Stem cell stories that caught our eye: 3 blind mice no more and a tale of two tails

Stem cell image of the week: The demise of Three Blind Mice nursery rhyme (Todd Dubnicoff)
Our stem cell image of the week may mark the beginning of the end of the Three Blind Mice nursery rhyme and, more importantly, usher in a new treatment strategy for people suffering from vision loss. That’s because researchers from Icahn School of Medicine at Mount Sinai, New York report in Nature the ability to reprogram support cells in the eyes of blind mice to become photoreceptors, the light-sensing cells that enable sight. The image is an artistic rendering of the study results by team led Dr. Bo Chen, PhD.

Aug16_2018_BoChen_MullerGlia_Eye3930249103

An artist’s rendering incorporates the images of the Müller glia-derived rod photoreceptors. Image credit: Bo Chen, Ph.D.

The initial inspiration for this project came from an observation in zebrafish. These creatures have the remarkable ability to restore vision after severe eye injuries. It turns out that, in response to injury, a type of cell in the eye called Muller glia – which helps maintain the structure and function of the zebrafish retina – transforms into rod photoreceptors, which allow vision in low light.

Now, Muller glia are found in humans and mice too, so the research team sought to harness this shape-shifting, sight-restoring ability of the Muller glia but in the absence of injury. They first injected a gene into the eyes of mice born blind that stimulated the glia cells to divide and grow. Then, to mimic the reprogramming process seen in zebrafish, specific factors were injected to cause the glia to change identity into photoreceptors.

The researchers showed that the glia-derived photoreceptors functioned just like those observed in normal mice and made the right connections with nerve cells responsible for sending visual information to the brain. The team’s next steps are to not only show the cells are functioning properly in the eye and brain but to also do behavioral studies to confirm that the mice can do tasks that require vision.

If these studies pan out, it could lead to a new therapeutic strategy for blinding diseases like retinitis pigmentosa and macular degeneration. Rather than transplanting replacement cells, this treatment approach would spur our own eyes to repair themselves. In the meantime, CIRM-funded researchers have studies currently in clinical trials testing stem cell-based treatments for retinitis pigmentosa and macular degeneration.

A tale of two tails: one regenerates, the other, not quite so much (Kevin McCormack) One of the wonders of nature, well two if you want to be specific, is how both salamanders and lizards are able to regrow their tails if they lose them. But there is a difference. While salamanders can regrow a tail that is almost identical to the original, lizard’s replacements are rather less impressive. Now researchers have found out why.

081518_LR_regeneration_inline_730

In these fluorescence microscopy images, cross sections of original lizard and salamander tails (left) show cartilage (green) and nerve cells (red). In the regenerated tails (right), the lizard’s is made up mostly of cartilage, while the salamander also has developed new nerve cells. Image: Thomas Lozito

The study, published in the Proceedings of the National Academy of Sciences, shows how a lizard’s new tail doesn’t have bone but instead has cartilage, and also lacks nerve cells. The key apparently is the stem cells both use to regenerate the tail. Salamanders use neural stem cells from their spinal cord and turn them into other types of nervous system cell, such as neurons. Lizards neural stem cells are not able to do this.

The researchers, from the University of Pittsburgh, tested their findings by placing neural stem cells from the axolotl salamander into tail stumps from geckos. They noted that, as those tails regrew, some of those transplanted cells turned into neurons.

In an interview in Science News, study co-author Thomas Lozito says the team hope to take those findings and, using the CRISPR/Cas9 gene-editing tool, see if they can regenerate body parts in other animals:

 “My goal is to make the first mouse that can regenerate its tail. We’re kind of using lizards as a stepping-stone.”

Stem cell summer: high school students document internships via social media, Part 2

Well, just like that, summer vacation is over. Most kids in California are back in school now and probably one of the first questions they’ll ask their friends is, “what did you do this summer?”. For 58 talented high school students, their answer will be, “I became a stem cell scientist.”

Best Instagram Post Award: Mia Grossman

Those students participated in a CIRM-funded internship called the Summer Program to Accelerate Regenerative medicine Knowledge, or SPARK for short, with seven programs throughout Northern and Southern California which include Caltech, Cedars-Sinai, City of Hope, Stanford, UC Davis, UCSF and the UCSF Benioff Children’s Hospital Oakland. Over the course of about 8 eight weeks, the interns gained hands-on training in stem cell research at some of the leading research institutes in California. Last week, they all met for the annual SPARK conference, this year at the UC Davis Betty Irene Moore School of Nursing, to present their research results and to hear from expert scientists and patient advocates.

