in infants have shown the virus does its nasty work at the level of the nerve stem cell. Although adults have far fewer nerve stem cells than a developing fetus, they do have some. So a team at Rockefeller University in New York and the La Jolla Institute for Allergy and Immunology decided to look for any effects of infection on adult nerve stem cells in mice.  They published the work this week in the journal Cell Stem Cell and report a dramatic reduction in adult nerve stem cells in infected mice.

“Adult neurogenesis is implicated in learning and memory,” said the La Jolla Institute’s Sujan Shresta in a press release from the journal. “We don’t know what this would mean in terms of human diseases, or if cognitive behaviors of an individual could be impacted after infection.”

Mice are normally resistant to Zika infection, so the researchers first had to genetically engineer mice to be susceptible to infection. That means several layer of caveats and more research are needed before any assertions about adult impact of Zika infection in humans.

This work captured considerable press attention including in Buzzfeed, NBC and USNews and World Report.

 

Heart felt precision medicine.  With the boost of a special initiative launched by the Obama administration, precision medicine is becoming all the rage, at least as a goal. While a few cancer therapies currently use this concept of matching therapies to a specific patient’s genetic makeup, few doctors outside of oncology can turn to similarly precise therapies.

Cardio cells image

Heart muscle cells

Work from a CIRM-funded team at Stanford has moved other doctors a bit closer to this goal for heart disease. But this research will not lead to treating it, rather it could allow doctors to prevent therapies used for other diseases from causing heart disease. Joseph Wu and his team have made two discoveries that help validate the use of the iPS reprogramming technique to make patient-specific stem cells and then mature them into heart muscle cells and see how those cells react to specific drugs.

“Thirty percent of drugs in clinical trials are eventually withdrawn due to safety concerns, which often involve adverse cardiac effects,” said Wu in a press release picked up by ScienceNewsLine. “This study shows that these cells serve as a functional readout to predict how a patient’s heart might respond to particular drug treatments and identify those who should avoid certain treatments.”

 

93418_wu2

Joseph Wu

There has always been some concern that the genetic manipulation used to create iPS cells changes the genetics of any adult tissue you make from the cells. So, with samples from three patients who were undergoing heart biopsy or transplant, which allowed harvesting mature heart muscle, the team compared the genetic signature of the adult heart muscle and that of heart muscle created from iPS cells.  They found no significant differences.

With skin samples from another seven subjects they created iPS cells and then heart muscle and compared their genetic signatures. The found some slight difference in all seven, but dramatic differences in one. That difference was in a genetic pathway involved in the inner workings of heart muscle. When they treated those cells with a diabetes drug that had been linked to heart problems, the cells reacted quite differently from the cells of the other six subjects treated with the same drug. With this knowledge a doctor could avoid ever choosing to put that particular patient on that diabetes drug.

 

Source of blood stem cells matters.  For years, bone marrow transplant—the one currently routine stem cell therapy—required digging into someone bone to harvest the stem cells. Over the decades that the procedure has been saving thousands of lives doctors have found less invasive methods to get the stem cells using drugs to “mobilize” the marrow stem cells and get them to move into the blood stream where they can be harvested.

While stem cell donors often find the new procedure a vast improvement, no one had done a thorough review of the outcomes for patients who receive stem cells gathered by the different procedures until a paper this week from the Fred Hutchison Cancer Research Center in Seattle. While they did not find any differences in overall life expectancy, they found vastly different outcomes in quality of life including psychological wellbeing and ability to return to work.

The Hutchison team attributed most of this difference to a lower rate of Graft Versus Host Disease (GVHD), possibly the most dangerous side effect of the procedure, which occurs when the stem cell transplant also contains adult immune system cells from the donor and those “graft” cells attack the “host,” the patient. It makes sense that when you harvest cells from the blood stream you would be more likely to also capture mature immune cells than when you harvest cells from marrow. And GVHD can be extremely painful, debilitating, and often deadly.

Stephanie Lee Hutchison

Stephanie Lee

“When both your disease and the recommended treatment are life-threatening, I don’t think people are necessarily asking ‘which treatment is going to give me better quality of life years from now?'” said Stephanie Lee the lead author in a press release from the cancer center. “Yet, if you’re going to make it through, as many patients do, you want to do it with good quality of life. That’s the whole point of having the transplant.”

Better, Faster Quality Control for Stem Cell-Based Therapies

“Based”.

