Magnetized stem cells used to treat lung disease in mice

Magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of mesenchymal stromal cells (MSCs) but, so far, has not been performed in lung diseases. With the aid of magnets, magnetized MSCs remained longer in the lungs, and this was associated with increased beneficial effects for the treatment of silicosis in mice. Image Credit: AlphaMed Press

Certain jobs, such as construction work and sand blasting, are quite labor intensive but can also lead to some unexpected health complications down the road. One of these is called silicosis, a serious lung disease that affects millions of workers worldwide. It is the result of years of breathing in silica, a type of dust particle most commonly found in sand. The particles can cause inflammation and scarring of the lung tissue, which can lead to trouble breathing and death in the most severe cases. There is currently no cure for this condition and once the damage is done it cannot be reversed.

However, Dr. Patricia Rocco and Dr. Fernanda Cruz from the Laboratory of Pulmonary Investigation at Universidade Federal do Rio de Janeiro, Brazil have found a promising approach to treat silicosis that involves the use of stem cells and magnetization.

In this study, mesenchymal stromal cells (MSCs), a type of stem cell that has anti-inflammatory properties, were magnetized using specialized nanoparticles. The effects of the newly magnetized MSCs were then studied in mice in which silicosis was induced to see if magnetization could aid in delivery to the lungs. One group of mice was injected with saline (as a control study) while another group was injected with the magnetized MSCs. A third group of mice was injected with magnetized MSCs with a pair of magnets attached to their chest for 2 days. The results showed that using the magnetized MSCs alongside the magnets proved to be most effective in migrating the cells towards the lungs.

In a news release, Dr. Cruz elaborated on their findings for this portion of the study.

“Upon removal of the magnets, we examined all the animals in all the groups and found that those implanted with magnets had a significantly larger amount of magnetized MSCs in their lungs.”

For the next portion of the study, the team compared treatments in mice using magnetized MSCs with magnets vs non-magnetized MSCs. After 7 days, the magnets were removed from the mice with magnetized MSCs and their lungs were evaluated. It was found that those treated with magnetized MSCs and magnets showed significant signs of lung improvement while the other mice did not.

In the same news release, Dr. Rocco discusses the implications that these results have in terms of developing a potential treatment.

“This tells us that magnetic targeting may be a promising strategy for enhancing the beneficial effects of MSC-based cell therapies for silicosis and other chronic lung diseases.”

The full results of this study were published in Stem Cells Translational Medicine (SCTM).

CIRM has recently funded a clinical trial that uses MSCs to treat patients with acute respiratory distress syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs, in both COVID-19 positive and COVID-19 negative patients.

Super charging killer cells to fight leukemia

Colorized scanning electron micrograph of a natural killer cell.
Photo credit: National Institute of Allergy and Infectious Diseases

Racing car drivers are forever tinkering with their cars, trying to streamline them and soup up their engines because while fast is good, faster is better. Researchers do the same things with potential anti-cancer therapies, tinkering with them to make them safer and more readily available to patients while also boosting their ability to fight cancer.

That’s what researchers at the University of California San Diego (UCSD), in a CIRM-funded study, have done. They’ve taken immune system cells – with the already impressive name of ‘natural killer’ (NK) cells – and made them even deadlier to cancers.

These natural killer (NK) cells are considered one of our immune system’s frontline weapons against outside threats to our health, things like viruses and cancer. But sometimes the cancers manage to evade the NKs and spread throughout the body or, in the case of leukemia, throughout the blood.

Lots of researchers are looking at ways of taking a patient’s own NK cells and, in the lab boosting their ability to fight these cancers. However, using a patient’s own cells is both time consuming and very, very expensive.

Dan Kaufman MD

Dr. Dan Kaufman and his team at UCSD decided it would be better to try and develop an off-the-shelf approach, a therapy that could be mass produced from a single batch of NK cells and made available to anyone in need.

Using the iPSC method (which turns tissues like skin or blood into embryonic stem cell-like cells, capable of becoming any other cell in the body) they created a line of NK cells. Then they removed a gene called CISH which slows down the activities of cytokines, acting as a kind of brake or restraint on the immune system.