As part of their curriculum, the students were asked to write a blog and to post Instagram photos (follow #cirmsparklab) to document their internship experiences. Several CIRM team member selected their favorite entries and presented awards to the winning interns at the end of the conference. We featured two of the winners in a blog from last week.

Our two winners featured today are Cedars-Sinai SPARK student, Mia Grossman – a senior at Beverly Hills High School – one of the Instagram Award winners (see her looping video above) and UC Davis SPARK student Anna Guzman – a junior at Sheldon High School – one of the Blog Award winners. Here’s her blog:

The Lab: A Place I Never Thought I’d Be
By Anna Guzman

AnnaGuzman

Anna Guzman

My CIRM SPARK journey started long before I ever stepped foot in the Institute for Regenerative Cures at UC Davis. Instead, my journey started two years earlier, when my older sister came home from the same internship with stories of passaged cells, images of completed western blots, and a spark in her eye when she described the place she had come to love. Barely 14 years old, I listened wide-eyed as my sister told us about the place she disappeared to each morning, stories of quirky professors, lovable mentors, and above all, the brilliant flame that everyone in her lab shared for learning. But even as she told her stories around the dinner table, I imagined this cold place where my charismatic, intelligent, and inquisitive sister was welcomed. I imagined the chilling concentration of dozens of geniuses bent over their work, of tissue culture rooms where every tiny movement was a potential disaster, and above all, of a labyrinth of brilliant discoveries and official sounding words with the door securely locked to 16 year old girls – girls who had no idea what they wanted to do with their life, who couldn’t confidently rattle words like “CRISPR,” “mesenchymal” and “hematopoietic” off their tongues. In short, this wasn’t a place for me.

But somehow I found myself applying for the CIRM SPARK internship. Seconds after I arrived for my first day at the place I was sure I would not belong, I realized how incorrect my initial assumption of the lab was. Instead of the intimidating and sophisticated environment filled with eye-rolling PhDs who scoffed at the naïve questions of a teenager, I found a room filled with some of the kindest, funniest, warmest people I had ever met. I soon found that the lab was a place of laughter and jokes across bays, a place of smiles in the hallways and mentors who tirelessly explained theory after theory until the intoxicating satisfaction of a lightbulb sparked on inside my head. The lab was a place where my wonderful mentor Julie Beegle patiently guided me through tissue culture, gently reminding me again and again how to avoid contamination and never sighing when I bubbled up the hemocytometer, miscalculated transduction rates, or asked question after question after question. Despite being full of incredibly brilliant scholars with prestigious degrees and publications, the lab was a place where I was never made to feel small or uneducated, never made to feel like there was something I couldn’t understand. So for me, the lab became a place where I could unashamedly fuel my need to understand everything, to ask hundreds of questions until the light bulbs sputtered on and a spark, the same spark that had glowed in the eyes of my sister years ago, burned brightly. The lab became a place where it was always okay to ask why.

At moments towards the middle of the internship, when my nerves had dissolved into a foundation of tentative confidence, and I had started to understand the words that tumbled out of my mouth, I’d be working in the biosafety cabinet or reading a protocol to my mentor and think, Wow. That’s Me. That’s me counting colonies and loading gels without the tell-tale nervous quiver of a beginner’s hand. That’s me explaining my project to another intern without an ambiguous question mark marring the end of the sentence. That’s me, pipetting and centrifuging and talking and understanding – doing all the things that I was certain that I would never be able to do. That’s the best thing that the CIRM SPARK internship has taught me. Being an intern in this wonderful place with these amazing people has taught me to be assured in my knowledge, unashamed in my pursuit of the answer, and confident in my belief that maybe I belong here. These feelings will stay with me as I navigate the next two years of high school and the beginning of the rest of my life. I have no doubt that I will feel unsure again, that I will question whether I belong and wonder if I am enough. But then I will remember how I felt here, confident, and unashamed, and assured in the place where I never thought I’d be.

It was not until the end of my internship, as I stood up to present a journal article to a collection of the very people who had once terrified me, that I realized the biggest thing I was wrong about two years ago. I was wrong when I assumed that this was a place where I would never belong. Instead, as I stood in front of this community of amazingly brilliant and kind people, my mouth forming words that I couldn’t have dreamed of understanding a month ago, I realized that this was precisely where I belonged. This was the place for me.

