Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

Kidney Disease: There’s an Organ-on-a-Chip for That

“There’s an app for that” is a well-known phrase trademarked by Apple to promote how users can do almost anything they do on a computer on their mobile phone. Apps are so deeply ingrained in everyday life that it’s hard for some people to imagine living without them. (I know I’d be lost without google maps or my Next Bus app!)

An estimated 2.2 million mobile apps exist for iPhones. Imagine if this multitude of apps were instead the number of stem cell models available for scientists to study human biology and disease. Scientists dream of the day when they can respond to questions about any disease and say, “there’s a model for that.” However, a future where every individual or disease has its own personalized stem cell line is still far away.

In the meantime, scientists are continuing to generate stem cell-based technologies that answer important questions about how our tissues and organs function and what happens when they are affected by disease. One strategy involves growing human stem cells on microchips and developing them into miniature organ systems that function like the organs in our bodies.

Kidney-on-a-chip

A group of scientists from Harvard’s Wyss Institute are using organ-on-a-chip technology to model a structure in the human kidney, called a glomerulus, that’s essential for filtering the body’s blood. It’s made up of a meshwork of blood vessels called capillaries that remove waste, toxic products, and excess fluid from the blood by depositing them into the urine.

The glomerulus also contains cells called podocytes that wrap around the capillaries and leave thin slits for blood to filter through. Diseases that affect podocytes or the glomerulus structure can cause kidney failure early or later in life, which is why the Harvard team was so interested to model this structure using their microchip technology.

They developed a method to mature human pluripotent stem cells into podocytes by engineering an environment similar to that of a real kidney on a microchip. Using a combination of kidney-specific factors and extracellular matrix molecules, which form a supportive environment for cells within tissues and organs, the team generated mature podocytes from human stem cells in three weeks. Their study was published in Nature Biomedical Engineering and was led by Dr. Donald Ingber, Founding Director of the Wyss Institute.

3D rendering of the glomerulus-on-a-chip derived from human stem cells. (Wyss Institute at Harvard University)

First author, Samaira Musah, explained how their glomerulus-on-a-chip works in a news release,

“Our method not only uses soluble factors that guide kidney development in the embryo, but, by growing and differentiating stem cells on extracellular matrix components that are also contained in the membrane separating the glomerular blood and urinary systems, we more closely mimic the natural environment in which podocytes are induced and mature. We even succeeded in inducing much of this differentiation process within a channel of the microfluidic chip, where by applying cyclical motions that mimic the rhythmic deformations living glomeruli experience due to pressure pulses generated by each heartbeat, we achieve even greater maturation efficiencies.”

Over 90% of stem cells successfully developed into functional podocytes that could properly filter blood by selectively filtering different blood proteins. The podocytes also were susceptible to a chemotherapy drug called doxorubicin, proving that they are suitable for modeling the effects of drug toxicity on kidneys.

Kidney podocyte derived from human stem cells. (Wyss Institute)

Ingber highlighted the potential applications of their glomerulus-on-a-chip technology,

Donald Ingber, Wyss Institute

“The development of a functional human kidney glomerulus chip opens up an entire new experimental path to investigate kidney biology, carry out highly personalized modeling of kidney diseases and drug toxicities, and the stem cell-derived kidney podocytes we developed could even offer a new injectable cell therapy approach for regenerative medicine in patients with life-threatening glomerulopathies in the future.”

There’s an organ-on-a-chip for that!

The Wyss Institute team has developed other organ-on-chips including lungs, intestine, skin and bone marrow. These miniature human systems are powerful tools that scientists hope will “revolutionize drug development, disease modeling and personalized medicine” by reducing the cost of research and the reliance on animal models according to the Wyss Institute technology website.

What started out as a microengineering experiment in Ingber’s lab a few years ago is now transforming into a technology “that is now poised to have a major impact on society” Ingber further explained. If organs-on-chips live up to these expectations, you might one day hear a scientist say, “Don’t worry, there’s an organ-on-a-chip for that!”