In a news release, Dr. Kaufman says removing CISH had a dramatic effect, boosting the power of the NK cells.

“We found that CISH-deleted iPSC-derived NK cells were able to effectively cure mice that harbor human leukemia cells, whereas mice treated with the unmodified NK cells died from the leukemia.”

Dr. Kaufman says the next step is to try and develop this approach for testing in people, to see if it can help people whose disease is not responding to conventional therapies.

“Importantly, iPSCs provide a stable platform for gene modification and since NK cells can be used as allogeneic cells (cells that come from donors) that do not need to be matched to individual patients, we can create a line of appropriately modified iPSC-derived NK cells suitable for treating hundreds or thousands of patients as a standardized, ‘off-the-shelf’ therapy.”

The study is published in the journal Cell Stem Cell.

CIRM Board Approves Two Additional COVID-19 Projects

Dr. Vaithilingaraja Arumugaswami (left) and Dr. Song Li (right), UCLA

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional projects as part of the $5 million in emergency funding for COVID-19 related projects. This brings the number of projects CIRM is supporting to 11, including two clinical trials.

The Board awarded $349,999 to Dr. Vaithilingaraja Arumugaswami at UCLA.  The focus of this project will be to study Berzosertib, a therapy targeting viral replication and damage in lung stem cells.  The ultimate goal would be to use this agent as a therapy to prevent COVID-19 viral replication in the lungs, thereby reducing lung injury, inflammation, and subsequent lung disease caused by the virus.  

This award is part of CIRM’s Translational Stage Research Program (TRAN1), which promotes the activities necessary for advancement to clinical study of a potential therapy.

The Board also awarded $149,916 to Dr. Song Li at UCLA.  This project will focus on developing an injectable biomaterial that can induce the formation of T memory stem cells (TMSCs), an important type of stem cell that plays a critical role in generating an immune response to combat viruses. In vaccine development, there is a major challenge that the elderly may not be able to mount a strong enough immunity.  This innovative approach seeks to address this challenge by increasing TMSCs in order to boost the immune response to vaccines against COVID-19.

This award is under CIRM’s Discovery Stage Research Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“CIRM continues to support novel COVID-19 projects that build on previous knowledge acquired,” says Dr. Maria T. Millan, the President & CEO of CIRM. “These two projects represent the much-needed multi-pronged approach to the COVID-19 crisis, one addressing the need for effective vaccines to prevent disease and the other to treat the severe illness resulting from infection.”

The growth of virtual clinical trials during COVID-19

A participant in a virtual study run by the California firm Science 37 receives materials at home. Credit: Christian Alexander

In the midst of the coronavirus pandemic, there has been a desire to continue to conduct ongoing clinical trials while maintaining social distancing as much as possible. Clinical trial participants have been hesitant to attend routine check-ups and monitoring due to the risk of exposure and health-care workers are stretched beyond their capacity treating COVID-19 patients. As a result of this, many clinical trials have been put on hold.

Since the coronavirus began to spread, Science 37, a company that supports virtual clinical trials conducted mostly online, began to receive hundreds of inquiries every week from pharmaceutical companies, medical centers, and individual investigators. These inquiries revolve around how best to transition to a virtual clinical trial structure, where consultations are performed online and paperwork and data are collected remotely as much as possible.

In an article published in the journal Nature, Jonathan Cotliar, chief medical officer of Science 37, discusses the impact that COVID-19 has had on the company.

“It’s exponentially accelerated the adoption curve of what we were already doing. That’s been a bit surreal.”

One example of a virtual clinical trial was conducted at the University of Minnesota in Minneapolis by Dr. David Boulware and his colleagues. They conducted a randomized, controlled, virtual trial of the malaria drug hydroxychloroquine to find out if it was effective at protecting people from COVID-19 (the results found that it was not). The trial included more than 800 participants and sent them medicine by FedEx delivery while monitoring their health via virtual appointments.