Mustang Bio picks up CIRM supported ‘bubble boy’ gene therapy

dna-1903318_1280

SCID refers to a group of rare diseases caused by mutations in genes that play a role in the development and function of immune cells. (Darwin Laganzon)

When babies are born they’re somewhat protected from infections through antibodies that were transferred to them in the womb. However, as time passes and immune systems develop their bodies start to learn how to combat infections on their own. For some children this process is seamless, but for others, it can be a sensitive time when parents learn about immune problems that haven’t resolved normally in the first months of life.

For starters, the immune system has many parts and symptoms of immune deficiency can depend on what part of the immune system is affected. These deficiencies can range from mild to aggressive and even life-threatening. One example of a life-threatening immune problem is severe combined immunodeficiency (SCID). Last year a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco saved the life of a little boy named Ronnie who suffered from SCID. Based on the success of this approach a company named Mustang Bio just licensed a gene therapy from St. Jude Children’s Research Hospital for X-linked severe combined immunodeficiency (X-SCID), also called “bubble boy” syndrome. This agreement adds a rare disease gene therapy to Mustang’s pipeline, which is focused on fighting various cancers using CAR-T treatments.

DSC_4079

Photo Credit: Pawash Priyank of Ronnie Priyank

In most cases, unless SCID patients receive immune-restoring treatments—such as transplants of blood-forming stem cells, enzyme therapy, or gene therapy—the condition is fatal, usually in the first year or two of life, according to the National Institute of Allergy and Infectious Diseases.

St. Jude’s treatment entails administering a low dose of the cancer drug busulfan before reinfusing a patients with their own stem cells that have been gene-modified. It’s currently in a pair of Phase 1/2 trials in infants under age 2 and in children over the age of 2. Eight patients under 2 have been treated so far, with six of them “[achieving] reconstituted immune systems within three to four months following treatment,” according to the company.

“Our therapy has been well tolerated thus far, and none of the infants required any blood product support after low dose of busulfan,” said Ewelina Mamcarz, M.D., an assistant member at St. Jude who led the study, in a release. “Most importantly, we observe recovery of all cells of the immune system, which is truly an achievement over prior gene therapy trials, where B cell reconstitution did not occur, and patients required intravenous immunoglobulin for life.”

Mustang and St. Jude haven’t disclosed financial terms of their agreement. They believe there may be as many as 1,500 patients in the U.S. and a similar number in Europe with X-linked SCID for whom donor bone marrow or blood stem cell transplants simply aren’t enough. They feel these patients could be eligible for their lentiviral gene therapy.

“We are thrilled to announce the expansion of our pipeline into gene therapy for patients with X-SCID, a natural fit for our Worcester, Massachusetts, cell processing facility,” said Mustang CEO Manny Litchman, M.D., in a statement.

Mustang and St. Jude will advance the program through ongoing phase 1/2 trials, with the goal of providing long-term treatment to the more than 80% of infants who lack fully matched bone marrow transplant donors. Through their partnership they hope to help the small number of patients who continue to have significant impairment of immunity.

Regenerative Medicine by the numbers: a snapshot of how the field is progressing

ARM_Q2_2018_Infographics-5-1024x597

Statistics don’t usually make for very exciting blog fodder, but they can be useful in charting progress. Case in point, the recent quarterly report from the Alliance for Regenerative Medicine (ARM), a global advocate and industry group for the field.

In the report ARM takes an in-depth look at cell therapy, gene therapy, tissue engineering and other trends in the regenerative medicine field.

Among the more notable findings are:

  • Companies in the regenerative medicine space collectively raised more than $4.1 billion in the second quarter of this year, up 164 percent over the same period in 2017.
  • Companies focused on cell therapy raised $2.2 billion, up 416 percent over the same period last year.
  • More and more companies in the space are turning to the public markets. So far this year they collectively raised $913.4 million in IPOs (initial public offerings – the very first sale of a company’s stock to the public), up from $254 million during all of last year.
  • Nearly 977 clinical trials testing such therapies are in progress across the globe; more than half of them are trying to treat cancer.

In a news release, Janet Lynch Lambert, ARM’s CEO, was understandably upbeat:

“There has been a tremendous amount of forward momentum during the first half of this year, both clinically and commercially. We’re excited for the continued growth of the regenerative medicine sector, and what it means for patients worldwide.”