It’s a pretty boring word but I make sure to include it when writing about the development of stem cell therapies, as in: “Asterias Biotherapeutics is testing an embryonic stem cell-based treatment for spinal cord injury”. It’s a key word here because no legitimate clinic would transplant embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) directly into a patient. The ability of these cells to make unlimited copies of themselves is great for growing them in the lab; but in the body, that same property presents a very real risk of tumor formation. Instead, ESCs and iPSCs are merely the base material from which specialized cells are matured from for the many promising therapies being developed for clinical trials.

To ensure safety to patients, minimizing the number of these potentially cancer-causing pluripotent stem cells still lingering in a cell therapy product is one of the main safety concerns of the Food and Drug Administration (FDA), the U.S. federal agency that approves therapies for clinical trials. So during therapy development, researchers run assays, or tests, to detect how many ESCs or iPSCs remain in their cell product and if they can form tumors.

In a paper published yesterday in Biomaterials, an Emory University research team reported on the development of a new technique that is several thousand-fold (!!!) higher in sensitivity than current assays and could be a game-changer for the quality control of stem cell-based therapies (also see an Emory U. blog about the study).

Surface-enhanced Raman Scattering Assay: it’s one in a million

SERS-schematic

Illustrated overview of the SERS assay workflow (Image: Biomaterials)

In the technique, called a surface-enhanced Raman scattering (SERS) assay, gold nanoparticles are attached to proteins, called antibodies, that specifically bind to the surface of stem cells. These antibody-nanoparticles are mixed with a preparation of the cell product. A laser is then directed at the cells and a device, called a spectrometer, measures the resulting light scatter which ultimately can be converted into the number of stem cells in the cell mix.

Incredibly, this assay can detect one stem cell out of one million specialized cells making it well suited for testing clinical grade cell therapy products. In comparison, the current flow cytometry technique which uses fluorescently tagged antibodies, can spot 1 stem cell in about 1000 cells.

Another current way to detect stem cells in a cell product is through the so-called teratoma assay. In this test, a mouse is injected with the cell therapy and observed for about three months to see if any teratomas, or tumors, form from residual stem cells. While this technique is a more direct safety test, it’s very costly, time-consuming, and impractical for testing very large doses of cell therapies. As the authors mention in the publication, the SERS technique could help overcome the limitations of both the teratoma and flow cytometry assays:

“Because of their remarkable sensitivity, these SERS assays may facilitate safety assessment of cell preparations for transplantations that require a large quantity of cells, which is unachievable using flow cytometry or the teratoma assay in mice. In addition, these assays are cost-effective, easy to use, and can be done within an hour, which is much faster than the traditional teratoma assay.”

“Faster”. Now that’s a pretty exciting word I always like to include when writing about the development of stem cell therapies.

 

A look back at the last year – but with our eyes firmly on the future

Randy

CIRM President & CEO Randy Mills doesn’t want “good”, he wants “better”

Better.

With that single word Randy Mills, our President and CEO, starts and ends his letter in our 2015 Annual Report and lays out the simple principle that guides the way we work at CIRM.

Better.

But better what?

“Better infrastructure to translate early stage ideas into groundbreaking clinical trials. Better regulatory practices to advance promising stem cell treatments more efficiently. Better treatments for patients in need.”

“Better” is also the standard everyone at CIRM holds themselves to. Getting better at what we do so we can fulfill our mission of accelerating stem cell treatments to patients with unmet medical needs.

The 2015 Annual Report highlights the achievements of the last year, detailing how we invested $135 million in 47 different projects at all levels of research. How our Board unanimously passed our new Strategic Plan, laying out an ambitious series of goals for the next five years from funding 50 new clinical trials, to creating a new regulatory process for stem cell therapies.

Snapshot of CIRM's 2015 Funding

The report offers a snapshot of where our money has gone this year, and how much we have left. It breaks down what percentage of our funding has gone to different diseases and how much we have spent on administration.

Jonathan Thomas, the Chair of our Board, takes a look back at where we started, 10 years ago, comparing what we did then (16 awards for a total of $12.5 million) to what we are doing today. His conclusion; we’re doing better.

But we still have a long way to go. And we are determined to get even better.

P.S. By the way we are changing the way we do our Annual Report. Our next one will come out on January 1, 2017. We figured it just made sense to take a look back at the last year as soon as the new year begins. It gives you a better (that word again) sense of what we did and where we  are heading. So look out for that, coming sooner than you think.

Here’s a new gene editing strategy to treat genetic blood disorders

If you’re taking a road trip across the country, you have a starting point and an ending point. How you go from point A to point B could be one of a million different routes, but the ultimate outcome is the same: reaching your final destination.

