Clever technique uncovers role of stem cells in cartilage repair

Over 50 million adults in the U.S. are estimated to be affected by some form of arthritis, a very painful, debilitating condition in which the cartilage that provides cushioning within bone joints gradually degrades. Health care costs of treating arthritis in California alone has been estimated at over $12 billion and that figure is already over a decade old. Unfortunately, the body doesn’t do a good job at healing cartilage in the joint so doctors rely mostly on masking symptoms with pain management therapy and, in severe cases, resorting to surgery.

Illustration of damaged cartilage within an osteoarthritic hip joint Image: Wikipedia/Open Stax

Mesenchymal stem cells (MSCs) – found in bone marrow, fat and blood – give rise to several cell types including cartilage-producing cells called chondrocytes. For that reason, they hold a lot of promise to restore healthy joints for arthritis sufferers. While there is growing evidence that injection of MSCs into joint cartilage is effective, it is still not clear how exactly the stem cells work. Do they take up residence in the cartilage, and give rise to new cartilage production in the joint? Or do they simply release proteins and molecules that stimulate other cells within the joint to restore cartilage? These are important questions to ask when it comes to understanding what tweaks you can make to your cell therapy to optimize its safety and effectiveness. Using some clever genetic engineering techniques in animal models, a research team at the University of Veterinary Medicine in Vienna, Austria report this week in JCI Insights that they’ve uncovered an answer.

Tracking the fate of a stem cell treatment after they’ve been injected into an animal, requires the attachment of some sort of “beacon” to the cells. A number of methods exist to accomplish this feat and they all rely on creating transgenic animals engineered to carry a gene that produces a protein label on the cells. For instance, cells from mice or rats engineered to carry the luciferase gene from fireflies, will glow and can be tracked in live animals. So, in this scenario, MSCs from a genetically-engineered donor animal are injected into the joints of a recipient animal which lacks this protein marker. This technique allows the researchers to observe what happens to the labeled cells.

There’s a catch, though. The protein marker carried along with the injected cells is seen as foreign to the immune system of the animal that receives the cells. As a result, the cells will be rejected and destroyed. To get around that problem, the current practice is to use recipient animals bred to have a limited immune response so that the injected cells survive. But solving this problem adds yet another: the immune system plays a key role in the mechanisms of arthritis so removing the effects of it in this experiment will likely lead to misinterpretations of the results.

So, the research team did something clever. They genetically engineered both the donor and recipient mice to carry the same protein marker but with an ever-so-slight difference in their genetic code. The genetic difference in the protein marker was large enough to allow the team to track the donor stem cells in the recipient animals, but similar enough to avoid rejection from the immune system. With all these components of the experiment in place, the researchers were able to show that the MSCs release protein factors to help the body repair its own cartilage damage and not by directly replacing the cartilage-producing cells.

Advertisements

A Patient Advocate’s Personal Manifesto

Janni and Obama

President Obama and Janni Lehrer-Stein

Janni Lehrer-Stein was just 26 when she was diagnosed with a degenerative eye disease and told she was going to be blind within six months. The doctor who gave her the news told her “But don’t worry, people like you are usually hit and killed by a bus long before they go completely blind.”

At the time she was recently married, had just graduated law school and landed her dream job with the government in Washington DC, litigating workplace discrimination. The news about her eyesight stopped her in her tracks.

But not for long. If you ever met Janni you would know that nothing stops her for long.

I was fortunate enough to hear Janni talk at a Foundation Fighting Blindness event in the San Francisco Bay Area last weekend. I was part of a panel discussion on new approaches to treating vision loss, including the research that CIRM is funding.

Janni didn’t talk about stem cells, instead she focused on the importance of the patient advocate voice, community, and their determination. She said one of the most important things anyone battling a life-threatening or life-changing disease or disorder needs to remember is that it’s not about disability, it’s about capability. It’s about what you can do rather than what you cannot.

Janni laid out her “manifesto” for things she says will help you keep that thought uppermost in your mind.