Related Links:

Pleasant surprise reveals molecular insights about graying and balding hair

A lesson that every lab researcher learns early in their career is that experiments often don’t give you the results you expect. But that’s not always a bad thing. Sometimes surprising results can lead to new insights or can even steer your research in completely new, exciting directions.

That’s what happened to scientists at the University of Texas Southwestern Medical Center. What started out as a project to better understand a genetic disorder – called neurofibromatosis – that causes benign tumor growth on nerve cells, turned into new discoveries about the cellular basis for graying and balding hair – at least in mice.

Screen Shot 2017-05-10 at 2.56.23 AM

Starting at 30 days after birth (P30, upper right picture), mouse lacking the SCF gene (top mouse in each picture) gradually loses hair pigment while hair color of control mouse remains unchanged. Photo: Fig 1A, Genes Dev. 2017 May 2.

The team was studying neurofibromatosis in mouse cells that produce Krox20, a protein which plays a role in the development of nerve cells. Krox20, in turn, stimulates the production of another protein called Stem Cell Factor (SCF). With some genetic engineering tricks, a mouse strain lacking SCF specifically in these Krox20-producing cells was bred to uncover SCF’s impact on neurofibromatosis.

HairAnatomy

Hair production and pigmentation occurs in hair follicle. Image: Shutterstock

But the researchers couldn’t help noticing something else: as reported in Genes and Development, just a month after birth, all 20 mice had graying fur and by nine months, their fur was completely white. Another set of mice was bred to lack Krox20-producing cells. The resulting animals completely lacked hair. Further experiments determined that the Krox20-producing cells in the hair follicle were stem cell-like progenitor cells that give rise to the cells responsible for hair production and pigmentation.

Piecing the data together, the researchers created a visual model of the hair follicle in which the progenitor cells maintain a steady supply of hair-producing cells with Krox20 playing a critical role. And the SCF produced by those cells allows the uptake of hair pigment called melanin, from nearby melanocyte cells also found in the hair follicle.

This model suggests that as we age, something causes a reduction in SCF in the hair follicle which leads to graying hair. The model also suggests that thinning hair, which is quite common in both men and women, is triggered by a reduction in the number of progenitor cells in the follicle.

Given that the treatment of hair loss and graying are multi-billion dollar industries, it’s no surprise that this story got a lot of attention in the press. Based on the titles of some of those news articles, you’d think new, game-changing hair products are just around the corner. In reality, this research is at a very early stage and will require many years of follow up experiments to figure out if and how commercialization of the technology is possible.

Still, as lead scientist Dr. Lu Le explains in a press release, the team has a vision for what their ultimate goal might look like:

“With this knowledge, we hope in the future to create a topical compound or to safely deliver the necessary gene to hair follicles to correct these cosmetic problems.”

 

Engineered bone tissue improves stem cell transplants

Bone marrow transplants are currently the only approved stem cell-based therapy in the United States. They involve replacing the hematopoietic, or blood-forming stem cells, found in the bone marrow with healthy stem cells to treat patients with cancers, immune diseases and blood disorders.

For bone marrow transplants to succeed, patients must undergo radiation therapy to wipe out their diseased bone marrow, which creates space for the donor stem cells to repopulate the blood system. Radiation can lead to complications including hair loss, nausea, fatigue and infertility.

Scientists at UC San Diego have a potential solution that could make current bone marrow transplants safer for patients. Their research, which was funded in part by a CIRM grant, was published yesterday in the journal PNAS.

Engineered bone with functional bone marrow in the center. (Varghese Lab)

Led by bioengineering professor Dr. Shyni Varghese, the team engineered artificial bone tissue that contains healthy donor blood stem cells. They implanted the engineered bone under the skin of normal mice and watched as the “accessory bone marrow” functioned like the real thing by creating new blood cells.