Yesterday scientists from St. Jude Children’s Research Hospital published exciting findings in the journal Nature Medicine on a new gene editing strategy that could offer a different route for treating genetic blood disorders such as sickle cell disease (SCD) and b-thalassemia.

The scientists used a gene editing tool called CRISPR. Unless you’ve been living under a rock, you’ve heard about CRISPR in the general media as the next, hot technology that could possibly help bring cures for serious diseases.

In simple terms, CRISPR acts as molecular scissors that facilitate cutting and pasting of DNA sequences at specific locations in the genome. For blood diseases like SCD and b-thalassemia, in which blood cells have abnormal hemoglobin, CRISPR gene editing offers ways to turn on and off genes that cause the clinical symptoms of these diseases.

Fetal vs. Adult hemoglobin

Before I get into the meat of this story, let’s take a moment to discuss hemoglobin. What is it? It’s a protein found in red blood cells that transports oxygen from the lungs to the rest of the body. Hemoglobin is made up of different subunits and the composition of these hemoglobin subunits change as newborns develop into adults.

0a448-sicklecellimage

Healthy red blood cell (left), sickle cell (right).

Fetal hemoglobin (HbF) is comprised of a and g subunits while adult hemoglobin (HbA) is typically comprised of a and b subunits. Patients with SCD and b-thalassemia typically have mutations in the b globin gene. In SCD, this causes blood cells to take on an unhealthy, sickle cell shape that can clog vessels and eventually cause premature death. In b-thalassemia, the b-globin gene isn’t synthesized into protein at the proper levels and patients suffer from anemia (low red blood cell count).

One way that scientists are attempting to combat the negative side effects of mutant HbF is to tip the scales towards maintaining expression of the fetal g-globin gene. The idea spawned from individuals with hereditary persistence of fetal hemoglobin (HPFH), a condition where the hemoglobin composition fails to transition from HbF to HbA, leaving high levels of HbF in adult blood. Individuals who have HPFH and are predisposed to SCD or b-thalassemia amazingly don’t have clinical symptoms, suggesting that HbF plays either a protective or therapeutic role.

The current study is taking advantage of this knowledge in their attempt to treat blood disorders. Mitchell Weiss, senior author on the study and chair of the St. Jude Department of Hematology, explained the thought process behind their study:

“It has been known for some time that individuals with genetic mutations that persistently elevate fetal hemoglobin are resistant to the symptoms of sickle cell disease and beta-thalassemia, genetic forms of severe anemia that are common in many regions of the world. We have found a way to use CRISPR gene editing to produce similar benefits.”

CRISPRing blood stem cells for therapeutic purposes

Weiss and colleagues engineered red blood cells to have elevated levels of HbF in hopes of preventing symptoms of SCD. They used CRISPR to create a small deletion in a sequence of DNA, called a promoter, that controls expression of the hemoglobin g subunit 1 (HBG1) gene. The deletion elevates the levels of HbF in blood cells and closely mimics genetic mutations found in HPFH patients.

Weiss further explained the genome editing process in a news release:

Mitchell Weiss

Mitchell Weiss

“Our work has identified a potential DNA target for genome editing-mediated therapy and offers proof-of-principle for a possible approach to treat sickle cell and beta-thalassemia. We have been able to snip that DNA target using CRISPR, remove a short segment in a “control section” of DNA that stimulates gamma-to-beta switching, and join the ends back up to produce sustained elevation of fetal hemoglobin levels in adult red blood cells.”

The scientists genetically modified hematopoietic stem cells and blood progenitor cells from healthy individuals to make sure that their CRISPR gene editing technique was successful. After modifying the stem cells, they matured them into red blood cells in the lab and observed that the levels of HbF increased from 5% to 20%.

Encouraged by these results, they tested the therapeutic potential of their CRISPR strategy on hematopoietic stem cells from three SCD patients. While 25% of unmodified SCD blood stem cells developed red blood cells with a sickle cell shape under low-oxygen conditions (to induce stress), CRISPR edited SCD stem cells generated way fewer sickle cells (~4%) and had a higher level of HbF expression.

Many routes, one destination

The authors concluded that their genome editing technique is successful at switching hemoglobin expression from the adult form back to the fetal form. With further studies and safety testing, this strategy could be one day be developed into a treatment for patients with SCD and b-thalassemia

But the authors were also humble in their findings and admitted that there are many different genome editing strategies or routes for developing therapies for inherited blood diseases.

“Our results represent an additional approach to these existing innovative strategies and compare favorably in terms of the levels of fetal hemoglobin that are produced by our experimental system.”