1) Show up. It’s that simple and that important. You have to show up. You have to get educated, you have to learn all you can about your condition so you know what you can do and what you can’t do. You have to share that information with others. You have to be there for others. Don’t just show up for yourself. Show up for others who can’t be there.

2) Share this information. Janni talked about a website called My Retina Tracker which is helping drive research into the causes of retinal diseases like retinitis pigmentosa and macular degeneration, and hopefully will lead to treatments and even cures. She says the more people work together, the more we combine our resources, the more effective we can be.

3) Support the researchers. Janni says while raising awareness is important, raising money is just as important. Without money there can be no research, and without research no treatments or cures. Janni says it doesn’t matter how you do it – a charity walk, a Go Fund me campaign, petitioning your state or federal elected representatives to urge them to fund research – everything counts, every dollar helps.

4) Remember you are part of a wider community. Janni says no one ever won a battle on their own; it takes a lot of people to fight and win the right to be treated equally. And it takes a lot of effort to stop those rights from being rolled back.

Janni hasn’t let losing her sight hold her back. In 2011, she was appointed by President Obama, and confirmed by the U.S. Senate, to the National Council on Disability where she served two terms advising the President and Congress on national disability policy.

Now she has returned home to the San Francisco Bay Area, but she is no less determined to make a difference and no less determined to fight for the rights of patients and patient advocates.

In an article on Medium she shares her feelings about being a patient advocate:

“The America that I so deeply respect is one that embraces, values and respects the contributions of us all. My America includes every one of us, regardless of our gender, race, age or disability. Our America is a place where, regardless of whether we are sighted or blind, we have the same opportunities, for which we are equally considered. Our America includes every one of us who wishes to make the world a more peaceful, responsible, and inclusive environment that is tolerant of all differences and abilities, physical or otherwise. To me, those differences make our lives richer, give our contributions more meaning, and lead to a brighter future for the next generation.”

 

Stanford scientists are growing brain stem cells in bulk using 3D hydrogels

This blog is the final installment in our #MonthofCIRM series. Be sure to check out our other blogs highlighting important advances in CIRM-funded research and initiatives.

Neural stem cells from the brain have promising potential as cell-based therapies for treating neurological disorders such as Alzheimer’s disease, Parkinson’s, and spinal cord injury. A limiting factor preventing these brain stem cells from reaching the clinic is quantity. Scientists have a difficult time growing large populations of brain stem cells in an efficient, cost-effective manner while also maintaining the cells in a stem cell state (a condition referred to as “stemness”).

CIRM-funded scientists from Stanford University are working on a solution to this problem. Dr. Sarah Heilshorn, an associate professor of Materials Science and Engineering at Stanford, and her team are engineering 3D hydrogel technologies to make it easier and cheaper to expand high-quality neural stem cells (NSCs) for clinical applications. Their research was published yesterday in the journal Nature Materials.

Stem Cells in 3D

Similar to how moviegoers prefer to watch the latest Star Wars installment in 3D, compared to the regular screen, scientists are turning to 3D materials called hydrogels to grow large numbers of stem cells. Such an environment offers more space for the stem cells to proliferate and expand their numbers while keeping them happy in their stem cell state.

To find the ideal conditions to grow NSCs in 3D, Heilshorn’s team tested two important properties of hydrogels: stiffness and degradability (or how easy it is to remodel the structure of the hydrogel material). They designed a range of hydrogels, made from proteins with elastic qualities, that varied in these two properties. Interestingly, they found that the stiffness of the material did not have a profound effect on the “stemness” of NSCs. This result contrasts with other types of adult stem cells like muscle stem cells, which quickly differentiate into mature muscle cells when exposed to stiffer materials.

On the other hand, the researchers found that it was crucial for the NSCs to be able to remodel their 3D environment. NSCs maintained their stemness by secreting enzymes that broke down and rearranged the molecules in the hydrogels. If this enzymatic activity was blocked, or if the cells were grown in hydrogels that couldn’t be remodeled easily, NSCs lost their stemness and stopped proliferating. The team tested two other hydrogel materials and found the same results. As long as the NSCs were in a 3D environment they could remodel, they were able to maintain their stemness.

NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Image courtesy of Chris Madl, Stanford)

Caption: NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Images courtesy of Chris Madl)

Christopher Madl, a PhD student in the Heilshorn lab and the first author on the study, explained how remodeling their 3D environment allows NSCs to grow robustly in an interview with the Stem Cellar:

Chris Madl

“In this study, we identified that the ability of the neural stem cells to dynamically remodel the material was critical to maintaining the correct stem cell state. Being able to remodel (or rearrange) the material permitted the cells to contact each other.  This cell-cell contact is responsible for maintaining signals that allow the stem cells to stay in a stem-like state. Our findings allow expansion of neural stem cells from relatively low-density cultures (aiding scale-up) without the use of expensive chemicals that would otherwise be required to maintain the correct stem cell behavior (potentially decreasing cost).”

To 3D and Beyond

When asked what’s next on the research horizon, Heilshorn said two things:

Sarah Heilshorn

“First, we want to see if other stem cell types – for example, pluripotent stem cells – are also sensitive to the “remodel-ability” of materials. Second, we plan to use our discovery to create a low-cost, reproducible material for efficient expansion of stem cells for clinical applications. In particular, we’d like to explore the use of a single material platform that is injectable, so that the same material could be used to expand the stem cells and then transplant them.”

Heilshorn is planning to apply the latter idea to advance another study that her team is currently working on. The research, which is funded by a CIRM Tools and Technologies grant, aims to develop injectable hydrogels containing NSCs derived from human induced pluripotent stem cells to treat mice, and hopefully one day humans, with spinal cord injury. Heilshorn explained,

“In our CIRM-funded studies, we learned a lot about how neural stem cells interact with materials. This lead us to realize that there’s another critical bottleneck that occurs even before the stage of transplantation: being able to generate a large enough number of high-quality stem cells for transplantation. We are developing materials to improve the transplantation of stem cell-derived therapies to patients with spinal cord injuries. Unfortunately, during the transplantation process, a lot of cells can get damaged. We are now creating injectable materials that prevent this cell damage during transplantation and improve the survival and engraftment of NSCs.”

An injectable material that promotes the expansion of large populations of clinical grade stem cells that can also differentiate into mature cells is highly desired by scientists pursuing the development of cell replacement therapies. Heilshorn and her team at Stanford have made significant progress on this front and are hoping that in time, this technology will prove effective enough to reach the clinic.

CIRM stories that caught our eye: UCSD team stops neuromuscular disease in mice, ALS trial enrolls 1st patients and Q&A with CIRM Prez

Ordinarily, we end each week at the Stem Cellar with a few stem cell stories that caught our eye. But, for the past couple of weeks we’ve been busy churning out stories related to our Month of CIRM blog series, which we hope you’ve found enlightening. To round out the series, we present this “caught our eye” blog of CIRM-specific stories from the last half of October.

Stopping neurodegenerative disorder with blood stem cells. (Karen Ring)

CIRM-funded scientists at the UC San Diego School of Medicine may have found a way to treat a progressive neuromuscular disorder called Fredreich’s ataxia (FA). Their research was published last week in the journal Science Translational Medicine.

FA is a genetic disease that attacks the nervous tissue in the spinal cord leading to the loss of sensory nerve cells that control muscle movement. Early on, patients with FA experience muscle weakness and loss of coordination. As the disease progresses, FA can cause scoliosis (curved spine), heart disease and diabetes. 1 in 50,000 Americans are afflicted with FA, and there is currently no effective treatment or cure for this disease.

cherqui

In this reconstituted schematic, blood stem cells transplanted in a mouse model of Friedreich’s ataxia differentiate into microglial cells (red) and transfer mitochondrial protein (green) to neurons (blue), preventing neurodegeneration. Image courtesy of Stephanie Cherqui, UC San Diego School of Medicine.