The implant lasted more than six months. During that time, the scientists observed that the cells within the engineered bone structure matured into bone tissue that housed the donor bone marrow stem cells and resembled how bones are structured in the human body. The artificial bones also formed connections with the mouse circulatory system, which allowed the host blood cells to populate the implanted bone tissue and the donor blood cells to expand into the host’s bloodstream.

Normal bone structure (left) and engineered bone (middle) are very similar. Bone tissue shown on top right and bone marrow cells on bottom right. (Varghese lab)

The team also implanted these artificial bones into mice that received radiation to mimic the procedures that patients typically undergo before bone marrow transplants. The engineered bone successfully repopulated the blood systems of the irradiated mice, similar to how blood stem cell functions in normal bone.

In a UC San Diego news release, Dr. Varghese explained how their technology could be translated into the clinic,

“We’ve made an accessory bone that can separately accommodate donor cells. This way, we can keep the host cells and bypass irradiation. We’re working on making this a platform to generate more bone marrow stem cells. That would have useful applications for cell transplantations in the clinic.”

The authors concluded that engineered bone tissue would specifically benefit patients who needed bone marrow transplants for non-cancerous bone marrow-related diseases such as sickle cell anemia or thalassemia where there isn’t a need to destroy cancer-causing cells.

A call to put the ‘public’ back in publication, and make stem cell research findings available to everyone

Opening the door

Opening the door to scientific knowledge

Thomas Gray probably wasn’t thinking about stem cell research when, in 1750 in his poem “Elegy in a Country Churchyard”, he wrote: “Full many a flower is born to blush unseen”. But a new study says that’s precisely what seems to happen to the findings of many stem cell clinical trials. They take place, but no details of their findings are ever made public. They blush, if they blush at all, unseen.

The study, in the journal Stem Cell Reports, says that only around 45 percent of stem cell clinical trials ever have their results published in peer-reviewed journals. Which means the results of around 55 percent of stem cell clinical trials are never shared with either the public or the scientific community.

Now, this finding apparently is not confined to stem cell research. Previous studies have shown a similar lack of publication of the results of more conventional therapies. Nonetheless, it’s a little disappointing – to say the least – to find out that so much knowledge and potentially valuable data is being lost due to lack of publication.

Definitely not full disclosure

Researchers at the University of Alberta in Canada used the US National Institute of Health’s (NIH) clinicaltrials.gov website as their starting point. They identified 1,052 stem cell clinical trials on the site. Only 393 trials were completed and of these, just 179 (45.4 percent) published their findings in a peer-reviewed journal.

In an interview in The Scientist, Tania Bubela, the lead researcher, says they chose to focus on stem cell clinical trials because of extensive media interest and the high public expectations for the field:

“When you have a field that is accused of over promising in some areas, it is beholden of the researchers in that field to publish the results of their trials so that the public and policy makers can realistically estimate the potential benefits.”

Now, it could be argued that publishing in a peer-reviewed journal is a rather high bar, that many researchers may have submitted articles but were rejected. However, there are other avenues for researchers to publish their findings, such as posting results on the clinicaltrials.gov database. Only 37 teams (3.5 percent) did that.

Why do it?

In the same article in The Scientist, Leigh Turner, a bioethicist at the University of Minnesota, raises the obvious question:

“The study shows a gap between studies that have taken place and actual publication of the data, so a substantial number of trials testing cell-based interventions are not entering the public domain. The underlying question is, what is the ethical and scientific basis to exposing human research subjects to risk if there is not going to be any meaningful contribution to knowledge at the end of the process?”

In short, why do it if you are not going to let anyone know what you did and what you found?

It’s a particularly relevant question when you consider that much of this research was supported with taxpayer dollars from the NIH and other institutions. So, if the public is paying for this research, doesn’t the public have a right to know what was learned?