My personal opinion is the more strategies thrown into the pipeline the better. As things go in science, many of these strategies won’t be successful in reaching the final destination of curing one of these diseases, but with more shots on goal, our chances of developing a treatment that works there are a lot higher.


Related links:

Dr. Deborah Deas joins CIRM Board

Deborah Deas has been appointed dean of the UCR School of Medicine

Deborah Deas, MD, MPH, UCR School of Medicine

Dr. Deborah Deas is clearly not someone who opts for the quiet life. If she were, she would have stayed home in Adams Run, the tiny town in rural South Carolina where she was born.

The website, NeighborhoodScout.com describes Adams Run (current population 1,492) as:

“One of the quietest neighborhoods in America. When you are here, you will find it to be very quiet. If quiet and peaceful are your cup of tea, you may have found a great place for you.”

Dr. Deas obviously wasn’t a tea drinker because she packed her bags and went off to college in Charleston. That was the first step on a journey that led the self-described “farmer’s daughter” to become an MD, then an MPH (Masters in Public Health), before assuming a leadership role at the Medical University of South Carolina (MUSC). More recently she headed to California’s Inland Empire where she was named the Dean and CEO for Clinical Affairs of the UC Riverside School of Medicine.

And now we are delighted to add to that list of achievements by announcing she is the newest member of the CIRM Board.

She was appointed to the Board by state Treasurer John Chiang who praised her for her:

“Passion to improve  health for underserved populations and to diversify the health care work force. She is committed to making the benefits of advanced medicine available to all Californians.”

 

In a news release our CIRM Board Chair, Jonathan Thomas, was equally fulsome in his praise and welcome to Dr. Deas.

 “We are delighted to have someone with Dr. Deas’ broad experience and expertise join us at CIRM. Her medical background and her commitment to diversity and inclusion are important qualities to bring to a Board that is striving to deliver stem cell treatments to patients, and to reflect the diversity of California.”

To say that she brings a broad array of skills and experience to the Board is something of an understatement. She is board certified in adult psychiatry, child and adolescent psychiatry and addiction psychiatry, and is widely regarded as a national leader in research into youth binge drinking, adolescent nicotine dependence, marijuana use and panic disorder, and pharmaceutical treatment of pediatric depressive disorder.

As if that wasn’t enough, she has also been named as one of the best doctors in the U.S. by U.S. News & World Report for the last eight years.

But the road to UC Riverside and CIRM hasn’t always been easy. In a first person perspective in Psychiatric News.

she said that at MUSC she was just one of two African Americans among the 500 residents in training:

“It was not uncommon for me to be mistaken by many for a social worker, a secretary, or a ward clerk despite wearing my white coat with Deborah Deas, M.D., written on it. This mistake was even made by some of my M.D. peers. I found that the best response was to ask, “And just why do you think I am a social worker?”

She says the lessons she learned from her parents and grandparents helped sustain her:

“They emphasized the importance of setting goals and keeping your eyes on the prize. Service was important, and the ways that one could serve were numerous. The notion that one should learn from others, as well as teach others, was as common as baked bread. My parents instilled in me that education is the key to a fruitful future and that it is something no one can take away from you.”

Her boss at UC Riverside, the Provost and Executive Vice Chancellor, Paul D’Anieri said Dr. Deas is a great addition to the CIRM Board:

“Deborah is a public servant at heart. Her own values and goals to help underserved patient populations align with the goals of CIRM to revolutionize medicine and bring new, innovative treatments to all patients who can benefit. I am confident that Dr. Deas’ service will have a lasting positive impact for CIRM and for the people of California.”

Dr. Deas ends her article in Psychiatric News saying:

“The farmer’s daughter has come a long way. I have stood on the shoulders of many, pushing forward with an abiding faith that there was nothing that I could not accomplish.”

She has indeed come a long way. We look forward to being a part of the next stage of her journey, and to her joining CIRM and bringing that “abiding faith” to our work.

 

 

Stem cell stories that caught our eye: better bone marrow transplants, turbo charging anti-inflammatory stem cells and Zika’s weapons

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Three steps to better BMT.  Bone marrow stem cell transplants (BMT) save the lives of many thousands of patients every year, but they also kill a significant number of the blood stem cell transplantcancer and immune disorder patients the procedure is intended to save. In order to make room in the bone marrow for new blood-forming stem cells, you first have to get rid of most of the stem cells already there, and the radiation and chemotherapy to do this proves too toxic for some patients. Also, donor marrow can contain immune cells from the donor that can attack the recipient causing Graft Versus Host Disease (GVHD), which can also be fatal.