UCSD scientists, led by CIRM grantee Dr. Stephanie Cherqui, found in a previous study that transplanting blood stem and progenitor cells was an effective treatment for preventing another genetic disease called cystinosis in mice. Cherqui’s cystinosis research is currently being funded by a CIRM late stage preclinical grant.

In this new study, the UCSD team was curious to find out whether a similar stem cell approach could also be an effective treatment for FA. The researchers used an FA transgenic mouse model that was engineered to harbor two different human mutations in a gene called FXN, which produces a mitochondrial protein called frataxin. Mutations in FXN result in reduced expression of frataxin, which eventually leads to the symptoms experienced by FA patients.

When they transplanted healthy blood stem and progenitor cells (HSPCs) from normal mice into FA mice, the cells developed into immune cells called microglia and macrophages. They found the microglia in the brain and spinal cord and the macrophages in the spinal cord, heart and muscle tissue of FA mice that received the transplant. These normal immune cells produced healthy frataxin protein, which was transferred to disease-affected nerve and muscle cells in FA mice.

Cherqui explained their study’s findings in a UC San Diego Health news release:

“Transplantation of wildtype mouse HSPCs essentially rescued FA-impacted cells. Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy.”

In the news release, Cherqui’s team acknowledged that the FA mouse model they used does not perfectly mimic disease progression in humans. In future studies, the team will test their method on other mouse models of FA to ultimately determine whether blood stem cell transplants will be an effective treatment option for FA patients.

Brainstorm’s CIRM funded clinical trial for ALS enrolls its first patients
“We have been conducting ALS clinical trials for more than two decades at California Pacific Medical Center (CPMC) and this is, by far, the most exciting trial in which we have been involved to date.”

Those encouraging words were spoken by Dr. Robert Miller, director of CPMC’s Forbes Norris ALS Research Center in an October 16th news release posted by Brainstorm Cell Therapeutics. The company announced in the release that they had enrolled the first patients in their CIRM-funded, stem cell-based clinical trial for the treatment of amyotrophic lateral sclerosis (ALS).

BrainStorm

Also known as Lou Gehrig’s disease, ALS is a cruel, devastating disease that gradually destroys motor neurons, the cells in the brain or spinal cord that instruct muscles to move. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy leading to paralysis. Most people with ALS die within 3 to 5 years from the onset of symptoms and there is no effective therapy for the disease.

Brainstorm’s therapy product, called NurOwn®, is made from mesenchymal stem cells that are taken from the patient’s own bone marrow. These stem cells are then modified to boost their production and release of factors, which are known to help support and protect the motor neurons destroyed by the disease. Because the cells are derived directly from the patient, no immunosuppressive drugs are necessary, which avoids potentially dangerous side effects. The trial aims to enroll 200 patients and is a follow up of a very promising phase 2 trial. CIRM’s $16 million grant to the Israeli company which also has headquarters in the United States will support clinical studies at multiple centers in California. And Abla Creasey, CIRM’s Senior Director of Strategic Infrastructure points out in the press release, the Agency support of this trial goes beyond this single grant:

“Brainstorm will conduct this trial at multiple sites in California, including our Alpha Clinics Network and will also manufacture its product in California using CIRM-funded infrastructure.”

An initial analysis of the effectiveness of NurOwn® in this phase 3 trial is expected in 2019.

CIRM President Maria Millan reflects on her career, CIRM’s successes and the outlook for stem cell biology 

MariaMillan-085_600px

Maria T. Millan, M.D., CIRM President and CEO

RegMedNet a networking website that provides content related to the regenerative medicine community, published an interview this morning with Maria Millan, M.D., CIRM’s new President and CEO. The interview covers the impressive accomplishments that Dr. Millan had achieved before coming to CIRM, with details that even some of us CIRM team members may not have been aware of. In addition to describing her pre-CIRM career, Dr. Millan also describes the Agency’s successes during her term as Vice President of CIRM’s Therapeutics group and she gives her take on future of Agency and the stem cell biology field in general over the next five years and beyond. File this article under “must read”.