It is anticipated that even as the coronavirus pandemic and social distancing measures come to an end, virtual clinical trials will continue to be used in the future. Patient advocates have long pushed for these kinds of trials to ease the burden of clinical trial participation, which tends to be more challenging for underrepresented and underserved communities. As a result of the increase in virtual trials, the FDA has released guidelines for conducting virtual trials in order to streamline the process. It is possible that virtual trials might speed up enrollment of participants, which could help speed up the drug-development process while still maintaining rigorous standards.

Blocking pancreatic cancer stem cells

John Cashman

Cancer stem cells are one of the main reasons why cancers are able to survive surgery, chemotherapy and radiation. They are able to hide from those therapies and, at a future date, emerge and spread the cancer in the body once again.

Jionglia Cheng, PhD.

Jionglia Cheng, PhD., the lead author of a new CIRM-funded study, says that’s one of the reasons why pancreatic cancer has proved so difficult to treat.

“Pancreatic cancer remains a major health problem in the United States and soon will be the second most common cause of mortality due to cancer. A majority of pancreatic cancer patients are often resistant to clinical therapies. Thus, it remains a challenge to develop an efficacious clinically useful pancreatic cancer therapy.”

Dr. Cheng, a researcher with ChemRegen Inc., teamed up with John Cashman at the Human BioMolecular Research Institute and identified a compound, that seems to be effective in blocking the cancer stem cells.

In earlier studies the compound, called PAWI-2, demonstrated effectiveness in blocking breast, prostate and colon cancer. When tested in the laboratory PAWI-2 showed it was able to kill pancreatic cancer stem cells, and also was effective in targeting drug-resistant pancreatic cancer stem cells.

In addition, when PAWI-2 was used with a drug called erlotinib (brand name Tarceva) which is commonly prescribed for pancreatic cancer, the combination proved more effective against the cancer stem cells than erlotinib alone.

In a news release Dr. Cheng said: “In the future, this molecule could be used alone or with other chemotherapy albeit at lower doses, as a new therapeutic drug to combat pancreatic cancer. This may lead to much less toxicity to the patient,”

The study is published in the journal Scientific Reports.

Researchers grow hairy skin from human stem cells

 Dr. Jiyoon Lee (left) and Dr. Karl Koehler (right), Indiana University School of Medicine

For years the idea of being able to regrow hair has been the domain of cheesy, middle-of-the-night TV infomercials. Now two researchers may have found a way to actually make it happen, and their work could have implications far more important than helping bald men.

Building on years of research, Dr. Jiyoon Lee and Dr. Karl Koehler from the Indiana University School of Medicine were able to use human stem cells to grow hair on skin. The complex skin model was developed by using pluripotent stem cells, a kind of stem cell that can become virtually any kind of cell in the body.

To do this, Dr. Lee, Dr. Koehler, and a team of researchers incubated the human stem cells for 150 days. During this time, the cells formed a ball shaped cluster of cells called a skin organoid. The interior of the organoid is similar to the top layer of skin, known as the epidermis, and the outside is similar to the bottom layer, known as the dermis.

In a press release, Dr. Koehler describes the skin organoid and the process in more detail.

“We’ve developed a new cooking recipe for generating human skin that produces hair follicles after about 70 days in culture. When the hair follicles grow, the roots extend outward radially. It’s a bizarre-looking structure, appearing almost like a deep-sea creature with tentacles coming out from it.”

After the skin organoid was formed, the researchers tested if it could be integrated onto the skin of nude mice by performing skin grafts. The results were remarkable as more than half of the organoids that the scientists engrafted on the mice grew human hair follicles. The skin organoid developed is similar to fetal facial skin and hair.

This skin organoid model has great potential in terms of helping with drug or gene therapies for skin disorders or recreating the earliest stages of skin cancer formation.

In the same press release, Dr. Lee discusses the potential their findings have for reconstructive purposes.

“This could be a huge innovation, providing a potentially unlimited source of soft tissue and hair follicles for reconstructive surgeries.”

The full results of this study were published in Nature.