Add this all together and physicians tend to save BMT for the patients with the most life threatening forms of the diseases.  A CIRM-funded team at Stanford has developed a three-step process that seems to dramatically reduce all those risks potentially opening up the procedure to less-sick patients including patients with life-altering, but not life-threatening, autoimmune diseases such as lupus and less severe forms of multiple sclerosis.

Experimenting in mice, they first used an antibody that attaches to a marker on blood stem cells called c-kit. But by itself that antibody could not get rid of enough of the stem cells. So, they added a second agent that blocked another protein, CD47, on the surface of blood stem cells. With that protein blocked, the animals own immune cells called macrophages, could destroy the blood stem cells. Then to make the donor cells safer, they used a technology they had developed many years ago to remove any straggler immune cells from the donor stem cells, thus drastically eliminating the chances for GVHD.

judith shizuru

Shizuru

“If it works in humans like it did in mice, we would expect that the risk of death from blood stem cell transplant would drop from 20 percent to effectively zero,” said senior author Judith Shizuru in a university press release posted by HealthCanal.

She went on to compare blood stem cell transplants to planting a new field of crops saying they were looking for a better way to first clear the field for planting and then a better way to do the planting. CIRM funded the team to develop the method for use with Severe Combined Immune Deficiency (SCID). The team published the current mouse study in the journal Science Translational Medicine.

 

Building a better anti-inflammatory stem cell.  Of the more than 700 stem cell therapy clinical trials underway around the world, more than half use the type of stem cell called a mesenchymal stem cell (MSC) found in bone marrow and fat—in marrow it resides alongside the blood-forming stem cells. Some of those trials are tapping into MSC’s ability to build bone, cartilage and blood vessels, but many are counting on their strong anti-inflammatory properties to fight autoimmune diseases.

When MSCs find themselves in an environment with pro-inflammatory proteins they respond by producing anti-inflammatory proteins. To enhance that effect some teams have bathed their MSC’s in pro-inflammatory proteins before injecting them into patients, but the effect of those proteins wears off quickly. So, a team led by CIRM-funded researcher Todd McDevitt at the Gladstone Institutes in San Francisco has bioengineered a way to make the effect long term.

McDevitt,-Todd-14

Gladstone used a CIRM Research Leadership award to recruit McDevitt from Georgia Tech

They loaded the pro-inflammatory proteins onto sugar-based particles that they imbedded in the middle of clusters of MSCs. The bioengineered complex slowly releases the cues to the MSCs and they in turn produced the desired anti-inflammatory proteins in greater quantities and much longer than in any other experiment.

 “A patient taking anti-inflammatory medication may not have high enough levels of inflammation to trigger the cells. We engineered the MSCs to ensure that they are consistently activated, so they can reliably dampen the immune response for longer,” said McDevitt in an institute press release.

The team published their research in Stem Cells Translational Medicine.

 

Stem cells used to identify Zika’s weapon.  It has been difficult for researchers to think about how to stop the Zika virus’ havoc on fetal brains without knowing how the virus does

Zika Virus

its evil deed. Now, a team at the University of Southern California (USC) has used fetal stem cells to discover two proteins that seem to be Zika’s key weapons.

Viruses often hijack our normal cell processes to enhance their ability to multiply and at the same time do harm to the host. In this case, the two proteins named NS4A and NS4B play key roles in the cell path for normal cell growth and disposal of damaged cells. When exploited by the virus, the two proteins result in cells being destroyed and not replaced.

“Those two viral proteins are ultimately the target for therapy development,” said USC’s Jae Jung in an article posted by Kaiser Health News.

As is typical with this news source, the author goes on to provide considerable high quality background about the Zika outbreak and efforts to find a vaccine or therapy, in this case quoting experts from Texas Children’s Hospital and Baylor.

 

Cloning fact timeline.  With the 20th anniversary last month of the birth of Dolly the sheep, the first cloned mammal, cloning seems to be much in discussion these days. So for

dolly-the-sheep

science nerds who like to keep back up facts handy CNN published a timeline of key events starting with the 1952 Nobel-winning discovery that you could replace the nucleus of a frog’s egg with the nucleus from another cell and still get the egg to develop into a tadpole. And 22 events later, it ends in 2014 with the first use of using cloning techniques to create stem cells that matched an adult.

Scientists Sink their Teeth into a Molecular Understanding of Human Personality

There’s plenty of scientific evidence that genes play a key role in defining personality. But how exactly? I mean, how is gene activity in cells ultimately linked to a person’s schmoozing talents at a cocktail party? CIRM-funded research published today in Nature, by collaborative teams at UC San Diego and the Salk Institute identified intriguing connections between brain cells and behavior in Williams Syndrome, a rare genetic disease that has specific effects on personality.