CIRM Board invests in three new stem cell clinical trials targeting arthritis, cancer and deadly infections

knee

Arthritis of the knee

Every day at CIRM we get calls from people looking for a stem cell therapy to help them fight a life-threatening or life-altering disease or condition. One of the most common calls is about osteoarthritis, a painful condition where the cartilage that helps cushion our joints is worn away, leaving bone to rub on bone. People call asking if we have something, anything, that might be able to help them. Now we do.

At yesterday’s CIRM Board meeting the Independent Citizens’ Oversight Committee or ICOC (the formal title of the Board) awarded almost $8.5 million to the California Institute for Biomedical Research (CALIBR) to test a drug that appears to help the body regenerate cartilage. In preclinical tests the drug, KA34, stimulated mesenchymal stem cells to turn into chondrocytes, the kind of cell found in healthy cartilage. It’s hoped these new cells will replace those killed off by osteoarthritis and repair the damage.

This is a Phase 1 clinical trial where the goal is primarily to make sure this approach is safe in patients. If the treatment also shows hints it’s working – and of course we hope it will – that’s a bonus which will need to be confirmed in later stage, and larger, clinical trials.

From a purely selfish perspective, it will be nice for us to be able to tell callers that we do have a clinical trial underway and are hopeful it could lead to an effective treatment. Right now the only alternatives for many patients are powerful opioids and pain killers, surgery, or turning to clinics that offer unproven stem cell therapies.

Targeting immune system cancer

The CIRM Board also awarded Poseida Therapeutics $19.8 million to target multiple myeloma, using the patient’s own genetically re-engineered stem cells. Multiple myeloma is caused when plasma cells, which are a type of white blood cell found in the bone marrow and are a key part of our immune system, turn cancerous and grow out of control.

As Dr. Maria Millan, CIRM’s President & CEO, said in a news release:

“Multiple myeloma disproportionately affects people over the age of 65 and African Americans, and it leads to progressive bone destruction, severe anemia, infectious complications and kidney and heart damage from abnormal proteins produced by the malignant plasma cells.  Less than half of patients with multiple myeloma live beyond 5 years. Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

In a news release from Poseida, CEO Dr. Eric Ostertag, said the therapy – called P-BCMA-101 – holds a lot of promise:

“P-BCMA-101 is elegantly designed with several key characteristics, including an exceptionally high concentration of stem cell memory T cells which has the potential to significantly improve durability of response to treatment.”

Deadly infections

The third clinical trial funded by the Board yesterday also uses T cells. Researchers at Children’s Hospital of Los Angeles were awarded $4.8 million for a Phase 1 clinical trial targeting potentially deadly infections in people who have a weakened immune system.

Viruses such as cytomegalovirus, Epstein-Barr, and adenovirus are commonly found in all of us, but our bodies are usually able to easily fight them off. However, patients with weakened immune systems resulting from chemotherapy, bone marrow or cord blood transplant often lack that ability to combat these viruses and it can prove fatal.

The researchers are taking T cells from healthy donors that have been genetically matched to the patient’s immune system and engineered to fight these viruses. The cells are then transplanted into the patient and will hopefully help boost their immune system’s ability to fight the virus and provide long-term protection.

Whenever you can tell someone who calls you, desperately looking for help, that you have something that might be able to help them, you can hear the relief on the other end of the line. Of course, we explain that these are only early-stage clinical trials and that we don’t know if they’ll work. But for someone who up until that point felt they had no options and, often, no hope, it’s welcome and encouraging news that progress is being made.

 

 

Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

Meet Team CIRM: the People Behind the Mission to Save Lives

During our Month of CIRM blog series, we’ve been featuring the researchers, clinicians, patients, patient advocates, institutions and companies that are striving to accelerate stem cell treatments to patients with unmet medical needs.

