Stem cell stories that caught our eye: turning on T cells; fixing our brains; progress and trends in stem cells; and one young man’s journey to recover from a devastating injury

Healthy_Human_T_Cell

A healthy T cell

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Directing the creation of T cells. To paraphrase the GOP Presidential nominee, any sane person LOVES, LOVES LOVES their T cells, in a HUGE way, so HUGE. They scamper around the body getting rid of viruses and the tiny cancers we all have in us all the time. A CIRM-funded team at CalTech has worked out the steps our genetic machinery must take to make more of them, a first step in letting physicians turn up the action of our immune systems.

We have known for some time the identity of the genetic switch that is the last, critical step in turning blood stem cells into T cells, but nothing in our body is as simple as a single on-off event. The Caltech team isolated four genetic factors in the path leading to that main switch and, somewhat unsuspected, they found out those four steps had to be activated sequentially, not all at the same time. They discovered the path by engineering mouse cells so that the main T cell switch, Bcl11b, glows under a microscope when it is turned on.

“We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on,” said Ellen Rothenberg, the senior author in a university press release picked up by Innovations Report. “It’s interesting–the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order.”

Video primer on stem cells in the brain.  In conjunction with an article in its August issue, Scientific American posted a video from the Brain Forum in Switzerland of Elena Cattaneo of the University of Milan explaining the basics of adult versus pluripotent stem cells, and in particular how we are thinking about using them to repair diseases in the brain.

The 20-minute talk gives a brief review of pioneers who “stood alone in unmarked territory.” She asks how can stem cells be so powerful; and answers by saying they have lots of secrets and those secrets are what stem cell scientist like her are working to unravel.  She notes stem cells have never seen a brain, but if you show them a few factors they can become specialized nerves. After discussing collaborations in Europe to grow replacement dopamine neurons for Parkinson’s disease, she went on to describe her own effort to do the same thing in Huntington’s disease, but in this case create the striatal nerves lost in that disease.

The video closes with a discussion of how basic stem cell research can answer evolutionary questions, in particular how genetic changes allowed higher organisms to develop more complex nervous systems.

kelley and kent

CIRM Science Officers Kelly Shepard and Kent Fitzgerald

A stem cell review that hits close to home.  IEEE Pulse, a publication for scientists who mix engineering and medicine and biology, had one of their reporters interview two of our colleagues on CIRM’s science team. They asked senior science officers Kelly Shepard and Kent Fitzgerald to reflect on how the stem cell field has progressed based on their experience working to attract top researchers to apply for our grants and watching our panel of outside reviewers select the top 20 to 30 percent of each set of applicants.

One of the biggest changes has been a move from animal stem cell models to work with human stem cells, and because of CIRM’s dedicated and sustained funding through the voter initiative Proposition 71, California scientists have led the way in this change. Kelly described examples of how mouse and human systems are different and having data on human cells has been critical to moving toward therapies.

Kelly and Kent address several technology trends. They note how quickly stem cell scientists have wrapped their arms around the new trendy gene editing technology CRISPR and discuss ways it is being used in the field. They also discuss the important role of our recently developed ability to perform single cell analysis and other technologies like using vessels called exosomes that carry some of the same factors as stem cells without having to go through all the issues around transplanting whole cells.

“We’re really looking to move things from discovery to the clinic. CIRM has laid the foundation by establishing a good understanding of mechanistic biology and how stem cells work and is now taking the knowledge and applying it for the benefit of patients,” Kent said toward the end of the interview.

jake and family

Jake Javier and his family

Jake’s story: one young man’s journey to and through a stem cell transplant; As a former TV writer and producer I tend to be quite critical about the way TV news typically covers medical stories. But a recent story on KTVU, the Fox News affiliate here in the San Francisco Bay Area, showed how these stories can be done in a way that balances hope, and accuracy.

Reporter Julie Haener followed the story of Jake Javier – we have blogged about Jake before – a young man who broke his spine and was then given a stem cell transplant as part of the Asterias Biotherapeutics clinical trial that CIRM is funding.

It’s a touching story that highlights the difficulty treating these injuries, but also the hope that stem cell therapies holds out for people like Jake, and of course for his family too.

If you want to see how a TV story can be done well, this is a great example.

CIRM Board targets diabetes and kidney disease with big stem cell research awards

diabetes2

A recent study  estimated there may be more than 500 million people worldwide who have diabetes. That’s an astounding figure and makes diabetes one of the largest chronic disease epidemics in human history.

One of the most serious consequences of untreated or uncontrolled diabetes is kidney damage. That can lead to fatigue, weakness, confusion, kidney failure and even death. So two decisions taken by the CIRM Board today were good news for anyone already suffering from either diabetes or kidney disease. Or both.

The Board awarded almost $10 million to Humacyte to run a Phase 3 clinical trial of an artificial vein needed by people undergoing hemodialysis – that’s the most common form of dialysis for people with kidney damage. Hemodialysis helps clean out impurities and toxins from the blood. Without it waste will build up in the kidneys with devastating consequences.