“Mini” human liver made of stem cells successfully transplanted in rats

Miniature liver made from human skin cells turned stem cells turned specialized liver cells Photo Credit: University of Pittsburgh School of Medicine

According to the American Liver Foundation website, almost 14,000 patients are on the waiting list for a liver transplant. But what if there was a way to generate a liver using your own cells so that you didn’t have to wait? Researchers at the University of Pittsburgh School of Medicine have gotten one step closer towards that goal.

Using human skin cells from volunteers, Dr. Alejandro Soto-Gutierrez and his team of researchers were able to create “mini” livers which were successfully transplanted into rats. In this proof of concept experiment, the “mini” livers survived inside the rats for four days. Additionally, they secreted bile acids and urea and produced proteins similar to a normal liver. Normally, liver maturation takes up to two years in a natural environment, but Dr. Soto-Gutierrez and his team were able to do this in under a month.

The researchers were able to do this by taking human skin cells and reprogramming them into induced pluripotent stem cells (iPSCs), a type of stem cell that has the ability to turn into virtually any other kind of cell. These newly formed iPSCs were then made into liver cells which were then seeded into a rat liver with all of its own cells removed. These newly formed “mini” livers were then transplanted into the rats.

In a press release, Dr. Soto-Gutierrez discusses what it was like observing the newly created “mini” livers.

“Seeing that little human organ there inside the animal – brown, looking like a liver – that was pretty cool. This thing that looks like a liver and functions like a liver came from somebody’s skin cells.”

Although these results were promising, there are still challenges that need to be addressed in future studies such as long-term survival and safety issues.

Even so, Dr. Soto-Gutierrez says his research could one-day benefit patients who are running out of options.

“The long-term goal is to create organs that can replace organ donation, but in the near future, I see this as a bridge to transplant. For instance, in acute liver failure, you might just need hepatic boost for a while instead of a whole new liver”.

The full results to this study were published in Cell Reports.

Stem Cell Agency Board Approves Three More Projects Targeting COVID-19

Dr. Jianhua Yu (left), Dr. Helen Blau (center), and Dr. Albert Wong (right)

The COVID-19 virus targets many different parts of the body, often with deadly or life-threatening consequences. This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investments in three early-stage research programs taking different approaches to battling the virus.

Dr. Jianhua Yu at the Beckman Research Institute of City of Hope was awarded $150,000 to use stem cells from umbilical cord blood to attack the virus. Dr. Yu and his team have many years of experience in taking cord blood cells and turning them into what are called chimeric antigen receptor (CAR) natural killer (NK) cells. The goal is to deploy these CAR NK cells to specifically target cells infected with COVID-19. This leverages the body of work at the City of Hope to develop this technology for cancer.

Dr. Helen Blau of Stanford University was awarded $149,996 to target recovery of muscle stem cells of the diaphragm in COVID-19 patients who have an extended period on a ventilator.

Patients with severe coronavirus often suffer respiratory failure and end up on mechanical ventilation that takes over the work of breathing. Over time, the diaphragm, the main muscle responsible for inhaling and exhaling, weakens and atrophies. There is no treatment for this kind of localized muscle wasting and it is anticipated that some of these patients will take months, if not years, to fully recover. Dr. Blau’s team proposes to develop a therapy with Prostaglandin E2 and Bupivacaine based on data generated by Dr. Blau’s group that these drugs, already approved by the FDA for other indications, have the potential to stimulate muscle stem cell recovery.

Dr. Albert Wong, also from Stanford University, was awarded $149,999 to develop vaccine candidates against COVID-19.

Most vaccine candidates are focused on getting the body to produce an antibody response to block the virus. However, Dr. Wong thinks that to be truly effective, a vaccine also needs to produce a CD8+ T cell response to augment an effective immune response to remove the COVID-19 infected cells that are hijacked by the virus to spread and cause illness.  This team will use the experience it gained using CIRM funds to vaccine against glioblastoma, a deadly brain cancer, to advance a similar approach to produce an effective cellular immune response to combat COVID-19.  