Williams Syndrome 101

Williams Syndrome (WS), occurring in roughly 1 in 10,000 births, is caused by a small deletion in chromosome 7 resulting in the loss of 25 genes. Serious heart disease, distinct facial features, visual-spatial disabilities, developmental delays and hypersensitive hearing are just some of the common WS symptoms. People with WS also share a characteristic pattern of social behaviors: they have extremely out-going, caring personalities and are very good at reading other people’s emotions. By exploring how this chromosome deletion leads to a predictable set of behaviors, the research team sought a better understanding of not only the molecular basis of WS but also of human social interactions in general. UCSD professor and co-senior author, Alysson Muotri, recalled his initial interest in the project in a university press release interview:

“I was fascinated on how a genetic defect, a tiny deletion in one of our chromosomes, could make us friendlier, more empathetic and more able to embrace our differences.”

Making Williams Syndrome in a Dish with Induced Pluripotent Stem Cells
The research team relied on stem cell technology to generate a human model of WS in the lab. With the required permissions, they first obtained dental pulp tissue from the baby teeth of five children with WS as well as from four children with typical development for comparison purposes. Cells from the dental pulp were reprogrammed into induced pluripotent stem (iPS) cells which have the ability to specialize into almost every cell type. Using an established cell culture recipe, the iPS cells were stimulated to become neural progenitor cells (NPCs) which resemble cells of the developing brain that haven’t fully matured into a nerve cell, or neuron.

Initial observations of the NPCs revealed a defect in WS cells: they grew more slowly than the typical cells. Increased cell death in the WS cells was responsible for the slower growth. Based on these results, the team focused on the involvement of FZD9, a gene that is active in NPCs and is known to regulate cell death and cell division. It also is one of the genes deleted in the main form of WS. So the team suppress FZD9 activation in the healthy typical NPCs and, sure enough, the lack of the gene led to an increase in apoptosis just as they saw in WS cells. To confirm this result, they tried the opposite experiment by inserting the FZD9 gene into the WS cells. This genetic manipulation reduced cell death to similar levels seen in the typical NPCs.

muotri_dendrite

Dendrites from one neuron receive incoming nerve signals. Image.

Fully maturing the NPCs into neurons uncovered more differences between the WS and typical cell sets. To receive incoming nerve signals, neurons send out finger like projections called dendrites to make physical connections with other neurons. Several little knob-like structures called dendritic spines grow out of each dendrite to help optimize the nerve signaling. Now, compared to the healthy typical neurons, the WS neurons had more dendrites, more spine structures and a greater dendritic length. These structural differences didn’t just change the appearance of the neurons, they translated into increased activity at the synapses, the spot where an electrical nerve signal travels from one neuron to the next.

Making Connections Between Brain Cells and Behavior
Do these iPS cell-derived results carried out in a lab dish have any relevance to what might be going on in the brain as a whole? Yes. Brain imaging of living study participants with WS shows a reduced surface area in the cortical layer, the same area of the brain implicated in other social function disorders. As Muotri explains, increased cell death – seen in the iPS derived WS cells  – appears to cause the development of abnormally smaller structures in WS brains:

“We discovered that WS neural progenitor cells failed to proliferate due to high levels of cell death. And as a consequence of the lower replication of progenitor cells, WS brains have reduced cortex surface area.”

And a study of brain samples from deceased donors showed increased dendrite length and dendritic spines in neurons of WS brains compared to typical brains, a result also predicted by the iPS experiments. Again, these differences were seen particularly in a layer of the brain cortex thought to be involved in other social function disorders like autism. Putting the results together, Muotri speculates that the out-going personalities seen in people WS may be explained by these structural and functional changes:

“At the functional level, they make more synapses or connections to other neurons than what you would expect. That might underlie the WS super-social aspect and their gregarious human brain, giving insights into autism and other disorders that affect the social brain.”

 

By drawing a direct line from genes to cells to brain structure to human behavior, these scientists are in a great position to chip away at a holistic understanding of how personality is generated and how it can go awry.

 

Young Minds Shine Bright at the CIRM SPARK Conference

SPARK students take a group photo with CIRM SPARK director Karen Ring.

SPARK students take a group photo with CIRM SPARK director Karen Ring.

Yesterday was one of the most exciting and inspiring days I’ve had at CIRM since I joined the agency one year ago. We hosted the CIRM SPARK conference which brought together fifty-five high school students from across California to present their stem cell research from their summer internships.