The artificial vein is a kind of bioengineered blood vessel. It is implanted in the individual’s arm and, during dialysis, is connected to a machine to move the blood out of the body, through a filter, and then back into the body. The current synthetic version of the vein is effective but is prone to clotting and infections, and has to be removed regularly. All this puts the patient at risk.

Humacyte’s version – called a human acellular vessel or HAV – uses human cells from donated aortas that are then seeded onto a biodegradable scaffold and grown in the lab to form the artificial vein. When fully developed the structure is then “washed” to remove all the cellular tissue, leaving just a collagen tube. That is then implanted in the patient, and their own stem cells grow onto it, essentially turning it into their own tissue.

In earlier studies Humacyte’s HAV was shown to be safer and last longer than current versions. As our President and CEO, Randy Mills, said in a news release, that’s clearly good news for patients:

“This approach has the potential to dramatically improve our ability to care for people with kidney disease. Being able to reduce infections and clotting, and increase the quality of care the hemodialysis patients get could have a significant impact on not just the quality of their life but also the length of it.”

There are currently almost half a million Americans with kidney disease who are on dialysis. Having something that makes life easier, and hopefully safer, for them is a big plus.

The Humacyte trial is looking to enroll around 350 patients at three sites in California; Sacramento, Long Beach and Irvine.

While not all people with diabetes are on dialysis, they all need help maintaining healthy blood sugar levels, particularly people with type 1 diabetes. That’s where the $3.9 million awarded to ViaCyte comes in.

We’re already funding a clinical trial with ViaCyte  using an implantable delivery system containing stem cell-derived cells that is designed to measure blood flow, detect when blood sugar is low, then secrete insulin to restore it to a healthy level.

This new program uses a similar device, called a PEC-Direct. Unlike the current clinical trial version, the PEC-Direct allows the patient’s blood vessels to directly connect, or vasularize, with the cells inside it. ViaCyte believes this will allow for a more robust engraftment of the stem cell-derived cells inside it and that those cells will be better able to produce the insulin the body needs.

Because it allows direct vascularization it means that people who get the delivery system  will also need to get chronic immune suppression to stop their body’s immune system attacking it. For that reason it will be used to treat patients with type 1 diabetes that are at high risk for acute complications such as severe hypoglycemic (low blood sugar) events associated with hypoglycemia unawareness syndrome.

In a news release Paul Laikind, Ph.D., President and CEO of ViaCyte, said this approach could help patients most at risk.

“This high-risk patient population is the same population that would be eligible for cadaver islet transplants, a procedure that can be highly effective but suffers from a severe lack of donor material. We believe PEC-Direct could overcome the limitations of islet transplant by providing an unlimited supply of cells, manufactured under cGMP conditions, and a safer, more optimal route of administration.”

The Board also approved more than $13.6 million in awards under our Discovery program. You can see the winners here.

 

Researchers Identify Potential New Cell Source for Spinal Cord Injury Treatments

Now that Asterias Biotherapeutics’ CIRM-funded, stem cell-based clinical trial for spinal cord injury (SCI) has safely treated its first group of patients and begun recruiting the second, should other SCI researchers close up shop? Of course not. Since it’s a first-in-human trial, there certainly will be room for improvement even if the therapy proves successful. And it may not work for every SCI victim. So the development of other therapeutic approaches is critical to ensure effective treatments for all patients with this unmet medical need.

spinalcordinjury_bbcgraphic

Graphic of spinal cord injury site
(BBC via JACOPIN/BSIP/SCIENCE PHOTO LIBRARY)

Enter the lab of Michael Fehlings at the University of Toronto. Their recent Stem Cells Translational Medicine study describes a potential, minimally invasive therapeutic strategy which involves a type of brain cell not previously studied in the context of SCI.

In the case of the Asterias trial, embryonic stem cell-derived cells called oligodendrocytes are being transplanted directly into the injured spinal cord to help restore the disrupted nerve signals that cause a whole range of debilitating symptoms, including painful tingling and loss of movement in arms and legs, loss of bladder control and difficulty breathing.

Instead of trying to directly repair the disconnected nerve signals, Fehlings’ team looked at reducing the damaging effects of inflammation that occur at the site of injury in the days and weeks following the spinal cord trauma. This sounds like a perfect job for mesenchymal stem cells (MSCs) whose anti-inflammatory effects are well established. But previous animal studies using MSCs for spinal cord injury have had mixed results. Different sources of MSCs are known to have different anti-inflammatory actions so perhaps this is the culprit behind the variability. On top of that, the exact mechanism of action isn’t well understood which presents a barrier to getting FDA approval for clinical trials.

So the current study performed a careful comparative analysis of the healing effects of human cord blood MSCs and human brain vascular pericytes (HBVPs) – MSC-like cells found near blood vessels in the brain – in a rat model of spinal cord injury. Shortly after the SCI injury, the cells were delivered into the rats through the blood. The blood levels of various cytokines – proteins that modulate the inflammation response – were measured for several days. The only cytokine that increased in the days after the cell delivery of either cell type was IL-10 which is known for its anti-inflammatory effects.