“CIRM is committed to supporting novel, multi-pronged approaches to battle this COVID-19 crisis that leverage solid science and knowledge gained in other areas.” says Dr. Maria T. Millan, the President & CEO of CIRM. “These three projects highlight three very different approaches to combatting the acute devastating health manifestations of COVID-19 as well as the debilitating sequelae that impact the ability to recover from the acute illness. Through this COVID funding opportunity, CIRM is enabling researchers to re-direct work they have already done, often with CIRM support, to quickly develop new approaches to COVID-19.”

Parkinson’s Disease and Stem Cells

Lila Collins, PhD

A few weeks ago we held a Facebook Live “Ask the Stem Cell Team About Parkinson’s Disease” event. As you can imagine we got lots of questions but, because of time constraints, only had time to answer a few. Thanks to my fabulous CIRM colleagues, Dr. Lila Collins and Dr. Kent Fitzgerald, for putting together answers to some of the other questions. Here they are.

Kent Fitzgerald, PhD

Q: It seems like we have been hearing for years that stem cells can help people with Parkinson’s, why is it taking so long?

A: Early experiments in Sweden using fetal tissue did provide a proof of concept for the strategy of replacing dopamine producing cells damaged or lost in Parkinson’s disease (PD) . At first, this seemed like we were on the cusp of a cell therapy cure for PD, however, we soon learned based on some side effects seen with this approach (in particular dyskinesias or uncontrollable muscle movements) that the solution was not as simple as once thought. 

While this didn’t produce the answer it did provide some valuable lessons.

The importance of dopaminergic (DA) producing cell type and the location in the brain of the transplant.  Simply placing the replacement cells in the brain is not enough. It was initially thought that the best site to place these DA cells is a region in the brain called the SN, because this area helps to regulate movement. However, this area also plays a role in learning, emotion and the brains reward system. This is effectively a complex wiring system that exists in a balance, “rewiring” it wrong can have unintended and significant side effects. 

Another factor impacting progress has been understanding the importance of disease stage. If the disease is too advanced when cells are given then the transplant may no longer be able to provide benefit.  This is because DA transplants replace the lost neurons we use to control movement, but other connected brain systems have atrophied in response to losing input from the lost neurons. There is a massive amount of work (involving large groups and including foundations like the Michael J Fox Foundation) seeking to identify PD early in the disease course where therapies have the best chance of showing an effect.   Clinical trials will ultimately help to determine the best timing for treatment intervention.

Ideally, in addition to the cell therapies that would replace lost or damaged cells we also want to find a therapy that slows or stops the underlying biology causing progression of the disease.

So, I think we’re going to see more gene therapy trials including those targeting the small minority of PD that is driven by known mutations.  In fact, Prevail Therapeutics will soon start a trial in patients with GBA1 mutations. Hopefully, replacing the enzyme in this type of genetic PD will prevent degeneration.

And, we are also seeing gene therapy approaches to address forms of PD that we don’t know the cause, including a trial to rescue sick neurons with GDNF which is a neurotrophic factor (which helps support the growth and survival of these brain cells) led by Dr Bankiewicz  and trials by Axovant and Voyager, partnered with Neurocrine aimed at restoring dopamine generation in the brain.

 A small news report came out earlier this year about a recently completed clinical trial by Roche Pharma and Prothena. This addressed the build up in the brain of what are called lewy bodies, a problem common to many forms of PD. While the official trial results aren’t published yet, a recent press release suggests reason for optimism.  Apparently, the treatment failed to statistically improve the main clinical measurement, but other measured endpoints saw improvement and it’s possible an updated form of this treatment will be tested again in the hopes of seeing an improved effect.

Finally, I’d like to call attention to the G force trials. Gforce is a global collaborative effort to drive the field forward combining lessons learned from previous studies with best practices for cell replacement in PD.  These first-in-human safety trials to replace the dopaminergic neurons (DANs) damaged by PD have shared design features including identifying what the best goals are and how to measure those.