GameBallWinners

But there’s one group that we haven’t discussed yet: the dedicated members of the CIRM team.  They don’t get a lot of attention in our blog but they are critical to the day to day operations of the Agency. I don’t have the word space in this blog to introduce you to them all so, for today, say hello to a few of our 2017 CIRM Game Ball winners.  At our quarterly Team meetings, we honor and celebrate members whose efforts reflect our “All In” culture with this award.




CIRM’s Clinical Dashboard: An Interactive Guide Makes Learning About Stem Cell Trials Easier

This blog is part of the Month of CIRM series on the Stem Cellar.

The questions we get most frequently from members of the public are about our clinical trials. Typically, people want to know what stem cell-based trials our Agency is funding or whether we’re funding trials for specific diseases or disorders that either they or their loved one are afflicted with.

During these conversations, we refer people to our website’s clinical trials page, which lists all of the trials CIRM has funded since our Agency was established in 2004. This page previously featured a simple table (see image below) that listed basic information about CIRM-funded trials including links to CIRM grants and to trial details on clinicaltrials.gov. This table was not the most exciting way to feature our clinical portfolio, but it did what it needed to do at the time.

CIRM’s former clinical trials table.

Here’s where I reference Bob Dylan’s famous lyric, “the times, they are a-changing”. CIRM’s clinical portfolio has rapidly expanded from 17 funded trials to 40 since the launch of our Strategic Plan in 2016. That’s 23 new trials in less than two years. The number of CIRM-funded trials will continue to climb steadily each year as we strive to reach our Strategic Plan’s goal of funding an additional 27 new trials by 2020.

This rapid expansion in our clinical portfolio is very exciting because it brings us closer to achieving our mission of accelerating stem cell treatments to patients with unmet medical needs. It also means that it’s finally time to retire our old clinical trials table and replace it with something that does our expanding portfolio justice, and makes it easier for anyone who is interested to learn about the trials we’re funding.

That something is already here and it’s called the Clinical Dashboard. It’s an interactive Dashboard that allows users to filter through CIRM’s clinical portfolio by clicking on tabs for major disease indications. Users can also sort trials by disease area, investigator, organization, and the phase or status of the trial.

The CIRM Clinical Dashboard was launched in September, 2017.

The Dashboard is a snapshot of the essential information a scientist, patient, or member of the public needs to know about our trials. Users who want to learn more about a given trial, beyond what’s listed in the Dashboard, can click on the arrow in the “Detail” column. This takes users to a detailed trials page featuring information about the treatment being tested, the CIRM clinical award that funded the trial, information about trial’s design, goals and patient enrollment status, and any recently published news about the trial.

The details page also has resources specifically for patients including a link for patients to contact the trial sponsor to ask about trial eligibility and enrollment and links to general information about stem cell trials on the CIRM website and from other organizations.

You can learn more about specific CIRM-funded trials by clicking the “Detail” icon on the Dashboard.

With our new Clinical Dashboard, we hope to raise the visibility of CIRM’s expanding clinical trial portfolio and to provide an all-in-one resource that is useful for multiple audiences.

Dr. Maria Millan, President and CEO of CIRM, concluded:

“CIRM is a global leader in funding high-quality stem cell trials for patients. We created the Clinical Dashboard for our website so that people can easily access important information about CIRM-funded trials and the promising treatments they are testing. As our Agency continues to fund new trials, we hope the Clinical Dashboard will prove to be an invaluable resource for patients, the public, and the stem cell research community.”

Getting faster, working smarter: how changing the way we work is paying big dividends

This blog is part of the Month of CIRM series

Speeding up the way you do things isn’t always a good idea. Just ask someone who got a ticket for going 65mph in a 30mph zone. But at CIRM we have found that doing things at an accelerated pace is paying off in a big way.

When CIRM started back in 2004 we were, in many ways, a unique organization. That meant we pretty much had to build everything from scratch, creating our own ways of asking for applications, reviewing those applications, funding them etc. Fast forward ten years and it was clear that, as good a job as we did in those early days, there was room for improvement in the way we operated.

So we made some changes. Big changes.