Examining the spinal cord one to seven days after injury, the researchers found that both MSCs and HBVPs were better than controls at reducing hemorrhaging, with the HBVPs showing better improvement. In terms of long-term effects on functional behaviors, the researchers showed that after three weeks, grip strength, body coordination, and hind limb movement were most improved in the HBVPs.

In a university press release, Fehlings described these promising results:

fehlings

Michael Fehlings

“Our study demonstrates that these cells not only display a MSC phenotype in a dish, but also have similar immunomodulatory effects in animals after spinal cord injury that are more potent than those of non-central nervous system tissue-derived cells. Therefore, these cells are of interest for therapeutic use in acute spinal cord injury.”

A lot more work will be needed to translate these findings into clinical trials but for the sake of those suffering from spinal cord injury it’s encouraging that alternative approaches to treating this devastating, life-changing condition are in development.

Advancing Stem Cell Research at the CIRM Bridges Conference

Where will stem cell research be in 10 years?

What would you say to patients who wanted stem cell therapies now?

What are the most promising applications for stem cell research?

Why is it important for the government to fund regenerative medicine?

These challenging and thought-provoking questions were posed to a vibrant group of undergraduate and masters-level students at this year’s CIRM Bridges to Stem Cell Research and Therapy conference.

Educating the next generation of stem cell scientists

The Bridges program is one of CIRM’s educational programs that offers students the opportunity to take coursework at California state schools and community colleges and conduct stem cell research at top universities and industry labs. Its goal is to train the next generation of stem cell scientists by giving them access to the training and skills necessary to succeed in this career path.

The Bridges conference is the highlight of the program and the culmination of the students’ achievements. It’s a chance for students to showcase the research projects they’ve been working on for the past year, and also for them to network with other students and scientists.

Bridges students participated in a networking pitch event about stem cell research.

Bridges students participated in a networking pitch event about stem cell research.

CIRM kicked off the conference with a quick and dirty “Stem Cell Pitch” networking event. Students were divided into groups, given one of the four questions above and tasked with developing a thirty second pitch that answered their question. They were only given ten minutes to introduce themselves, discuss the question, and pick a spokesperson, yet when each team’s speaker took the stage, it seemed like they were practiced veterans. Every team had a unique, thoughtful answer that was inspiring to both the students and to the other scientists in the crowd.

Getting to the clinic and into patients

The bulk of the Bridges conference featured student poster presentations and scientific talks by leading academic and industry scientists. The theme of the talks was getting stem cell research into the clinic and into patients with unmet medical needs.

Here are a few highlights and photos from the talks:

On the clinical track for Huntington’s disease

Leslie Thompson, Professor at UC Irvine, spoke about her latest research in Huntington’s disease (HD). She described her work as a “race against time.” HD is a progressive neurodegenerative disorder that’s associated with multiple social and physical problems and currently has no cure. Leslie described how her lab is heading towards the clinic with human embryonic stem cell-derived neural (brain) stem cells that they are transplanting into mouse models of HD. So far, they’ve observed positive effects in HD mice that received human neural stem cell transplants including an improvement in the behavioral and motor defects and a reduction in the accumulation of toxic mutant Huntington protein in their nerve cells.

Leslie Thompson

Leslie Thompson

Leslie noted that because the transplanted stem cells are GMP-grade (meaning their quality is suitable for use in humans), they have a clear path forward to testing their potential disease modifying activity in human clinical trials. But before her team gets to humans, they must take the proper regulatory steps with the US Food and Drug Administration and conduct further experiments to test the safety and proper dosage of their stem cells in other mouse models as well as test other potential GMP-grade stem cell lines.

Gene therapy for SCID babies

Morton Cowan, a pediatric immunologist from UC San Francisco, followed Leslie with a talk about his efforts to get gene therapy for SCID (severe combined immunodeficiency disease) off the bench into the clinic. SCID is also known as bubble-baby disease and put simply, is caused by a lack of a functioning immune system. SCID babies don’t have normal T and B immune cell function and as a result, they generally die of infection or other conditions within their first year of life.

Morton Cowan

Morton Cowan, UCSF

Morton described how the gold standard treatment for SCID, which is hematopoietic or blood stem cell transplantation, is only safe and effective when the patient has an HLA matched sibling donor. Unfortunately, many patients don’t have this option and face life-threatening challenges of transplant rejection (graft-versus host disease). To combat this issue, Morton and his team are using gene therapy to genetically correct the blood stem cells of SCID patients and transplant those cells back into these patients so that they can generate healthy immune cells.

They are currently developing a gene therapy for a particularly hard-to-treat form of SCID that involves deficiency in a protein called Artemis, which is essential for the development of the immune system and for repairing DNA damage in cells. Currently his group is conducting the necessary preclinical work to start a gene therapy clinical trial for children with Artemis-SCID.