ARM_Q2_2018_Infographics-2-1024x597

Join us for our next installment of “Ask The Stem Cell Team” on August 28th.

What do football, jazz and acting have in common? They all happen to be the greatest accomplishments of some of the well-known celebrities who suffer from, and who have been vocal advocates for, Sickle Cell disease (SCD). While most people wouldn’t readily identify Tiki Barber, Miles Davis or Larenz Tate as carriers of the HBB gene, all three have been in the public eye as of late, spreading awareness about their .

Sickle cell disease is caused by having two mutated copies of the hemoglobin (HBB) gene (one from mom and another from dad). A person with two copies of the S version of the HBB gene (S which is short for “sickle”) typically has SCD.

People with sickle cell trait typically do not have any symptoms of sickle cell disease, but can pass it on to their children. Additionally, more than 80,000 Americans have sickle cell disease and despite decades of research the average life expectancy has dropped from 42 in 1995 to 39 today. It is a disease that largely targets the African-American community – which is why our team decided It was necessary to discuss this debilitating disease.

AskExpertsSCD_AUG2018v6.png

This event will feature Mark Walters, a pediatric hematologist/oncologist from Children’s Hospital Oakland Research Institute, Don Kohn, Professor, Microbiology, Immunology and Molecular Genetics at UCLA, and Adrienne Shapiro, a patient advocate for SCD and the co-founder of the Axis Advocacy SCD patient education and support website.

Our Facebook Live event, “Ask the Stem Cell Team About Sickle Cell Disease” is– Tuesday, August 28th – from noon till 1pm PST. You can join us by logging on to our Facebook.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We hope to see you there.

 

Stem Cell Roundup: Knowing the nose, stem cell stress and cell fate math.

The Stem Cellar’s Image of the Week.
Our favorite image this week, comes to us from researchers at Washington University School of Medicine in St. Louis. Looking like a psychedelic Rorschach test, the fluorescence microscopy depicts mouse olfactory epithelium (in green), a sheet of tissue that develops in the nose. The team identified a new stem cell type that controls the growth of this tissue. New insights from the study of these cells could help the team better understand why some animals, like dogs, have a far superior sense of smell than humans.

MouseOlfactoryEpithelium-700x467

Peering into the nasal cavity of a mouse. Olfactory epithelium is indicated by green. Image credit: Lu Yang, Washington University School of Medicine in St. Louis.

A Washington U. press release provides more details about this fascinating study which appears in Developmental Cell.

How stress affects blood-forming stem cells.
Stress affects all of us in different ways. Some people handle it well. Some crack up and become nervous wrecks. So, perhaps it shouldn’t come as a huge surprise that stress also affects some stem cells. What is a pleasant surprise is that knowing this could help people undergoing cancer therapy or bone marrow transplants.

First a bit of background. Hematopoietic, or blood-forming stem cells (HSCs) come from bone marrow and are supported by other cells that secrete growth factors, including one called pleiotrophin or PTN. While researchers knew PTN was present in bone marrow they weren’t sure precisely what role it played.

So, researchers at UCLA set out to discover what PTN did.

In a CIRM-funded study they took mice that lacked PTN in endothelial cells – these line the blood vessels – or in their stromal cells – which make up the connective tissue. They found that a lack of PTN in stromal cells caused a lack of blood stem cells, but a lack of PTN in endothelial cells had no impact.

Chute Combo w Barrier 800x533

Expression of pleiotrophin (green) in bone marrow blood vessels (red) and stromal cells (white) is shown in normal mice (left) and in mice at 24 hours following irradiation (right). Image credit: UCLA

However, as Dr. John Chute explained in a news release, when they stressed the cells, by exposing them to radiation, they found something very different:

“The surprising finding was that pleiotrophin from stromal cells was not necessary for blood stem cell regeneration following irradiation — but pleiotrophin from endothelial cells was necessary.”

In other words, during normal times the stem cells rely on PTN from stromal cells, but after stress they depend on PTN from endothelial cells.

Dr. Chute says, because treatments like chemotherapy and radiation deplete bone marrow stem cells, this finding could have real-world implications for patients.

“These therapies for cancer patients suppress our blood cell systems over time. It may be possible to administer modified, recombinant versions of pleiotrophin to patients to accelerate blood cell regeneration. This strategy also may apply to patients undergoing bone marrow transplants.”