Right to know

At CIRM we certainly think so. We expect and encourage all the researchers we fund to publish their findings. There are numerous ways and places to do that. For example, we expect each grantee to post a lay summary of their progress which we publish on our website. Stanford’s Dr. Joseph Wu’s progress reports for his work on heart disease shows you what those look like.

We also require researchers conducting clinical trials that we are funding to submit and post their trial results on the clinicaltrials.gov website.

The International Society for Stem Cell Research (ISSCR), agrees and recently updated its Guidelines for Stem Cell Research and Clinical Translation calling on researchers to publish, as fully as possible, their clinical trial results.

That is true regardless of whether or not the clinical trial showed it was both safe and effective, or whether it showed it was unsafe and ineffective. We can learn as much from failure as we can from success. But to do that we need to know what the results are.

Publishing only positive findings skews the scientific literature, and public perception of this work. Ignoring the negative could mean that other scientists waste a lot of time and money trying to do something that has already demonstrated it won’t work.

Publication should be a requirement for all research, particularly publicly funded research. It’s time to put the word “public” back in publication.

 

 

Stem cell stories that caught our eye: better ovarian cancer drugs, creating inner ear tissue, small fish big splash

Two drugs are better than one for ovarian cancer (Karen Ring). Earlier this week, scientists from UCLA reported that a combination drug therapy could be an effective treatment for 50% of aggressive ovarian cancers. The study was published in the journal Precision Oncology and was led by Dr. Sanaz Memarzadeh.

Women with high-grade ovarian tumors have an 85% chance of tumor recurrence after treatment with a common chemotherapy drug called carboplatin. The UCLA team found in a previous study that ovarian cancer stem cells are to blame because they are resistant to carboplatin. It’s because these stem cells have an abundance of proteins called cIAPs, which prevent cell death from chemotherapy.

Ovarian+cancer+tumor+cells_mid

Ovarian cancer cells (blue) expressing cIAP protein (red) on the left are more sensitive to a combination therapy than cancer cells that don’t express the protein on the right. (UCLA Broad Stem Cell Research Center/Precision Oncology)

Memarzadeh discovered that an experimental drug called birinapant made some ovarian cancer tumors more sensitive to chemotherapy treatment by breaking down cIAPs. This gave her the idea that combining the two drugs, birinapant and carboplatin, might be a more effective strategy for treating aggressive ovarian tumors.

By treating with the two drugs simultaneously, the scientists improved the survival rate of mice with ovarian cancer. They also tested this combo drug treatment on 23 ovarian cancer cell lines derived from women with highly aggressive tumors. The treatment killed off half of the cell lines indicating that some forms of this cancer are resistant to the combination treatment.

When they measured the levels of cIAPs in the human ovarian cancer cell lines, they found that high levels of the proteins were associated with ovarian tumor cells that responded well to the combination treatment. This is exciting because it means that clinicians can analyze tumor biopsies for cIAP levels to determine whether certain ovarian tumors would respond well to combination therapy.

Memarzadeh shared her plans for future research in a UCLA news release,

“I believe that our research potentially points to a new treatment option. In the near future, I hope to initiate a phase 1/2 clinical trial for women with ovarian cancer tumors predicted to benefit from this combination therapy.”

In a first, researchers create inner ear tissue. From heart muscle to brain cells to insulin-producing cells, researchers have figured out how to make a long list of different human cell types using induced pluripotent stem cells (iPSCs) – cells taken from the body and reprogrammed into a stem cell-like state.

xdvehqvv32_actual

Human inner ear organoid with sensory hair cells (cyan) and sensory neurons (yellow). An antibody for the protein CTBP2 reveals cell nuclei as well as synapses between hair cells and neurons (magenta). | Photo: Karl Koehler

This week, a research group at the Indiana University School of Medicine successfully added inner ear cells to that list. This feat, published in Nature Biotechnology, is especially important given the fact that the inner ear is one of the few parts of the body that cannot be biopsied for further examination. With these cells in hands, new insights into the causes of hearing loss and balance disorders may be on the horizon.

The inner ear contains 75,000 sensory hair cells that convert sound waves into electrical signals to the brain. Loud noises, drug toxicity, and genetic mutations can permanently damage the hair cells leading to hearing loss and dizziness. Over 15%  of the U.S. population have some form of hearing loss and that number swells to 67% for people over 75.

Due to the complex shape of the inner ear, the team grew the iPSCs into three dimensional balls of cells rather than growing them as a flat layer of cells on a petri dish. With educated guesses sprinkled in with some trial and error, the scientists, for the time, identified a recipe of proteins that stimulated the iPSCs to transform into inner ear tissue. And like any great recipe, it wasn’t so much the ingredient list but the timing that was key:

“If you apply these signals at the wrong time you can potentially generate a brain instead of an inner ear,” first author Dr. Karl Koehler said in an interview with Gizmodo. “The real breakthrough is that we figured out the exact timing to do each one of these [protein] treatments.”

dc2bqrwilv_actual

Senior author, Eri Hashino, Ph.D., and first author, Karl R. Koehler, Ph.D. Photo: Indiana University

Careful examination shows that the tissue, referred to as organoids, not only contained the sensory hair cells of the inner ear cell but also nerve cells, or neurons, that are responsible for relaying the sound waves to the brain. Koehler explained the importance of this result in a press release:

“We also found neurons, like those that transmit signals from the ear to the brain, forming connections with sensory cells. This is an exciting feature of these organoids because both cell types are critical for proper hearing and balance.”

Though it’s still early days, these iPSC-derived inner ear organoids are a key step toward the ultimate goal of repairing hearing loss. Senior author, Dr. Eri Hashino, talked about the team’s approach to reach that goal:

“Up until now, potential drugs or therapies have been tested on animal cells, which often behave differently from human cells. We hope to discover new drugs capable of helping regenerate the sound-sending hair cells in the inner ear of those who have severe hearing problems.”

This man’s research is no fish tale
And finally, we leave you this week with a cool article and video by STAT. It features Dr. Leonard Zon of Harvard University and his many, many tanks full of zebrafish. This little fish has made a huge splash in understanding human development and disease. But don’t take my word for it, watch the video!

Keeping intestinal stem cells in their prime

Gut stem cells (green) in the small intestine of a mouse.

The average length of the human gut is 25 feet long. That’s equivalent to four really tall people or five really short people lined up head to toe. Intestinal stem cells have the fun job of regenerating and replacing ALL the cells that line the gut. Therefore, it’s important for these stem cells to be able to self-renew, a process that replenishes the stem cell population. If this important biological process is disrupted, the intestine is at risk for diseases like inflammatory bowel disease and cancer.

This week, Stanford Medicine researchers published new findings about the biological processes responsible for regulating the regenerative capacity of intestinal stem cells. Their work, which was partially funded by CIRM, was published in the journal Nature.

Priming gut stem cells to self-renew

Scientists know that the self-renewal of intestinal stem cells is very important for a happy, functioning gut, but the nuances of what molecules and signaling pathways regulate this process have yet to be figured out. The Stanford team, led by senior author and Stanford Professor Dr. Calvin Kuo, studied two signaling pathways, Wnt and R-Spondin, that are involved in the self-renewal of intestinal stem cells in mice.

Dr. Calvin Kuo, Stanford Medicine.

“The cascade of events comprising the Wnt signaling pathway is crucial to stem cell self-renewal,” Dr. Kuo explained in an email exchange. “The Wnt pathway can be induced by either hormones classified as “Wnts” or “R-spondins”.  However, it is not known if Wnts or R-spondins cooperate to induce Wnt signaling, and if these Wnts and R-spondins have distinct functions or if they can mutually substitute for each other.   We explored how Wnts and R-spondins might cooperate to regulate intestinal stem cells – which are extremely active and regenerate the 25-foot lining of the human intestine every week.”

The team used different reagents to activate or block Wnt or R-spondin signaling and monitored the effects on intestinal stem cells. They found that both were important for the self-renewal of intestinal stem cells, but that they played different roles.

“Our work revealed that Wnts and R-spondins are not equivalent and that they have very distinct functions even though they both trigger the Wnt signaling cascade,” said Dr. Kuo. “Both Wnts and R-spondins are required to maintain intestinal stem cells.  However, Wnts perform more of a subservient “priming” function, where they prepare intestinal stem cells for the action of R-spondin, which is the active catalyst for inducing intestinal stem cells to divide.”

The authors believe that this multi-step regulation, involving priming and self-renewal factors could apply to stem cell systems in other organs and tissues in the body. Some of the researchers on this study including Dr. Kuo are pursuing this idea through a new company called Surrozen, which produces artificial bioengineered Wnt molecules that don’t require activation like natural Wnt molecules. These Wnt molecules were used in the current study and are explained in more detail in a separate Nature article published at the same time.

The company believes that artificial Wnts will be useful for understanding stem cell biology and potentially for therapeutic applications. Dr. Kuo explained,

“The new surrogate Wnts are easily produced and can circulate in the bloodstream, unlike natural Wnts.  There may be medical applications of these bioengineered Wnt surrogates in stimulating various stem cell compartments of the body, given the wide range of stem cells that are governed by natural Wnts.”

jCyte gets FDA go-ahead for Fast Track review process of Retinitis Pigmentosa stem cell therapy

21 century cures

When the US Congress approved, and President Obama signed into law, the 21st Century Cures Act last year there was guarded optimism that this would help create a more efficient and streamlined, but no less safe, approval process for the most promising stem cell therapies.

Even so many people took a wait and see approach, wanting a sign that the Food and Drug Administration (FDA) would follow the recommendations of the Act rather than just pay lip service to it.

This week we saw encouraging signs that the FDA is serious when it granted Regenerative Medicine Advanced Therapy (RMAT) status to the CIRM-funded jCyte clinical trial for a rare form of blindness. This is a big deal because RMAT seeks to accelerate approval for stem cell therapies that demonstrate they can help patients with unmet medical needs.

klassen

jCyte co-founder Dr. Henry Klassen

jCyte’s work is targeting retinitis pigmentosa (RP), a genetic disease that slowly destroys the cells in the retina, the part of the eye that converts light into electrical signals which the brain then interprets as vision. At first people with RP lose their night and peripheral vision, then the cells that help us see faces and distinguish colors are damaged. RP usually strikes people in their teens and, by the time they are 40, many people are legally blind.

jCyte’s jCell therapy uses what are called retinal progenitor cells, injected into the eye, which then release protective factors to help repair and rescue diseased retinal cells. The hope is this will stop the disease’s progression and even restore some vision to people with RP.

Dr. Henry Klassen, jCyte’s co-founder and a professor at UC Irvine, was understandably delighted by the designation. In a news release, he said:

“This is uplifting news for patients with RP. At this point, there are no therapies that can help them avoid blindness. We look forward to working with the FDA to speed up the clinical development of jCell.”

FDA

On the FDA’s blog – yes they do have one – it says researchers:

“May obtain the RMAT designation for their drug product if the drug is intended to treat serious or life-threatening diseases or conditions and if there is preliminary clinical evidence indicating that the drug has the potential to address unmet medical needs for that disease or condition. Sponsors of RMAT-designated products are eligible for increased and earlier interactions with the FDA, similar to those interactions available to sponsors of breakthrough-designated therapies. In addition, they may be eligible for priority review and accelerated approval.”

Paul Bresge

jCyte CEO Paul Bresge

jCyte is one of the first to get this designation, a clear testimony to the quality of the work done by Dr. Klassen and his team. jCyte CEO Paul Bresge says it may help speed up their ability to get this treatment to patients.

 

“We are gratified by the FDA’s interest in the therapeutic potential of jCell and greatly appreciate their decision to provide extra support. We are seeing a lot of momentum with this therapy. Because it is well-tolerated and easy to administer, progress has been rapid. I feel a growing sense of excitement among patients and clinicians. We look forward to getting this critical therapy over the finish line as quickly as possible.”

Regular readers of this blog will already be familiar with the story of Rosie Barrero, one of the first group of people with RP who got the jCell therapy. Rosie says it has helped restore some vision to the point where she is now able to read notes she wrote ten years ago, distinguish colors and, best of all, see the faces of her children.

RMAT is no guarantee the therapy will be successful. But if the treatment continues to show promise, and is safe, it could mean faster access to a potentially life-changing therapy, one that could ultimately rescue many people from a lifetime of living in the dark.

 

 

CIRM’s Randy Mills leaving stem cell agency to take on new challenge

Mills, Randy Union Tribune K.C. Alfred

Some news releases are fun to write. Some less so. The one that CIRM posted today definitely falls into that latter group. It announced that CIRM’s President and CEO, Randy Mills, is leaving us to take up the role of President and CEO at the National Marrow Donor Program – NMPD/Be The Match.

It’s a great opportunity for him but a big loss for us.

Be The Match is a non-profit organization that delivers cures to patients in need of a life-saving marrow or cord blood transplant. The organization operates the national Be The Match Registry®—the world’s largest listing of potential marrow donors and donated umbilical cord blood units—matches patients with their marrow donor, educates healthcare professionals and conducts research so more lives can be saved. The organization also recently created a subsidiary—Be The Match BioTherapiesSM—that supports organizations pursuing new life-saving treatments in cellular therapy.

Randy has been at CIRM since April 2014. In that time he has dramatically re-shaped the agency, and, more importantly, dramatically improved the speed with which we are able to fund research. It’s no exaggeration to say that Randy’s drive to create CIRM 2.0 was a radical overhaul of the way we work. It made it easier for researchers to apply to us for funding, made our funding cycles more consistent and the application process simpler – though no less rigorous.

As our CIRM Board Chair Jonathan Thomas said in the news release:

“CIRM has experienced a remarkable transformation since Randy’s arrival. He has taken the agency to a new level by developing and implementing a bold strategic plan, the results of which include an 82% reduction in approval time for clinical trial projects, a 3-fold increase in the number of clinical trials, and a 65% reduction in the time it takes to enroll those trials. The opportunity for Randy to lead a tremendously important organization such as the NMDP/Be The Match is consistent with the values he demonstrated at CIRM, which put the well-being of patients above all else. We shall miss him but know he will do great things at NMDP/Be The Match.”

From a personal perspective, what most impressed me about Randy was his willingness to involve every person in the agency in changing the way we work. He could easily have come in and simply issued orders and told people what to do. Instead he invited every person at CIRM to sit in on the meetings that were shaping the new direction we took. You didn’t have to go, but if you did you were expected to offer thoughts and ideas. No sitting idly by.

Those meetings not only changed the direction of the agency, they also re-energized the agency. When people feel their voice is being heard, that their opinion has value, they respond by working harder and smarter.

The CIRM of today has the same mission as always – accelerating stem cell treatments to patients with unmet medical needs – but the people working here seem to have a renewed commitment to making that mission a reality.

Randy brought to CIRM energy and a renewed sense of purpose, along with some truly terrible jokes and a strange conviction that he could have been a great rock and roll drummer (suffice to say he made the right career choice when he went into research).

He changed us as an agency, for the better. We shall miss him, but know he will do great things in his new role at NMDP/Be The Match and we wish him success in his new job, and his family great joy in their new home.

MariaM-085-Edit

Maria Millan

Randy will be with us till the end of June and starting July 1st Dr. Maria Millan will take on the role of interim President and CEO.

 

 

 

Stem cell-derived, 3D brain tissue reveals autism insights

Studying human brain disorders is one of the most challenging fields in biomedical research. Besides the fact that the brain is incredibly complex, it’s just plain difficult to peer into it.

It’s neither practical nor ethical to access the cells of the adult brain. Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist.

For one thing, it’s not practical, let alone ethical, to drill into an affected person’s skull and collect brain cells to learn about their disease. Another issue is that the faulty cellular and molecular events that cause brain disorders are, in many cases, thought to trace back to fetal brain development before a person is even born. So, just like a detective looking for evidence at the scene of a crime, neurobiologists can only piece together clues after the disease has already occurred.

The good news is these limitations are falling away thanks to human induced pluripotent stem cells (iPSCs), which are generated from an individual’s easily accessible skin cells. Last week’s CIRM-funded research report out of Stanford University is a great example of how this method is providing new human brain insights.

Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.

Recreating interactions between different regions of the development from skin-derived iPSCs
Image: Sergui Pasca Lab, Stanford University

Holy Brain Balls! Recreating the regions of our brain with skin cells
Two years ago, Pasca’s group figured out a way grow iPSCs into tiny, three-dimensional balls of cells that mimic the anatomy of the cerebral cortex. The team showed that these brain spheres contain the expected type of nerve cells, or neurons, as well as other cells that support neuron function.

Still, the complete formation of the cortex’s neuron circuits requires connections with another type of neuron that lies in a separate region of the brain. These other neurons travel large distances in a developing fetus’ brain over several months to reach the cortical cortex. Once in place, these migrating neurons have an inhibitory role and can block the cortical cortex nerve signals. Turning off a nerve signal is just as important as turning one on. In fact, imbalances in these opposing on and off nerve signals are suspected to play a role in epilepsy and autism.

So, in the current Nature study, Pasca’s team devised two different iPSC-derived brain sphere recipes: one that mimics the neurons found in the cortical cortex and another that mimics the region that contains the inhibitory neurons. Then the researchers placed the two types of spheres in the same lab dish and within three days, they spontaneously fused together.

Under video microscopy, the migration of the inhibitory neurons into the cortical cortex was observed. In cells derived from healthy donors, the migration pattern of inhibitory neurons looked like a herky-jerkey car being driven by a student driver: the neurons would move toward the cortical cortex sphere but suddenly stop for a while and then start their migration again.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

New insights into Timothy Syndrome may also uncover molecular basis of autism
To study the migration of the inhibitory neurons in the context of a neuropsychiatric disease, iPSCs were generated from skin samples of patients with Timothy syndrome, a rare genetic disease which carries a wide-range of symptoms including autism as well as heart defects.

The formation of brain spheres from the patient-derived iPSCs proceeded normally. But the next part of the experiment revealed an abnormal migration pattern of the neurons.  The microscopy movies showed that the start and stop behavior of neurons happened more frequently but the speed of the migration slowed. The fascinating video below shows the differences in the migration patterns of a healthy (top) versus a Timothy sydrome-derived neuron (bottom). The end result was a disruption of the typically well-organized neuron circuitry.

Now, the gene that’s mutated in Timothy Syndrome is responsible for the production of a protein that helps shuttle calcium in and out of neurons. The flow of calcium is critical for many cell functions and adding drugs that slow down this calcium flux restored the migration pattern of the neurons. So, the researchers can now zero in their studies on this direct link between the disease-causing mutation and a specific breakdown in neuron function.

The exciting possibility is that, because this system is generated from a patient’s skin cells, experiments could be run to precisely understand each individual’s neuropsychiatric disorder. Pasca is eager to see what new insights lie ahead:

“Our method of assembling and carefully characterizing neuronal circuits in a dish is opening up new windows through which we can view the normal development of the fetal human brain. More importantly, it will help us see how this goes awry in individual patients.”