Treating spinal cord injury in the clinic

Casey Case, Asterias Biotherapeutics

Casey Case, Asterias Biotherapeutics

Casey Case, Senior VP of Research and Nonclinical Development at Asterias Biotherapeutics, gave an update on the CIRM-funded clinical trial for cervical (neck) spinal cord injury (SCI). They are currently testing the safety of transplanting different doses of their oligodendrocyte progenitor cells (AST-OPC1) in a group of SCI patients. The endpoint for this trial is an improvement in movement greater than two motor levels, which would offer a significant improvement in a patient’s ability to do some things on their own and reduce the cost of their healthcare. You can read more about these results and the ongoing study in our recent blogs (here, here).

Opinion: Scientists should be patient advocates

David Higgins gave the most moving speech of the day. He is a Parkinson’s patient and the Patient Advocate on the CIRM board and he spoke about what patient advocates are and how to become one. David explained how, these days, drug development and patient advocacy is more patient oriented and patients are involved at the center of every decision whether it be questions related to how a drug is developed, what side effects should be tolerated, or what risks are worth taking. He also encouraged the Bridges students to become patient advocates and understand what their needs are by asking them.

David Higgins, Parkinson's advocate and CIRM Board member

David Higgins

“As a scientist or clinician, you need to be an ambassador. You have a job of translating science, which is a foreign language to most people, and you can all effectively communicate to a lay audience without being condescending. It’s important to understand what patients’ needs are, and you’ll only know that if you ask them. Patients have amazing insights into what needs to be done to develop new treatments.”

Bridging the gap between research and patients

The Bridges conference is still ongoing with more poster presentations, a career panel, and scientific talks on discovery and translational stem cell research and commercializing stem cell therapies to all patients in need. It truly is a once in a lifetime opportunity for the Bridges students, many of whom are considering careers in science and regenerative medicine and are taking advantage of the opportunity to talk and network with prominent scientists.

If you’re interested in hearing more about the Bridges conference, follow us on twitter (@CIRMnews, @DrKarenRing, #CIRMBridges2016) and on Instagram (@CIRM_Stemcells).

CIRM-funded stem cell clinical trial for retinitis pigmentosa focuses on next stage

rp1

How retinitis pigmentosa erodes normal vision

The failure rate for clinical trials is depressingly high. A study from Tufts University in 2010  found that for small molecules – the substances that make up more than 90 percent of the drugs on the market today – the odds of getting from a Phase 1 trial to approval by the Food and Drug Administration are just 13 percent. For stem cell therapies the odds are even lower.

That’s why, whenever a stem cell therapy shows good results it’s an encouraging sign, particularly when that therapy is one that we at CIRM are funding. So we were more than a little happy to hear that Dr. Henry Klassen and his team at jCyte and the University of California, Irvine have apparently cleared the first hurdle with their treatment for retinitis pigmentosa (RP).

jCyte has announced that the first nine patients treated for RP have shown no serious side effects, and they are now planning the next phase of their Phase 1/2a safety trial.

In a news release Klassen, the co-founder of jCyte, said:

“We are pleased with the results. Retinitis pigmentosa is an incurable retinal disease that first impacts people’s night vision and then progressively robs them of sight altogether. This is an important milestone in our effort to treat these patients.”

The therapy involves injecting human retinal progenitor cells into one eye to help save the light sensing cells that are destroyed by the disease. This enables the researchers to compare the treated eye with the untreated eye to see if there are any changes or improvements in vision.

So far, the trial has undergone four separate reviews by the Data Safety Monitoring Board (DSMB), an independent group of experts that examines data from trials to ensure they meet all safety standards and that results show patients are not in jeopardy. Results from the first nine people treated are encouraging.

The approach this RP trial is taking has a couple of advantages. Often when transplanting organs or cells from one person into another, the recipient has to undergo some kind of immunosuppression, to stop their body rejecting the transplant. But earlier studies show that transplanting these kinds of progenitor cells into the eye doesn’t appear to cause any immunological response. That means patients in the study don’t have to undergo any immunosuppression. Because of that, the procedure is relatively simple to perform and can be done in a doctor’s office rather than a hospital. For the estimated 1.5 million people worldwide who have RP that could make getting treatment relatively easy.

Of course the big question now is not only was it safe – it appears to be – but does it work? Did any of those people treated experience improvements in their vision? We will share those results with you as soon as the researchers make them available.

Next step for the clinical trial is to recruit more patients, and treat them with a higher number of cells. There’s still a long way to go before we will know if this treatment works, if it either slows down, stops, or better still helps reverse some of the effects of RP. But this is a really encouraging first step.


Related links:

Stem cell stories that caught our eye: herding stem cells, mini autistic brains, tendon repair and hair replacement

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Major advance in getting stem cells to behave.  The promise of embryonic stem cells comes from their ability to become any cell type in the body, but medical uses of the cells have been hampered by our poor ability to quickly get them to mature into pure populations of a desired adult tissue. Scientists at Stanford, partially funded by CIRM, and the Genome Institute of Singapore have teamed up to better understand the normal road map of how the various tissues develop in the embryo and in turn fine tune the recipes used to make specific tissues in the lab. They claim to have created pure colonies of 12 different specialized tissues in half the time or less of normal procedures, which usually result in an undesired mix of cells.