The CIRA trial, Dr Jun Takahashi

The NYSTEM PD trial, Dr Lorenz Studer

The EUROSTEMPD trial, Dr Roger Barker.

And the Summit PD trial, Dr Jeanne Loring of Aspen Neuroscience.

Taken together these should tell us quite a lot about the best way to replace these critical neurons in PD.

As with any completely novel approach in medicine, much validation and safety work must be completed before becoming available to patients

The current approach (for cell replacement) has evolved significantly from those early studies to use cells engineered in the lab to be much more specialized and representing the types believed to have the best therapeutic effects with low probability of the side effects (dyskinesias) seen in earlier trials. 

If we don’t really know the cause of Parkinson’s disease, how can we cure it or develop treatments to slow it down?

PD can now be divided into major categories including 1. Sporadic, 2. Familial. 

For the sporadic cases, there are some hallmarks in the biology of the neurons affected in the disease that are common among patients.  These can be things like oxidative stress (which damages cells), or clumps of proteins (like a-synuclein) that serve to block normal cell function and become toxic, killing the DA neurons. 

The second class of “familial” cases all share one or more genetic changes that are believed to cause the disease.  Mutations in genes (like GBA, LRRK2, PRKN, SNCA) make up around fifteen percent of the population affected, but the similarity in these gene mutations make them attractive targets for drug development.

CIRM has funded projects to generate “disease in a dish” models using neurons made from adults with Parkinson’s disease.   Stem cell-derived models like this have enabled not only a deep probing of the underlying biology in Parkinson’s, which has helped to identify new targets for investigation, but have also allowed for the testing of possible therapies in these cell-based systems. 

iPSC-derived neurons are believed to be an excellent model for this type of work as they can possess known familial mutations but also show the rest of the patients genetic background which may also be a contributing factor to the development of PD. They therefore contain both known and unknown factors that can be tested for effective therapy development.

I have heard of scientists creating things called brain organoids, clumps of brain cells that can act a little bit like a brain. Can we use these to figure out what’s happening in the brain of people with Parkinson’s and to develop treatments?

There is considerable excitement about the use of brain organoids as a way of creating a model for the complex cell-to-cell interactions in the brain.  Using these 3D organoid models may allow us to gain a better understanding of what happens inside the brain, and develop ways to treat issues like PD.

The organoids can contain multiple cell types including microglia which have been a hot topic of research in PD as they are responsible for cleaning up and maintaining the health of cells in the brain.  CIRM has funded the Salk Institute’s Dr. Fred Gage’s to do work in this area.

If you go online you can find lots of stem cells clinics, all over the US, that claim they can use stem cells to help people with Parkinson’s. Should I go to them?

In a word, no! These clinics offer a wide variety of therapies using different kinds of cells or tissues (including the patient’s own blood or fat cells) but they have one thing in common; none of these therapies have been tested in a clinical trial to show they are even safe, let alone effective. These clinics also charge thousands, sometimes tens of thousands of dollars these therapies, and because it’s not covered by insurance this all comes out of the patient’s pocket.

These predatory clinics are peddling hope, but are unable to back it up with any proof it will work. They frequently have slick, well-designed websites, and “testimonials” from satisfied customers. But if they really had a treatment for Parkinson’s they wouldn’t be running clinics out of shopping malls they’d be operating huge medical centers because the worldwide need for an effective therapy is so great.

Here’s a link to the page on our website that can help you decide if a clinical trial or “therapy” is right for you.

Is it better to use your own cells turned into brain cells, or cells from a healthy donor?

This is the BIG question that nobody has evidence to provide an answer to. At least not yet.

Let’s start with the basics. Why would you want to use your own cells? The main answer is the immune system.  Transplanted cells can really be viewed as similar to an organ (kidney, liver etc) transplant. As you likely know, when a patient receives an organ transplant the patient’s immune system will often recognize the tissue/organ as foreign and attack it. This can result in the body rejecting what is supposed to be a life-saving organ. This is why people receiving organ transplants are typically placed on immunosuppressive “anti-rejection “drugs to help stop this reaction. 