The study appears in the journal Cell Stem Cell.

Predicting the fate of cells with math
Researchers at Harvard Medical School and the Karolinska Institutet in Sweden reported this week that they have devised a mathematical model that can predict the fate of stem cells in the brain.

It may sound like science-fiction but the accomplished the feat by tracking changes in messenger RNA (mRNA), the genetic molecule that translates our DNA code into instructions for building proteins. As a brain stem cell begins specializing into specific cell types, hundreds of genes get turns on and off, which is observed by the rate of changes in mRNA productions.

The team built their predictive model by measuring these changes. In a press release, co-senior author, Harvard professor Peter Kharchenko, described this process using a great analogy:

“Estimating RNA velocity—or the rate of RNA change over time—is akin to observing the cooks in a restaurant kitchen as they line up the ingredients to figure out what dishes they’ll be serving up next.”

The team verified their mathematical model by inputting other data that was not use in constructing the model. Karolinkska Institutet professor, Sten Linnarsson, the other co-senior author on the study, described how such a model could be applied to human biomedical research:

“RNA velocity shows in detail how neurons and other cells acquire their specific functions as the brain develops and matures. We’re especially excited that this new method promises to help reveal how brains normally develop, but also to provide clues as to what goes wrong in human disorders of brain development, such as schizophrenia and autism.”

The study appears in the journal Nature.

New Study on Humans Shows Promise for Sepsis Therapy

A new study published in STEM CELLS, conducted by researchers at the University of Amsterdam, shows how mesenchymal stem cells (MSCs) can restore the health and improve the function of the immune system,  which could benefit the treatment of sepsis. Sepsis is a life-threatening complication from an infection that can lead to multiple organ failure. It is a major cause of illness and death worldwide and despite the use of antibiotics it kills about one in every four patients who contract it.

Since early studies done on animals have shown that treating sepsis with MSCs can reduce the mortality rate by as much as 73 percent, a group of researchers from University of Amsterdam sought to answer this question:  could humans realize the same benefits?

So, the team conducted an experiment by taking a group of healthy volunteers and inducing endotoxemia in them, where bacterial toxins can build up and cause fever, nausea and vomiting but do not cause long-term harm to the participants (?).  The idea was that by inducing endotoxemia, which exhibits some of the key characteristics of sepsis, that they could model the condition in people.

One hour prior to the initial dose, each person was given an infusion of either adipose (fat) mesenchymal stem cells (ACSs) taken from a donor,  or a placebo as a control. Those receiving the ASCs were divided into three groups, with each group receiving a consecutively higher dose of cells.

In a news release, Desiree Perlee, senior author of the study, said the study provided some valuable insights and information:

gI_100288_foto_perlee.png

Desirée Perlee

“The results showed that the ASCs were well tolerated…We realize that there is a limitation with the endotoxemia model. Although in a qualitative way it resembles responses seen in patients with sepsis, it differs in that sepsis-associated alterations are more severe and sustained, while in the endotoxemia model responses occur in a very rapid, short-lived and transient way. But despite these limitations, some of our findings confirm the earlier studies on animals. We believe they show further testing of ASCs in actual sepsis patients is warranted.”

Dr. Jan Nolta, Editor-in-Chief of STEM CELLS (and a CIRM-grantee), said, “This novel clinical trial provides important insight into the mechanism of action of MSCs in inflammation and provides human safety data in support of treatment of sepsis using MSCs.

 

Stem cell summer: high school students document internships via social media, Part 1

My fellow CIRM team members and I just got back from two days in Sacramento where we attended one of our favorite annual events: the CIRM SPARK Student Conference. SPARK, which is short for Summer Program to Accelerate Regenerative medicine Knowledge, is a CIRM-funded education program that offers California High School students an invaluable opportunity to gain hands-on training in stem cell research at some of the leading research institutes in California.

This meeting represents the culmination of the students’ internships in the lab this summer and gives each student the chance to present their project results and to hear from stem cell research experts and patient advocates. Every summer, without fail, I’m blown away by how much the students accomplish in such a short period of time and by the poise and clarity with which they describe their work. This year was no exception.