 “The problems of making or isolating pure samples of one specific cell type has been a substantial barrier to medical uses of embryonic stem cells. This research looks like a way around that problem,” said Hank Greely, a medical ethicist at Stanford not involved in the work in an article in the East Bay Times.

 

1438782691969

Weissman

This is a problem researchers around the world have been trying to crack since human embryonic stem cells were first isolated in 2008. The brief paragraph above on how they did it does not do justice to a very elegant and complex research project led by one of the leaders of the field, Irving Weissmann. Stanford’s press release provides more detail about how they achieved the milestone, which should significantly accelerate the field of regenerative medicine.

 

 

Mini brains to figure out oversize brains.  The many forms of autism have many different causes—though most are unknown—and a wide array of symptoms and physical manifestations. An international team has used a lab dish “mini-brain” model to discover the cause of one form of autism, one linked to over-sized brains, which occurs in about 20 percent of children with autism spectrum disorder (ASD).

Autistic neurons Muotri

Nerve precursor cells grown from iPS cells created from children with autism. Inhibitory nerves (in red) are not in sufficient numbers.

A team led by Alysson Muotri at the University of California, San Diego (UCSD), started with tissue samples from children with the disorder and reprogrammed them into iPS type stem cells. They matured those stem cells, first into nerve progenitors and then into the various nerves that in normal cells would result in mini-brains in the lab dish.  But instead of a healthy mix of cells that promote and inhibit nerve growth, they found a lack of inhibitory nerves allowing the overgrowth seen in the condition. They also showed the nerve cells did not send signals to each other properly; they lacked synchronization.

 “The bottom line is that we can now effectively model idiopathic ASD using a cohort of individuals selected by a clear endophenotype. In this case, brain volume,” said Muotri, in a university press release posted by Health Canal. “And early developmental brain enlargement can be explained by underlying molecular and cellular pathway dysregulation, leading to altered neuronal cortical networks.”

More important, they treated the nerves in the dish with a drug, IGF-1, that is currently being tested in the clinic for autism,  and found a reversal of the nerve miss-firing in some of the samples. Their model should make it easier to test more potential drugs, as well.

It has been a big week for improved understanding of ASD. Earlier in the week Fred Gage’s team across the street from UCSD at the Salk institute—where Muotri worked as a post-doctoral fellow—published a causal link for another form of autism, which my colleague Karen Ring wrote about earlier this week in The Stem Cellar.

 

shutterstock_425039020Help for weekend warriors. How many of your friends have ended up on crutches after a weekend of too much basketball or tennis, with a diagnosis of a torn ligament or tendon? And have they said they wished they had broken a bone instead because it would heal faster? Medicine has not been able to speed the healing of those delicate connecting straps in large part because we haven’t known much about how they are created during development. So a team at the Scripps Research Institute set out to find out how they develop and heal naturally.

 “If we understand the molecular mechanisms of tendon development, we can apply the findings to develop a new regenerative therapy for tendon diseases and injuries,” said team leader Hiroshi Asahara in an institution release posted by Sciencecodex.

 They found one gene in particular linked to tendon development and repair in an animal model. They used the new trendy gene editing tool CRISP to regulate the gene in rats. They found the gene results in the production of more tenocytes, which are needed to maintain healthy tendon. That pathway now becomes a target for developing new therapies to help those hobbling friends.

 

For the follicular challenged. On a lighter note, one of the least impactful but most common medical conditions, hair loss, has become a target of therapy development by many university and industry teams. Forbes posted a run down about the activities of some of the leaders of the hair pack.

Not all the author’s science is spot on, for example, when talking about the only organs that constantly regenerate the author ignored the fact that our gut lining turns over about every four days. But he provides a good review of how our hair follicles generally do a good job of replenishing hair and what goes wrong when they fail.

The author focuses most on the work of Japan’s RIKEN Institute, providing an easy to follow info-graphic on how the team there envisions harvesting a small skin sample, sorting the stem cells out of the hair follicles in the sample, growing those stem cells in the lab many fold and then injecting cells back to where they are needed. That team hopes to have a commercial product by 2020. In the meantime, the top of my head will remain intimately acquainted with sun screen.

California high schoolers SPARK interest in stem cell research through social media

I have a job for you today and it’s a fun one. Open your Instagram app on your phone. If you’re not an Instagrammer, don’t worry, you can access the website on your computer.

Do you have it open? OK now type in the hashtag #CIRMSparkLab and click on it.

What you’ll find is around 200 posts of the most inspiring and motivating pictures of stem cell research that I’ve seen. These pictures are from high school students currently participating in the CIRM summer SPARK program, one of our educational programs, which has the goal to train the next generation of stem cell scientists.

The SPARK program offers California high school students an invaluable opportunity to gain hands-on training in regenerative medicine at some of the finest stem cell research institutes in the state. And while they gain valuable research skills, we are challenging them to share their experiences with the general public through blogging and social media.