We adopted as our mantra the phrase “operational excellence.” It doesn’t exactly trip off the tongue but it does reflect what we were aiming for. The Business Dictionary defines operational excellence as:

 “A philosophy of the workplace where problem-solving, teamwork, and leadership results in the ongoing improvement in an organization.”

We didn’t want to just tinker with the way we worked, we wanted to reinvent every aspect of our operation. To do that we involved everyone in the operation. We held a series of meetings where everyone at CIRM, and I do mean everyone, was invited to join in and offer their ideas on how to improve our operation.

CIRM2.0_Logo

The end result was CIRM 2.0. At the time we described it as “a radical overhaul” of the way we worked. That might have been an understatement. We increased the speed, frequency and volume of the programs we offered, making it easier and more predictable for researchers to apply to us for funding, and faster for them to get that funding if they were approved.

For example, before 2.0 it took almost two years to go from applying for funding for a clinical trial to actually getting that funding. Today it takes around 120 days.

But it’s not just about speed. It’s also about working smarter. In the past if a researcher’s application for funding for a clinical trial failed it could be another 12 months before they got a chance to apply again. With many diseases 12 months could be a death sentence. So we changed the rules. Now if you have a project ready for a clinical trial you can apply any time. And instead of recommending or not recommending a project, basically voting it up or down, our independent panel of expert reviewers now give researchers with good but not great applications constructive feedback, enabling the researchers to make the changes needed to improve their project, and reapply for funding within 30 days.

This has not only increased the number of applications for clinical trials, it has also increased the quality of those applications.

We made similar changes in our Discovery and Translation programs. Increasing the frequency of each award, making it easier for researchers to know when the next round of funding was coming up. And we added incentives to encourage researchers to move successful projects on to the next level. We wanted to create a pipeline of the most promising projects steadily moving towards the clinic.

The motivation to do this comes from our patients. At CIRM we are in the time business. Many of the patients who are looking to stem cells to help them don’t have the luxury of time; they are rapidly running out of it. So we have a responsibility to do all we can to reduce the amount of time it takes to get the most promising therapies to them, without in any way compromising safety and jeopardizing their health.

By the end of 2016 those changes were very clearly paying dividends as we increased the frequency of reviews and the number of projects we reviewed but at the same time decreased the amount of time it took us to do all that.

Slide1

But we are not done yet. We have done a good job of improving the way we work. But there is always room to be even better, to go even faster and be more efficient.

We are not done accelerating. Not by a long shot.

Stem Cell Tools: Helping Scientists Understand Complex Diseases

Yesterday, we discussed a useful stem cell tool called the CIRM iPSC Repository, which will contain over 3000 human induced pluripotent stem cell (iPSC) lines – from patients and healthy individuals – that contain a wealth of information about human diseases. Now that scientists have access to these lines, they need the proper tools to study them. This is where CIRM’s Genomics Initiative comes into play.

Crunching stem cell data

In 2014, CIRM funded the Genomics Initiative, which created the Center of Excellence in Stem Cell Genomics (CESCG). The goal of the CESCG is to develop novel genomics and bioinformatics tools specifically for stem cell research. These technologies aim to advance our fundamental understanding of human development and disease mechanisms, improve current cell and tissue production methods, and accelerate personalized stem cell-based therapies.

The CESCG is a consortium between Stanford University, the Salk Institute and UC Santa Cruz. Together, the groups oversee or support more than 20 different research projects throughout California focused on generating and analyzing sequencing data from stem or progenitor cells. Sequencing technology today is not only used to decode DNA, but also used to study other genomic data like that provides information about how gene activity is regulated.

Many of the projects within the CESCG are using these sequencing techniques to define the basic genetic properties of specific cell types, and will use this information to create better iPSC-based tissue models. For example, scientists can determine what genes are turned on or off in cells by analyzing raw data from RNA sequencing experiments (RNA is like a photocopy of DNA sequences and is the cell’s way of carrying out the instructions contained in the DNA. This technology sequences and identifies all the RNA that is generated in a tissue or cell at a specific moment).  Single cell RNA sequencing, made possible by techniques such as Drop-seq mentioned in yesterday’s blog, are now further revealing the diversity of cell types within tissues and creating more exact reference RNA sequences to identify a specific cell type.  By comparing RNA sequencing data from single cells of stem cell-based models to previously referenced cell types, researchers can estimate how accurate, or physiologically relevant, those stem cell models are.