The day was a celebration of their accomplishments. But it was also a chance for the students to hear from scientists, patient advocates, and clinicians about the big picture of stem cell research: to develop stem cell treatments and cures for patients with unmet medical needs.

Since taking on the role of the CIRM SPARK director, I’ve been blown away by the passion, dedication, and intelligence that our SPARK interns have shown during their short time in the lab. They’ve mastered techniques and concepts that I only became familiar with during my PhD and postdoctoral research. And even more impressive, they eloquently communicated their research through poster presentations and talks at the level of professional scientists.

During their internships, SPARK students were tasked with documenting their research experiences through blogs and social media. They embraced this challenge with gusto, and we held an awards ceremony to recognize the students who went above and beyond with these challenges.

I’d like to share the winning blogs with our readers. I hope you find them as inspiring and motivating as I do. These students are our future, and I look forward to the day when one of them develops a stem cell treatment that changes the lives of patients. 

Andrew Choi

Andrew Choi

Andrew Choi, Cedars-Sinai SPARK student

Am I crying or is my face uncontrollably sweating right now? I think I am doing both as I write about my unforgettable experiences over the course of the past 6 weeks and finalize my poster.

As I think back, I am very grateful for the takeaways of the research field, acquiring them through scientific journals, lab experiments with my mentor, and both formal and informal discourses. It seems impossible to describe all the episodes and occurrences during the program in this one blog post, but all I can say is that they were all unique and phenomenal in their own respective ways.

Gaining new perspectives and insights and being acquainted with many of the techniques, such as stereology, immunocytochemistry and immunohistochemistry my peers have utilized throughout their careers, proved to me the great impact this program can make on many individuals of the younger generation.

CIRM SPARK not only taught me the goings on behind the bench-to-bedside translational research process, but also morals, work ethics, and effective collaboration with my peers and mentors. My mentor, Gen, reiterated the importance of general ethics. In the process of making my own poster for the program, her words resonate even greater in me. Research, education, and other career paths are driven by proper ethics and will never continue to progress if not made the basic standard.

I am thankful for such amazing institutions: California Institute of Regenerative Medicine (CIRM) and Cedars-Sinai Medical Center for enabling me to venture out into the research career field and network. Working alongside with my fellow seven very brilliant friends, motivated me and made this journey very enjoyable. I am especially thankful my mentor, Gen, for taking the time to provide me with the best possible resources, even with her busy ongoing projects. She encouraged me to be the best that I am.

I believe, actually, I should say, I KNOW Cedars-Sinai’s CIRM SPARK program does a SUPERB and astounding job of cultivating life-long learners and setting exceptional models for the younger generation. I am hoping that many others will partake in this remarkable educational program.

I am overall very blessed to be part of a successful summer program. The end of this program does not mark the end of my passions, but sparks them to even greater heights.

Jamey Guzman

Jamey Guzman

Jamey Guzman, UC Davis SPARK student

When I found out about this opportunity, all I knew was that I had a fiery passion for learning, for that simple rush that comes when the lightbulb sputters on after an unending moment of confusion. I did not know if this passion would translate into the work setting; I sometimes wondered if passion alone would be enough to allow me to understand the advanced concepts at play here. I started at the lab nervous, tentative – was this the place for someone so unsure exactly what she wanted to be ‘when she grew up,’ a date now all too close on the horizon? Was I going to fit in at this lab, with these people who were so smart, so busy, people fighting for their careers and who had no reason to let a 16-year-old anywhere near experiments worth thousands of dollars in cost and time spent?

I could talk for hours about the experiments that I worked to master; about the rush of success upon realizing that the tasks now completed with confidence were ones that I had once thought only to belong to the lofty position of Scientist. I could fill pages and pages with the knowledge I gained, a deep and personal connection to stem cells and cell biology that I will always remember, even if the roads of Fate pull me elsewhere on my journey to a career.

The interns called the experience #CIRMSparkLab in our social media posts, and I find this hashtag so fitting to describe these last few months. While there was, of course, the lab, where we donned our coats and sleeves and gloves and went to work with pipets and flasks…There was also the Lab. #CIRMSparkLab is so much more than an internship; #CIRMSparkLab is an invitation into the worldwide community of learned people, a community that I found to be caring and vibrant, creative and funny – one which for the first time I can fully imagine myself joining “when I grow up.”

#CIRMSparkLab is having mentors who taught me cell culture with unerring patience and kindness. It is our team’s lighthearted banter across the biosafety cabinet; it is the stories shared of career paths, of goals for the present and the future. It is having mentors in the best sense of the word, trusting me, striving to teach and not just explain, giving up hours and hours of time to draw up diagrams that ensured that the concepts made so much sense to me.