Communicating science to the public is an important mission of CIRM, and the SPARK students are excelling at this task by posting descriptive photos on Instagram that document their internships. Some of them are fun lab photos, while others are impressive images of data with detailed explanations about their research projects.

Below are a few of my favorite posts so far this summer. I’ve been so inspired by the creativity of these posts that we are now featuring some of them on the @CIRM_Stemcells account. (Yes this is a shameless plug for you to follow us on Instagram!).

City of Hope SPARK program.

Screen Shot 2016-07-13 at 11.15.14 AM

Screen Shot 2016-07-13 at 11.17.24 AM

Screen Shot 2016-07-13 at 11.16.59 AM

Screen Shot 2016-07-13 at 11.23.51 AM

Screen Shot 2016-07-13 at 11.17.43 AM

I encourage you all to follow our talented SPARK students this summer as they continue to document their exciting journeys on Instagram. These students are our future and supporting their training and education in stem cell research is an honor for CIRM and a vital step towards achieving our mission of accelerating stem cell treatments to patients with unmet medical needs.

Stay tuned for more blog coverage about SPARK and our other educational program, the Bridges to Stem Cell Research program for undergraduate and master-level students. The annual Bridges conference that brings all the students together to present their research will be held next week, and the SPARK conference is on August 8th both in Berkeley.

Stem cell transplant offers Jake a glimpse of hope

Jake

Jake Javier surrounded by friends; Photo courtesy Julie Haener KTVU

On Thursday, July 7th, Jake Javier became the latest member of a very select group. Jake underwent a stem cell transplant for a spinal cord injury at Santa Clara Valley Medical Center here in the San Francisco Bay Area.

The therapy is part of the CIRM-funded clinical trial run by Asterias Biotherapeutics. For Asterias it meant it had hit a significant milestone (more on that later). But for Jake, it was something far more important. It was the start of a whole new phase in his life.

Jake seriously injured his spinal cord in a freak accident after diving into a swimming pool just one day before he was due to graduate from San Ramon Valley high school. Thanks, in part, to the efforts of the tireless patient advocate and stem cell champion Roman Reed, Jake was able to enroll in the Asterias trial.

astopc1The goal of the trial is to test the safety of transplanting three escalating doses of AST-OPC1 cells. These are a form of cell called oligodendrocyte progenitors, which are capable of becoming several different kinds of brain cells, some of which play a supporting role and help protect nerve cells in the central nervous system – the area damaged in spinal cord injury.

To be eligible, individuals have to have experienced a severe neck injury in the last 30 days, one that has left them with no sensation or movement below the level of their injury, and that means they have typically lost all lower limb function and most hand and arm function.

The first group of three patients was completed in August of last year. This group was primarily to test for safety, to make sure this approach was not going to cause any harm to patients. That’s why the individuals enrolled were given the relatively small dose of 2 million cells. So far none of the patients have experienced any serious side effects, and some have even shown some small improvements.

In contrast, the group Jake is in were given 10 million cells each. Jake was the fifth person treated in this group. That means Asterias can now start assessing the safety data from this group and, if there are no problems, can plan on enrolling people for group 3 in about two months. That group of patients will get 20 million cells.

It’s these two groups, Jakes and group 3, that are getting enough cells that it’s hoped they will see some therapeutic benefits.

In a news release, Steve Cartt, President and CEO of Asterias, said they are encouraged by the progress of the trial so far:

“Successful completion of enrollment and dosing of our first efficacy cohort receiving 10 million cells in our ongoing Phase 1/2a clinical study represents a critically important milestone in our AST-OPC1 clinical program for patients with complete cervical spinal cord injuries. In addition, while it is still very early in the development process and the patient numbers are quite small, we are encouraged by the upper extremity motor function improvements we have observed so far in patients previously enrolled and dosed in the very low dose two million cell cohort that had been designed purely to evaluate safety.”

 

jake and familyJake and his family are well aware that this treatment is not going to be a cure, that he won’t suddenly get up and walk again. But it could help him in other, important ways, such as possibly getting back some ability to move his hands.

The latest news is that Jake is doing well, that he experienced some minor problems after the surgery but is bouncing back and is in good spirits.

Jake’s mother Isabelle said this has been an overwhelming experience for the family, but they are getting through it thanks to the love and support of everyone who hears Jake’s story. She told CIRM:

 “We are all beyond thrilled to have an opportunity of this magnitude. Just the thought of Jake potentially getting the use of his hands back gives him massive hope. Jake has a strong desire to recover to the highest possible level. He is focused and dedicated to this process. You have done well to choose him for your research. He will make you proud.”

He already has.

Jake and Brady gear

New England Patriots star quarterback Tom Brady signed a ball and jersey for Jake after hearing about the accident


Related Links:

Salk Scientists Unlock New Secrets of Autism Using Human Stem Cells

Autism is a complex neurodevelopmental disorder whose mental, physical, social and emotional symptoms are highly variable from person to person. Because individuals exhibit different combinations and severities of symptoms, the concept of autism spectrum disorder (ASD) is now used to define the range of conditions.