Best Instagram Post Award: Skyler Wong

To document the students’ internship experiences, we include a social media curriculum to the program. Each student posts Instagram photos and writes a blog essay describing their time in the lab. Members of the CIRM team reviewed and judged the Instagram posts and blogs. It was a very difficult job selecting only three Instagrams out of over 400 (follow them at #cirmsparklab) that were posted over the past eight weeks. Equally hard was choosing three blogs from the 58 student essays which seem to get better in quality each year.

Over the next week or so, we’re going to feature the three Instagram posts and three blogs that were ultimately awarded. Our two winners featured today are UC Davis SPARK student, Skyler Wong, a rising senior at Sheldon High School was one of the Instagram Award winners (see his photo above) and Stanford SPARK student Angelina Quint, a rising senior at Redondo Union High School, was one of the Blog Award winners. Here’s her blog:

Best Blog Award:
My SPARK 2018 summer stem cell research internship experience
By Angelina Quint

Angelina2

Angelina Quint

Being from Los Angeles, I began the SIMR program as a foreigner to the Bay Area. As my first research experience, I was even more so a foreigner to a laboratory setting and the high-tech equipment that seemingly occupied every edge and surface of Stanford’s Lorry I. Lokey Stem Cell building. Upon first stepping foot into my lab at the beginning of the summer, an endless loop of questions ran through my brain as I ventured deeper into this new, unfamiliar realm of science. Although excited, I felt miniscule in the face of my surroundings—small compared to the complexity of work that laid before me. Nonetheless, I was ready to delve deep into the unknown, to explore this new world of discovery that I had unlocked.

Participating in the CIRM research program, I was given the extraordinary opportunity to pursue my quest for knowledge and understanding. With every individual I met and every research project that I learned about, I became more invigorated to investigate and discover answers to the questions that filled my mind. I was in awe of the energy in the atmosphere around me—one that buzzed with the drive and dedication to discover new avenues of thought and complexity. And as I learned more about stem cell biology, I only grew more and more fascinated by the phenomenon. Through various classes taught by experts in their fields on topics spanning from lab techniques to bone marrow transplants, I learned the seemingly limitless potential of stem cell research. With that, I couldn’t help but correlate this potential to my own research; anything seemed possible.

However, the journey proved to be painstakingly arduous. I soon discovered that a groundbreaking cure or scientific discovery would not come quickly nor easily. I faced roadblocks daily, whether it be in the form of failed gel experiments or the time pressures that came with counting colonies. But to each I learned, and to each I adapted and persevered. I spent countless hours reading papers and searching for online articles. My curiosity only grew deeper with every paper I read—as did my understanding. And after bombarding my incredibly patient mentors with an infinite number of questions and thoughts and ideas, I finally began to understand the scope and purpose of my research. I learned that the reward of research is not the prestige of discovering the next groundbreaking cure, but rather the knowledge that perseverance in the face of obstacles could one day transform peoples’ lives for the better.

As I look back on my journey, I am filled with gratitude for the lessons that I have learned and for the unforgettable memories that I have created. I am eternally grateful to my mentors, Yohei and Esmond, for their guidance and support along the way. Inevitably, the future of science is uncertain. But one thing is always guaranteed: the constant, unhindered exchange of knowledge, ideas, and discovery between colleagues passionate about making a positive difference in the lives of others. Like a stem cell, I now feel limitless in my ability to expand my horizons and contribute to something greater and beyond myself. Armed with the knowledge and experiences that I have gained through my research, I aspire to share with others in my hometown the beauty of scientific discovery, just as my mentors have shared with me. But most of all, I hope that through my continued research, I can persist in fighting for new ways to help people overcome the health-related challenges at the forefront of our society.

 

Blood stem cell expansion expands treatment options for cancer patients

Screen Shot 2018-08-07 at 10.19.30 AM

Image courtesy of the Stower’s Institute

Bone marrow transplants have been used for decades to treat various types of cancers such as leukemia and multiple myeloma, as well as other blood disorders such as anemia.

Our bone marrow is responsible for making hematopoietic stem cells (HSCs), which develop into mature blood cells, like white cells (which fight infection) and red cells (which carry oxygen throughout our body). In different types of blood disorders, blood cell production is either impaired or abnormal. In leukemia for example, the body produces abnormal white blood cells that survive better then outgrow the normal white cells, thus impairing the individual’s ability to fight infection. Bone marrow transplants, which involves replacing the diseased marrow with healthy marrow from a donor, can be incredibly effective for these types of disease. Survival from certain blood cancers increased from basically zero to around eighty-five percent after the advent of bone marrow transplant therapy.