#CIRMSparkLab is the sweetest ‘good-morning’ from scientists not even on your team, but who care enough about you to say hi, to ask about your projects, to share a smile. It is the spontaneity and freedom with which knowledge is dispensed: learning random tidbits about the living patterns of beta fish from our lab manager, getting an impromptu lecture about Time and the Planck Constant from our beloved professor as he passes us at lunch. It is getting into a passionate, fully evidence-backed argument about the merits of pouring milk before cereal that pitted our Stem Cell team against our Exosome team: #CIRMSparkLab is finding a community of people with whom my “nerdy” passion for learning does not leave me an oddball, but instead causes me to connect instantly and deeply with people at all ages and walks of life. And it is a community that, following the lead of our magnificent lab director, welcomed ten interns into their lab with open arms at the beginning of this summer, fully cognizant of the fact that we will break beakers, overfill pipet guns, drop gels, bubble up protein concentration assays, and all the while never stop asking, “Why? Why? Why? Is this right? Like this? WHY?”

I cannot make some sweeping statement that I now know at age 16 exactly what I want to do when I grow up. Conversely, to say I learned so much – or I am so grateful – or you have changed my life is simply not enough; words cannot do justice to those sentiments which I hope that all of you know already. But I can say this: I will never forget how I felt when I was at the lab, in the community of scientists. I will take everything I learned here with me as I explore the world of knowledge yet to be obtained, and I will hold in my heart everyone who has helped me this summer. I am truly a better person for having known all of you.

Thank you, #CIRMSparkLab. 

Adriana Millan

Adriana Millan

Adriana Millan, CalTech SPARK student

As children, we all grew up with the companionship of our favorite television shows. We enjoyed sitcoms and other animations throughout our childhood and even as adults, there’s no shame. The goofy and spontaneous skits we enjoyed a laugh over, yet we did not pay much attention to the lessons they attempted to teach us. As a child, these shows play crucial roles in our educational endeavors. We are immediately hooked and tune in for every episode. They spark curiosity, as they allow our imaginations to run wild. For me, that is exactly where my curiosity stemmed and grew for science over the years. A delusional young girl, who had no idea what the reality of science was like.

You expect to enter a lab and run a full day of experimentations. Accidentally mix the wrong chemicals and discover the cure for cancer. Okay, maybe not mix the incorrect chemicals together, I learned that in my safety training class. The reality is that working in a lab was far from what I expected — eye opening. Working alongside my mentor Sarah Frail was one of the best ways I have spent a summer. It was not my ideal summer of sleeping in until noon, but it was worthwhile.

My experience is something that is a part of me now. I talk about it every chance I get, “Mom, can you believe I passaged cells today!” It changed the way I viewed the principles of science. Science is one of the most valuable concepts on this planet, it’s responsible for everything and that’s what I have taken and construed from my mentor. She shared her passion for science with me and that completed my experience. Before when I looked at cells, I did not know exactly what I was supposed to observe. What am I looking at? What is that pink stuff you are adding to the plate?

However, now I feel accomplished. It was a bit of a roller coaster ride, with complications along the way, but I can say that I’m leaving this experience with a new passion. I am not just saying this to please the audience, but to express my gratitude. I would have never even looked into Huntington’s Disease. When I first arrived I was discombobulated. Huntington’s Disease? Now I can proudly say I have a grasp on the complexity of the disease and not embarrass my mentor my calling human cells bacteria – quite embarrassing in fact.  I’m a professional pipette handler, I work well in the hood, I can operate a microscope – not so impressive, I have made possibly hundreds of gels, I have run PCRs, and my cells love me, what else can I ask for.

If you are questioning what career path you are to take and even if it is the slightest chance it may be a course in science, I suggest volunteering in a lab. You will leave with your questioned answered. Is science for me? This is what I am leaving my experience with. Science is for me.

Other SPARK 2016 Awards

Student Speakers: Jingyi (Shelly) Deng (CHORI), Thomas Thach (Stanford)

Poster Presentations: Jerusalem Nerayo (Stanford), Jared Pollard (City of Hope), Alina Shahin (City of Hope), Shuling Zhang (UCSF)

Instagram Photos: Roxanne Ohayon (Stanford), Anna Victoria Serbin (CHORI), Diana Ly (UC Davis)

If you want to see more photos from the CIRM SPARK conference, check out our Instagram page @CIRM_Stemcells or follow the hashtag #CIRMSPARKLab on Instagram and Twitter.