There are many hypotheses for why autism occurs in humans (which some estimates suggest now affects around 3.5 million people in the US). Some of the disorders are thought to be at the cellular level, where nerve cells do not develop normally and organize properly in the brain, and some are thought to be at the molecular level where the building blocks in cells don’t function properly. Scientists have found these clues by using tools such as studying human genetics and animal models, imaging the brains of ASD patients, and looking at the pathology of ASD brains to see what has gone wrong to cause the disease.

Unfortunately, these tools alone are not sufficient to recreate all aspects of ASD. This is where cellular models have stepped in to help. Scientists are now developing human stem cell derived models of ASD to create “autism in a dish” and are finding that the nerve cells in these models show characteristics of these disorders.

Stem cell models of autism and ASD

We’ve reported on some of these studies in previous blogs. A group from UCSD lead by CIRM grantee Alysson Muotri used induced pluripotent stem cells or iPS cells to model non-syndromic autism (where autism is the primary diagnosis). The work has been dubbed the “Tooth Fairy Project” – parents can send in their children’s recently lost baby teeth which contain cells that can be reprogrammed into iPS cells that can then be turned into brain cells that exhibit symptoms of autism. By studying iPS cells from individuals with non-syndromic autism, the team found a mutation in the TRPC6 gene that was linked to abnormal brain cell development and function and is also linked to Rett syndrome – a rare form of autism predominantly seen in females.

Another group from Yale generated “mini-brains” or organoids derived from the iPS cells of ASD patients. They specifically found that ASD mini-brains had an increased number of a type of nerve cell called inhibitory neurons and that blocking the production of a protein called FOXG1 returned these nerve cells back to their normal population count.

Last week, a group from the Salk Institute in collaboration with scientists at UC San Diego published findings about another stem cell model for ASD that offers new clues into the early neurodevelopmental defects seen in ASD patients.  This CIRM-funded study was led by senior author Rusty Gage and was published last week in the Nature journal Molecular Psychiatry.

Unlocking clues to autism using patient stem cells

Gage and his team were fascinated by the fact that as many as 30 percent of people with ASD experience excessive brain growth during early in development. The brains of these patients have more nerve cells than healthy individuals of the same age, and these extra nerve cells fail to organize properly and in some cases form too many nerve connections that impairs their overall function.

To understand what is going wrong in early stages of ASD, Gage generated iPS cells from ASD individuals who experienced abnormal brain growth at an early age (their brains had grown up to 23 percent faster when they were toddlers compared to normal toddlers). They closely studied how these ASD iPS cells developed into brain stem cells and then into nerve cells in a dish and compared their developmental progression to that of healthy iPS cells from normal individuals.

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

They quickly observed a problem with neurogenesis – a term used to describe how brain stem cells multiply and create new nerve cells in the brain. Brain stem cells derived from ASD iPS cells displayed more neurogenesis than normal brain stem cells, and thus were creating an excess amount of nerve cells. The scientists also found that the extra nerve cells failed to form as many synaptic connections with each other, an essential process that allows nerve cells to send signals and form a functional network of communication, and also behaved abnormally and overall had less activity compared to healthy neurons. Interestingly, they saw fewer inhibitory neuron connections in ASD neurons which is contrary to what the Yale study found.

The abnormal activity observed in ASD neurons was partially corrected when they treated the nerve cells with a drug called IGF-1, which is currently being tested in clinical trials as a possible treatment for autism. According to a Salk news release, “the group plans to use the patient cells to investigate the molecular mechanisms behind IGF-1’s effects, in particular probing for changes in gene expression with treatment.”

Will stem cells be the key to understanding autism?

It’s clear that human iPS cell models of ASD are valuable in helping tease apart some of the mechanisms behind this very complicated group of disorders. Gage’s opinion is that:

“This technology allows us to generate views of neuron development that have historically been intractable. We’re excited by the possibility of using stem cell methods to unravel the biology of autism and to possibly screen for new drug treatments for this debilitating disorder.”

However, to me it’s also clear that different autism stem cell models yield different results, but these differences are likely due to which populations the iPS cells are derived from. Creating more cell lines from different ASD subpopulations will surely answer more questions about the developmental differences and differences in brain function seen in adults.

Lastly, one of the co-authors on the study, Carolina Marchetto, made a great point in the Salk news release by acknowledging that their findings are based on studying cells in a dish, not actual patient’s brains. However, Marchetto believes that these cells are useful tools for studying autism:

“It never fails to amaze me when we can see similarities between the characteristics of the cells in the dish and the human disease.”

Rusty Gage and Carolina Marchetto. (Salk Institute)

Rusty Gage and Carolina Marchetto. (Salk Institute)


Related Links

Stem cell stories that caught our eye: heart repair, a culprit in schizophrenia, 3-parent embryos and funding for young scientists

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Chemicals give stem cells heart.  Coaxing stem cells into improving the function of failing hearts has proven quite difficult. Many trials have used a type of stem cell found in fat and bone marrow, called mesenchymal stem cells, to release factors believed to reduce scarring after a heart attack and improve the growth of new blood vessels to nourish the damaged area. But they have produced spotty and only modest positive results. CIRM funds a team at Capricor that uses related cells, but retrieved from heart tissue and believed to release factors that are more efficient in fostering repair—the results are still pending.