In the case of transplanted dopamine producing neurons from a donor other than the patient, it’s likely that the immune system would eliminate these cells after a short while and this would stop any therapeutic benefit from the cells.  A caveat to this is that the brain is a “somewhat” immune privileged organ which means that normal immune surveillance and rejection doesn’t always work the same way with the brain.  In fact analysis of the brains collected from the first Swedish patients to receive fetal transplants showed (among other things) that several patients still had viable transplanted cells (persistence) in their brains.

Transplanting DA neurons made from the patient themselves (the iPSC method) would effectively remove this risk of the immune system attack as the cells would not be recognized as foreign.

CIRM previously funded a discovery project with Jeanne Loring from Scripps Research Institute that sought to generate DA neurons from Parkinson’s patients for use as a potential transplant therapy in these same patients.   This project has since been taken on by a company formed, by Dr Loring, called Aspen Neuroscience.  They hope to bring this potential therapy into clinical trials in the near future.    

A commonly cited potential downside to this approach is that patients with genetic (familial) Parkinson’s would be receiving neurons generated with cells that may have the same mutations that caused the problem in the first place. However, as it can typically take decades to develop PD, these cells could likely function for a long time. and prove to be better than any current therapies.

Creating cells from each individual patient (called autologous) is likely to be very expensive and possibly even cost-prohibitive. That is why many researchers are working on developing an “off the shelf” therapy, one that uses cells from a donor (called allogeneic)would be available as and when it’s needed.

When the coronavirus happened, it seemed as if overnight the FDA was approving clinical trials for treatments for the virus. Why can’t it work that fast for Parkinson’s disease?

While we don’t know what will ultimately work for COVID-19, we know what the enemy looks like.  We also have lots of experience treating viral infections and creating vaccines.  The coronavirus has already been sequenced, so we are building upon our understanding of other viruses to select a course to interrupt it.  In contrast, the field is still trying to understand the drivers of PD that would respond to therapeutic targeting and therefore, it’s not precisely clear how best to modify the course of neurodegenerative disease.  So, in one sense, while it’s not as fast as we’d like it to be, the work on COVID-19 has a bit of a head start.

Much of the early work on COVID-19 therapies is also centered on re-purposing therapies that were previously in development.  As a result, these potential treatments have a much easier time entering clinical trials as there is a lot known about them (such as how safe they are etc.).  That said, there are many additional therapeutic strategies (some of which CIRM is funding) which are still far off from being tested in the clinic. 

The concern of the Food and Drug Administration (FDA) is often centered on the safety of a proposed therapy.  The less known, the more cautious they tend to be. 

As you can imagine, transplanting cells into the brain of a PD patient creates a significant potential for problems and so the FDA needs to be cautious when approving clinical trials to ensure patient safety.

CIRM Board Expands Efforts of COVID-19 Program

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) expanded efforts related to the $5 million in emergency funding for the CIRM COVID-19 program.

The new guidelines mean that inception discovery projects (DISC1), whose goal is developing new and transformational ideas, will now be eligible for CIRM COVID-19 funding.  These projects can receive up to $150,000 and must have data to confirm or reject their hypothesis within 6 months. In addition to this, quest discovery projects (DISC2), which promote the discovery of new technologies that could be translated to enable broad use, can now receive up to $250,000 in funding.

The Board approved using $1 million from the program in supplemental support for CIRM-funded COVID-19 clinical trials. Under the change an existing clinical trial can receive up to $250,000 in additional funding but must demonstrate sufficient progress and specific activities in order to be eligible.  The Board will also require that all clinical trial projects include a plan for outreach and study participation by underserved and disproportionately affected populations.

The Board also strongly encouraged those that meet the stem cell component for vaccine development for COVID-19 to apply for funding.

“We continue to receive large amounts of inquiries and applications to the COVID-19 program announcement,” said Maria T. Millan, M.D., President and CEO of CIRM. “The amendments passed by our Board today will provide additional opportunities for CIRM to support novel vaccine development, fundamental discoveries and the acceleration of clinical programs.”