While extremely effective when successful, bone marrow transplants do not work for everyone and finding a match can be difficult. For example, only 30% of patients are able to find a match in their families, because of the strict requirements that must be fulfilled be a bone marrow match. Stem cells from umbilical cord blood, on the other hand, are much more likely to match a patient, because of the generally less stringent requirements to be a match. The amount of cord blood (nearly two whole cords worth of blood) needed to satisfy an adult patient’s transplant requirements, however, are significant, and can be a limiting factor in the efficiency and effectiveness of this approach. New research from Lingheng Li’s lab at the Stower’s Institute for Medical Research at the University of Kansas has found a possible solution to this problem.

In a study published in Cell Research, Li’s group found a way to increase the number of adult stem cells isolated from cord blood, which could reduce the number of cords needed per treatment. By eliminating a protein called Ythdf2 in mice, they observed global expansion of HSCs. Normally, this protein is responsible for preventing expression of genes involved in promoting HSC expansion. Importantly, the researchers found that the HSC expansion stimulated by elimination of Ythdf2 did not lead to other abnormalities in the resulting HSCs and did not affect the ability of these HSCs to produce different types of blood stem cells down the road. Dr. Li believes that this type of approach can be applied to other types of stem cell treatments as well.

Dr. Joseph McGuirk, another professor at the University of Kansas who was not directly involved with this study, indicates the importance of this work:

“This work represents a path forward by demonstrating the ability to reliably expand adult stem cells from umbilical cord blood in the laboratory without terminally differentiating the cells into more mature and relatively short-lived blood cells. These findings represent a major advance in the field and have significant potential to improve the outcomes of thousands of children and adults who undergo umbilical cord blood transplantation every year.”

CIRM is funding work in this area too. We are supporting a late stage preclinical project with AngioCrine Biosciences which is using expanded cord blood stem cells. They hope to create an effective and, safe option for the treatment of debilitating blood diseases such as leukemia and lymphoma.

What makes an expert an expert?

When we launched our Facebook Live “Ask the Expert” series earlier this year we wanted to create an opportunity for people to hear from and question experts about specific diseases or disorders. The experts we turned to were medical ones, neurologists and neuroscientists in the case of the first two Facebook Live events, stroke and ALS.

Then we learned about a blog post on the ALS Advocacy website questioning our use of the word “expert”. The author, Cathy Collet, points out that doctors or scientists are far from the only experts about these conditions, that there are many people who, by necessity, have become experts on a lot of issues relating to ALS and any other disease.

Cathy Collet ALS

 

Here’s Cathy’s blog. After you read it please let us know what you think: should we come up with a different title for the series, if so what would you suggest?

 

 

 

“Over the years I’ve experienced many “Ask the Experts” sessions related to ALS.  It’s always a panel of neuroscientists who talk a lot about ALS research and then take a few questions.

The “Expert” crown defaults to them.  They speak from the dais.  We get to listen a lot and ask.  They are by default “The Experts” in the fight against ALS.

But wait, there are all kinds of people with superb and valuable knowledge related to ALS –

  • There are people who know a lot about insurance.
  • There are people who know a lot about communication technology.
  • There are people who know a lot about low-tech hacks.
  • There are people who know a lot about suction machines.
  • There are people who know a lot about breathing.
  • There are people who know a lot about the FDA.
  • There are people who know a lot about moving a person on and off a commode.
  • There are people who know a lot about taxes.
  • There are people who know a lot about drugs.
  • There are people who know a lot about data.
  • There are people who know a lot about choking.
  • There are people who know a lot about financing research.
  • There are people who know a lot about stem cells.
  • There are people who know a lot about feeding tubes and nutrition.
  • There are people who know a lot about what’s important in living with the beast ALS.
  • There are people who know a lot about primary care in ALS.
  • There are people who know a lot about constipation.

Our default implication for the word experts being neuroscientists is revealing. There are many people in the fight against ALS, including those living with it, who know a lot.  We still live in a hierarchy where people with ALS and caregivers are at the bottom.

Words matter.  “Expert” is not a royal title to be owned by anyone by default.

It’s time for simple changes to some traditions.  “Ask the Neuroscientists,” anyone?

 

By the way, our next Facebook Live “Ask the ?” feature is targeting Sickle Cell Disease. It will be from noon till 1pm on Tuesday August 28th. More details, and maybe even a new name, to follow.