Get-Over-Heartbreak-Step-08 This week a Belgian company, using technology developed by the Mayo Clinic in Minnesota, announced positive results for a third option. They start with the stem cells from bone marrow, but in the lab treat them with a cocktail of chemicals that take them part way down the path to becoming heart muscle—into cells called cardiac progenitors. Having shown safety and initial signs of benefit in Phase 1 and 2 trials in Europe, the company Celyad launched the first part of a Phase 3 trial in 2012 and released the results this week.

The company’s research team found that, as with many breakthrough therapies, the most important aspect of early trials is defining which patients are most likely to benefit. The results did not show a benefit for the entire patient group lumped together, but did show significant gain for the 60 percent who fit a certain profile of symptoms at the start of the study. Twin Cities Business wrote about the research that originated in its home state, quoting the lead researcher with OLV Hospital in Belgium, Jozef Bartunek:

 “The results seen for a large clinically relevant number of the patients are groundbreaking,” adding that the results would direct the selection of patients for the second part of the trial to be conducted in the U.S.

The fundamental work done by researchers at Mayo discovered the mechanisms that drive an embryonic stem cell to become heart cells and used that information to develop the cocktail of chemicals that can turn ordinary adult stem cells into cardiac progenitors.

 

Stem cell model fingers culprit in brain. We were all taught the dogma about the path from genes to our tissues: DNA to RNA to protein. And we learned that two types of RNA did the heavy lifting in this transition from genetic recipe to functioning tissue. But RNAs have turned out to be a much more complex family of genetic players, with several types regulating genes rather than coding for any specific function. Some of the most active of these are the micoRNAs with more than 2,000 identified.

A CIRM-funded team at the Salk Institute in La Jolla has fingered one microRNA, miR-19, as playing a role in the faulty wiring seen among nerves in patients with schizophrenia. We always have a few nerve progenitor cells maturing into nerves. But the team found that when they altered the levels of miR-19 the new nerves did not migrate to where they were needed. So, the researchers made iPS type stem cells from patients with schizophrenia, matured them into nerves and looked at miR-19 levels and found them elevated. They also showed the nerve cells did not migrate properly.

 “This is one of the first links between an individual microRNA and a specific process in the brain or a brain disorder,” said senior author Rusty Gage, in an institute press release posted by trueviralnews.

mir19-schizophrenia-neurosciencenews

Over expressing the microRNA miR-19 resulted in new nerves migrating and branching abnormally (right) compared to untreated cells (left)

 

Profile of 3-parent pioneer.  No matter where you stand on the ethics of the “three-parent” fertilization technique that has been much in the news this year, you will enjoy reading Karen Weintraub’s well researched and well written piece about the leading pioneer in the field, Shoukhrat Mitalipov in STAT this morning.

 

Mitalipov-2

Pioneer Mitalipov

The technique focuses on the 37 genes that reside in our cells’ mitochondria rather than in the cells’ nucleus. We only inherit those genes from our moms because we only get the mitochondria in mom’s egg. So, when a woman has a disease-causing mutation in one of those genes, she could have a healthy child that mostly matched her genetic makeup if she could just swap out her mitochondria for someone else’s. That is exactly what the new technique accomplishes.

So far, it has only been tried in monkeys, the oldest of those offspring are now 7 but they are males. The first female is just 4 and since monkeys don’t reproduce until age 6 or 7, and the FDA wants to see how her babies fare, it will be some time before the procedure gets the green light to move forward in humans. None of the 3-parent monkeys show any health issues so far.

Karen’s piece paints a detailed account of the research’s protractors and detractors, as well putting a human face on the man leading the charge. As someone who reads regular posts from a cousin with a child struggling from “Mito” disease, I am rooting for this protagonist.

 

Funding challenge for young stem cell scientists.  A new study in the journal Cell Stem Cell quantifies a lament you hear anytime you are around young researchers, they have a hard time competing with older researchers in the field. The author of the report, Misty Heggeness from the National Institutes of Health, was quoted in news outlets including the San Diego Union Tribune and the blog Science 2.0 on a related issue that should set off alarm bells. If young people are not attracted to the field or fail to stay in the field, at the same time established scientists are nearing retirement age, we could end up with a gap in the research workforce in a few years.

 “From a policy and leadership perspective, one needs to understand what the near future year implications of an aging workforce are. If a system discourages younger cohorts from staying and is heavily composed of older cohorts who will exit the workforce in the near term, who will replace them?”

Part of the problem young researchers have seems to be baked into the current system. Young researchers compete fairly well with older ones on individual applications, but older researchers have the resources to file a lot more applications.  They have more personnel in their labs, freeing them up to write applications, and that personnel also produces the preliminary data that are often needed to even meet application requirements.

The Union Trib piece pointed out that older and younger stem cell scientists are both doing better with funding in California because of CIRM.