Such comparative analyses can only be done using powerful software that can compare millions of sequence data at the same time. Part of a field termed bioinformatics, these activities are a significant portion of the CESCG and several software tools are being created within the Initiative.  Josh Stuart, a faculty member at UC Santa Cruz School of Engineering and a primary investigator in the CESCG, explained their team’s vision:

Josh Stuart

“A major challenge in the field is recognizing cell types or different states of the same cell type from raw data. Another challenge is integrating multiple data sets from different labs and figuring out how to combine measurements from different technologies. At the CESCG, we’re developing bioinformatics models that trace through all this data. Our goal is to create a database of these traces where each dot is a cell and the curves through these dots explain how the cells are related to one another.”

Stuart’s hope is that scientists will input their stem cell data into the CESCG database and receive a scorecard that explains how accurate their cell model is based on a specific genetic profile. The scorecard will help will not only provide details on the identity of their cells, but will also show how they relate to other cell types found in their database.

The Brain of Cells

An image of a 3D brain organoid grown from stem cells in the Kriegstein Lab at UCSF. (Photo by Elizabeth DiLullo)

A good example of how this database will work is a project called the Brain of Cells (BOC). It’s a collection of single cell RNA sequencing data from thousands of fetal-derived brain cells provided by multiple labs. The idea is that researchers will input RNA sequencing data from the stem cell-derived brain cells they make in their labs and the BOC will give them back a scorecard that describes what types of cells they are and their developmental state by comparing them to the referenced brain cells.

One of the labs that is actively involved in this project and is providing the bulk of the BOC datasets is Arnold Kriegstein’s lab at UC San Francisco. Aparna Bhaduri, a postdoctoral fellow in the Kriegstein lab working on the BOC project, outlined the goal of the BOC and how it will benefit researchers:

“The goal of the Brain of Cells project is to find ways to leverage existing datasets to better understand the cells in the developing human brain. This tool will allow researchers to compare cell-based models (such as stem cell-derived 3D organoids) to the actual developing brain, and will create a query-able resource for researchers in the stem cell community.”

Pablo Cordero, a former postdoc in Josh Stuart’s lab who designed a bioinformatics tool used in BOC called SCIMITAR, explained how the BOC project is a useful exercise in combining single cell data from different external researchers into one map that can predict cell type or cell fate.

“There is no ‘industry standard’ at the moment,” said Cordero. “We have to find various ways to perform these analyses. Approximating the entire human cell lineage is the holy grail of regenerative medicine since in theory, we would have maps of gene circuits that guide cell fate decisions.”

Once the reference data from BOC is ready, the group will use a bioinformatics program called Sample Psychic to create the scorecards for outside researchers. Clay Fischer, project manager of the CESCG at UC Santa Cruz, described how Sample Psychic works:

Clay Fischer

“Sample Psychic can look at how often genes are being turned off and on in cells. It uses this information to produce a scorecard, which shows how closely the data from your cells maps up to the curated cell types and can be used to infer the probability of the cell type.”

The BOC group believes that the analyses and data produced in this effort will be of great value to the research community and scientists interested in studying developmental neuroscience or neurodegeneration.

What’s next?

The Brain of Cells project is still in its early stages, but soon scientists will be able to use this nifty tool to help them build better and more accurate models of human brain development and brain-related diseases.

CESCG is also pursuing stem cell data driven projects focused on developing similar databases and scorecards for heart cells and pancreatic cells. These genomics and bioinformatics tools are pushing the envelope to a day when scientists can connect the dots between how different cell states and cell fates are determined by computational analysis and leverage this information to generate better iPSC-based systems for disease modeling in the lab or therapeutics in the clinic.


Related Links: